Supplementary information

Keratinocyte-derived IκBζ drives psoriasis and associated systemic inflammation

Sebastian Lorscheid¹, Anne Müller¹, Jessica Löffler¹, Claudia Resch¹, Philip Bucher¹, Florian C. Kurschus^{2,3}, Ari Waisman³, Knut Schäkel², Stephan Hailfinger^{1,4}, Klaus Schulze-Osthoff^{1,4,5}, Daniela Kramer^{1,6}

¹ Interfaculty Institute for Biochemistry, University of Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen, Germany

²Department of Dermatology, Heidelberg University Hospital, 69120 Heidelberg, Germany

³Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany

⁴ Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Germany

⁵ German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120

Heidelberg, Germany

⁶ To whom correspondence should be addressed: daniela.kramer@uni-tuebingen.de

Supplemental Figure 1. Extended phenotype analysis of imiquimod-treated K14-cre *Nfkbiz* KO mice. (A) Treatment scheme for the induction of global *Nfkbiz* deletion using tamoxifen (TAM) injections (*i.p.*) prior to IMQ treatment. (B) Gating strategy for the

quantification of neutrophil and macrophage numbers in IMQ-treated ears. **(C)** IHC staining of neutrophils (MPO staining) and macrophages (F4/80 staining) in the ears of IMQ-treated global *Nfkbiz* KO mice. Bars: 40 µm. **(D)** Gene expression analysis of skin samples from 7 d IMQ-treated, tamoxifen (TAM)-inducible global *Nfkbiz* KO mice. Relative mRNA levels were normalized to *Actin*. n = 4 for untreated mice, n = 6 for IMQ-treated mice \pm SEM. **(E)** Scheme of IMQ and tamoxifen treatment in order to analyze effects of a delayed global *Nfkbiz* deletion in mice on psoriasis-related gene expression and disease progression. **(F)** Measurement of the ear thickness from mice treated as in (E). **(G)** H&E staining from ears of IMQ-treated control and global (*Nfkbiz*) KO mice at day 7. Mice received tamoxifen treatment 2 days delayed, as depicted in (E). Bars: 40 µm. **(H)** Gene expression analysis from skin samples of mice that were treated as in (E), similar analysis as in (D). n = 3-8 samples per group \pm SEM. P-values were calculated using the Student's t-test. (*p < 0.05, **p < 0.01, ***p < 0.001).

Supplemental Figure 2. Extended analysis of skin-infiltrating T cells in untreated and IMQ-treated K14-cre *Nfkbiz* KO mice. (A) Gating strategy for αβ and γδ T cells from ears of untreated and IMQ-treated mice. (B) Gating strategy for intracellular staining of IL-22 and IL-17A in αβ and γδ T cells from IMQ-treated Ctrl and K14-KO mice. Note that gate settings were slightly different as in (A) due to the fixation and permeabilization of the cells. (C) Flow cytometry analysis of T-cell subsets in the ears of untreated Ctrl and K14-KO mice. T-cell subsets were detected as CD45⁺ and either CD3⁺, αβTCR⁺ or γδTCR⁺ cells. Shown are the mean values of 3-6 ears per group ± SEM. (D) Gene expression analysis of *II*7 and *II*15 in untreated Ctrl and K14-KO mice. Relative mRNA levels were normalized to *Actin*. n = 6 ± SEM. P-values were calculated using the Student's t-test. (*p < 0.05, **p < 0.01, ***p < 0.001).

Supplemental Figure 3. Macrophage infiltration into the skin of K14-IL17A^{ind} IκΒζ KO **mice.** Detection of macrophages by F4/80 staining in skin sections of 15-week-old K14-IL17A^{ind} mice with heterozygous or homozygous deletion of IκΒζ.

Drimor	forward	roverse
Actin		GGTGTAAAACGCAGCTCAGTA
Ccl17	AATGTAGGCCGAGAGTGCTG	
Ccl2	CTGGAGCATCCACGTGTTGG	
Ccr4		GAAAGCCAAACTGCACGGAC
Ccr6		GGCAATCAGAGCTCTCGGA
00/0	TCACGTTGAATGAAGAGGTAGAA	
Csf2	G	ACTTGTGTTTCACAGTCCGTTTC
Csf3	ATCCATGGCTCAACTTTCTGC	GCTGCAGGGCCATTAGCTTC
Cxcl1	ACGTGTTGACGCTTCCCTTG	TCCTTTGAACGTCTCTGTCCC
Cxcl2	CGCCCAGACAGAAGTCATAGC	CTTTGGTTCTTCCGTTGAGGG
Cxcl5	CCCTACGGTGGAAGTCATAGC	GAACACTGGCCGTTCTTTCC
Defb4	GGTGCTGCTGTCTCCACTTG	TATTCATCTTGCTGGTTCTTCGTC
<i>l</i> 15	TGCAGTGCATCTCCTTACGC	GTGGATTCTTTCCTGACCTCTCTG
ll17a	GCCCTCAGACTACCTCAACC	TTCCCTCCGCATTGACACAG
<i>l</i> 19	TGTGGACATGCGCCTCATAG	GCAGGTTGTTGGTCATGCAG
ll1b	AGCTGAAAGCTCTCCACCTC	GCTTGGGATCCACACTCTCC
ll1f6	GCCTGTTCTGCACAAAGGATG	ACAGCGATGAACCAACCAGG
ll1f9	GTCAGCGTGACTATCCTCCC	TGGCTTCATTGGCTCAGGG
<i>II20</i>	TTGGACTGTTCTCCGCTGTG	ATCTTCAGCTTGCACACTATCC
<i>I</i> I22	CCTACATGCAGGAGGTGGTG	CCCAATCGCCTTGATCTCTCC
ll23a	CAGCTCTCTCGGAATCTCTGC	TGTCCTTGAGTCCTTGTGGG
<i>II</i> 7	ATTATGGGTGGTGAGAGCCG	AAAGAAACATGGAACATGGTCTGC
Lcn2	AATGTCACCTCCATCCTGGTC	ACTGGTTGTAGTCCGTGGTG
Nfkbiz	AACTCGCCAAGAGACCAGTG	AGAGCCACTGACTTGGAACG
S100a 7	TOTOCTOTTOCATACTOTO	ТСАТСТАСТАТСССТСССТСС
/ S100a	TOTOCICITOGATAGIGIGCC	IGATGIAGIATGGCIGCUGC
9	AATGGTGGAAGCACAGTTGG	CTGGTTTGTGTCCAGGTCCTC

Table S1. List of gene expression primer.