Supplementary Materials

Fig. S1. Phenotype-phenotype associations
Fig. S2. Volume by mutation.
Fig. S3. Location and cystic structure VAF separated by individual mutation.
Fig. S4. Head and neck LM staging system and genotype/stage results.
Table S1. Phenotype data and sequencing results by individual. (See separate .xlsx file)
Table S2. Genes included in smMIP panel.
Table S3. Correlation of variant frequency with cell growth assays from Dogruluk et al. 2015 (31).

b

Number of Procedures				
	$\mathbf{0 - 1}$	$\mathbf{2 - 5}$	$\boldsymbol{\geq 6}$	
Neck/Body	$\mathbf{1 5}$	8	2	
Orofacial	$\mathbf{1 6}$	16	24	
	$\mathrm{p}=\mathbf{0 . 0 0 6}$			

Number of Procedures			
$\mathbf{0 - 1}$	$\mathbf{2 - 5}$	≥ 6	
Macro	$\mathbf{1 7}$	9	0
Mixed	10	10	21
Micro	4	5	5

Number of Procedures			
$\mathbf{0 - 1}$	$\mathbf{2 - 5}$	$\mathbf{2}$	
Unilateral	28	19	6
Bilateral	3	5	20

Figure S1: Phenotype-phenotype associations. (a) Histogram demonstrating relationship between location, laterality, and cystic structure. Unilateral neck and body lesions are predominantly macrocystic while microcystic lesions are predominantly in the orofacial region. (b) Contingency tables for number of procedures and location, laterality, and cystic structure demonstrating and increased number of procedures for orofacial, microcystic, and bilateral LMs.

Figure S2: Volume by mutation. (a) Dot-box plot of volume by mutation ($\mathrm{n}=31$). P value indicates result of Kruskal-Wallis comparison. Boxes are defined by the $1^{\text {st }}$ quartile inferiorly, median, and $3^{\text {rd }}$ quartile superiorly with whiskers extending to the farthest non-outlier point (defined as within $3 / 2$ times the interquartile range).

Dot colors correspond to cystic structure: green - macrocystic, purple - microcystic, and blue - mixed cystic. Abbreviations: mL - milliliters.

Cystic structure separated by mutation

Figure S3: Location and cystic structure VAF separated by individual mutation. Dot-box plots of VAF by (a) location and (b) cystic structure separated by individual mutations (H1047R, $n=22$; E545K, $n=18$; E542K, $\mathrm{n}=18$; NHS, $\mathrm{n}=6$). Boxes are defined by the $1^{\text {st }}$ quartile inferiorly, median, and $3^{\text {rd }}$ quartile superiorly with whiskers extending to the farthest non-outlier point (defined as within $3 / 2$ times the interquartile range).

Abbreviations: NHS - non-hotspot mutations. VAF - variant allele fraction.

Figure S4: Head and neck LM staging system and genotype/stage results. (a) Schematic exemplifying the five de Serres clinical stages for head and neck LMs. (b) Histogram showing variation of mutations across stage. P value is for Fisher exact test. (c) Dot-box plot of VAF plotted by stage and (d) genotype adjusted VAF plotted by stage. P values are for Kruskal-Wallis tests. Dot colors correspond to cystic structure (pale green: macrocystic, purple: microcystic, blue: mixed cystic).

Abbreviations: LM - lymphatic malformation. NHS - non-hotspot mutations. VAF - variant allele fraction.

Table S2. Genes included in smMIP panel.

Gene	\# of MIPs
ACVRL1	24
AKT3	23
ARAF	33
CCBE1	20
CCM2	28
CELSR1	127
CTNNB1	31
DCHS1	123
ENG	30
EPHB4	43
FAT4	159
FGFR1	42
FLT4	72
FOXC2	18
GATA2	21
GDF2	14
GJC2	15
GLMN	30
GNA11	18
GNAQ	14
HGF	35
HRAS	13
IDH1	19
IDH2	24
ITGA9	54
KIF11	47
KRAS	10
KRIT1	34
MAP2K1	19
MAP3K3	35
NRAS	8
PDCD10	99
PDGFRB	60
PIEZO1	133
PIK3CA	42
PIK3R6	38
PORCN	26
PTEN	16
PTPN14	48
RASA1	48
SMAD4	23
SOX18	14
TEK	VEGFC
	17

Table S3. Correlation of variant frequency with cell growth assays from Dogruluk et al., 2015 (31).

PIK3CA Variant	Count (COSMIC, all cancers)	Relative Frequency (total PIK3CA variants =13969)	IL3-independent Ba/F3 growth fold change (mean) [Fig.2b (29)]	EGF/Insulin-independent MCF10A growth fold change (mean) [Fig.2d (29)]
H1047R	4266	30.54	48.4	16.5
E545K	3174	22.72	52.3	10.8
E542K	1953	13.98	51.2	6.1
H1047L	583	4.17	46.0	5.9
E545A	269	1.93	20.9	5.3
Q546K	241	1.73	30.1	7.1
E545G	204	1.46	21.0	5.7
N345K	202	1.45	36.2	4.2
C420R	168	1.20	32.7	5.3
H1047Y	119	0.85	5.5	2.3
M1043I	106	0.76	2.7	1.6
G1049R	102	0.73	20.8	9.0
Q546R	102	0.73	24.1	5.5
E545Q	73	0.52	6.1	2.8
M1043V	62	0.44	5.7	3.1
E453K	61	0.44	8.4	3.4
Q546P	46	0.33	23.0	5.8
N1044K	41	0.29	8.0	3.1
K111N	39	0.28	2.4	1.1
P539R	32	0.23	6.1	2.6
Q546E	24	0.17	12.6	3.2
T1025T	22	0.16	1.4	1.6
E542V	18	0.13	7.3	3.6
N345I	15	0.11	3.9	2.6
H701P	8	0.06	1.1	0.5
A1020V	4	0.01	0.9	1.3
I31M	2		1.2	1.4
Pearson correlation with COSMIC frequency	0.72	$1.33 E-7$		
		2.45 E		

