

Supplementary Figure 1. Progranulin but not Granulin suppresses NK cell activation. (A-D) Freshly isolated NK cells were expanded with IL-2 and indicated doses of recombinant PGRN. The NK cell numbers (**A**, n=3), NK cell viability (**B**, n=3), NK cell cycle (**C**, n=3) and NK cell surface receptors (**D**, n=3) were measured at indicated time points. In (A), the graph illustrates a normalized value: (NK cell number in presence of PGRN) / (NK cell number in absence of PGRN). (**E and F**) PGRN proteins were incubated with Elastase (1.0 unit) for 24h. (**E**) The efficacy of PGRN digestion was confirmed by western blotting. (**F**) WT splenocytes were not stimulated (n.c.), stimulated with IL-2 (IL-2), IL-2 in presence of PGRN, IL-2 in presence of elastase, or IL-2 in presence of elastase digested PGRN, followed by Granzyme B staining (n=4). Data show mean \pm s.e.m *p < 0.05, **p < 0.001, ***p < 0.0002, ****p < 0.0001.

Supplementary Figure 2. The impact of PGRN on $PrfI^{-/}$, $Tnfrsf1a^{-/-}$ and $Tnfrsf1b^{-/-}$ NK cells. (A) Freshly isolated NK cells from $PrfI^{-/-}$ spleen tissue was treated with IL-2 and different doses of PGRN for 4 days (n=3). The graphs illustrate a normalized value: (NK cell number in presence of PGRN) / (NK cell number in absence of PGRN). (B) Splenocytes from WT, $Tnfrsf1a^{-/-}$ and $Tnfrsf1b^{-/-}$ mice were stimulated with 1000U/ml IL-2 with or without PGRN for 6h. Granzyme B levels were measured by flow cytometry (n=5). Data show mean ± s.e.m. **p < 0.001, ***p < 0.0002, ****p < 0.0001.

Supplementary Figure 3. T cells, B cells, CD169⁺ and CD11c⁺ cells are dispensable for PGRN expression during viral infection. (A) Wild type (WT) mice and $Rag1^{-/}$ mice were infected with 2*10⁶ pfu WE (n=3). The serum PGRN protein levels were measured by ELISA at day 1 p.i.. (B and C) CD169-DTR and CD11c-DTR mice were treated with Diphtheria toxin (DT, 100 ng/mouse) at day -2 followed by infection with 2*10⁶ pfu LCMV-WE at day 0 (n=3). The serum PGRN protein levels were measured by ELISA at day 1 p.i. (D) Lethally irradiated control mice were reconstituted with control or $Grn^{-/-}$ bone marrow cells. Mice were infected with 2*10⁶ pfu LCMV WE and the serum PGRN levels were measured by ELISA (n=3-5). Data show mean ± s.e.m.

Supplementary Figure 4. Naïve $Grn^{-/-}$ **mice exhibit no gross T cell phenotype.** T cells were analysed in naïve $Grn^{-/-}$ and control mice. (A) CD4⁺ T cell number (*upper panel*) and CD8⁺ T cell number (*lower panel*) was measured in tissue harvested from control and $Grn^{-/-}$ mice as indicated (n=7 per group). (B) The frequency of CD4⁺ T cells (*upper panel*) and CD8⁺ T cells (*lower panel*) were determined in control and $Grn^{-/-}$ mice (n=7). Data show mean ± s.e.m. pooled from two experiments.

Supplementary Figure 5. Grn^{-2} mice have reduced anti-viral T cell immunity after LCMV infection. Control and Grn^{-2} mice were infected with 2*10⁶ LCMV-WE. (A) Absolute numbers of anti-viral CD8⁺ T cells from blood were measured by flow cytometry at day 20 (n=4). (B) Surface molecule expression on anti-viral CD8⁺ T cells from blood samples 12 (upper panel) or 20 (lower panel) days after infection were measured (n=4). (C) IFN γ^+ CD8⁺ T cells were determined after re-stimulation with the LCMV epitopes gp33 and np396 at day 20 p.i. (n=4). (D) Virus titers were examined by plaque assays at day 20 p.i. (n=4). Data show mean ± s.e.m.; *p < 0.05, **p < 0.001, ****p < 0.0001.

Supplementary Figure 6. LCMV replication remains intact in presence of PGRN. N2a neuroblastoma cells (A, n=3), Vero (B, n=3) and L929 (C, n=3) cells were incubated with the indicated concentrations of PGRN protein. Subsequently, the cells were infected with the indicated doses of LCMV-WE. The replication of virus was determined by plaque assays. Data show mean \pm s.e.m.

Supplementary Figure 7. PGRN does not limit CD8⁺ T cell proliferation and activation. (A) Purified CD8⁺ T cells were labelled with CFSE and then activated by anti-CD3/anti-CD28 antibodies and incubated with different doses of PGRN *in vitro*. The CFSE intensity was measured by flow cytometry at 48h and 72h (n=3). **(B)** Splenocytes from control mice were stimulated by PMA (20 ng/ml) and Ionomycin (1 µg/ml) for 6hours. Cells were subjected to IFN- γ staining (n=5). **(C)** Naïve CD8⁺ T cells were activated with anti-CD3e/CD28 antibody with or without PGRN (100µg/ml) for 24h. The apoptosis of these T cells was measured by FACS (n=6). **(D)** Mice were infected with LCMV-WE. Splenocytes were re-stimulated with gp33 in absence and presence of PGRN (100 µg/ml) and IFN- γ in CD8⁺ T cells was measured by FACS (n=6). Data show mean ± s.e.m.

Supplementary Figure 8. $Grn^{-/-}$ mice exhibit no gross NK cell or Innate lymphoid cell phenotype. (A) Absolute numbers of NK cell progenitor preNKP (Lin⁻2B4⁺CD27⁺CD127⁺CD122⁻Flt3⁻) and rNKP (Lin⁻2B4⁺CD27⁺CD122⁺Flt3⁻) were measured by flow cytometry in bone marrow (BM) samples from control and $Grn^{-/-}$ mice (n=3). (B) CD3e⁻NK1.1⁺ cells in peripheral lymphoid organs were examined in $Grn^{-/-}$ and control mice (n=6). (C) ILC1 (Lin⁻NK1.1⁺RORγT⁻ Eomes⁻), ILC2 (Lin⁻NK1.1⁻RORγT⁻CD11b⁻GATA-3⁺), ILC3 (Lin⁻RORγT⁺CD4⁻) and LTi (Lin⁻RORγT⁺CD4⁺) subsets were measured by flow cytometry in organs harvested from naive control and $Grn^{-/-}$ mice as indicated. Gating strategy excluded dead and Lin (CD3, CD5, CD8, CD19, Ly-6G, TCRβ, and FcγR1) cells (n=6). (D) Inhibitory and activating receptors of CD3e⁻NK1.1⁺ cells in the blood and peripheral lymphoid organs as indicated were examined in naive control and $Grn^{-/-}$ mice (n=6). Data show mean ± s.e.m.

Supplementary Figure 9. $Grn^{-/-}$ mice exhibit similar NK cell numbers and surface molecule expression to control animals. (A) Control and $Grn^{-/-}$ mice were infected with $2x10^6$ pfu of LCMV-WE. Absolute numbers of CD3e NK1.1⁺ cells in blood (*upper panel*) and spleen (*lower panel*) samples were examined by flow cytometry (n=4). (B) Surface molecule expression was measured (n=4). (C-D) Control and $Grn^{-/-}$ splenocytes were activated with different cytokines as indicated for 6h. Gzm B (C) and IFN- γ (D) expression in NK cells was measured by flow cytometry (n=4). (E) Control and $Grn^{-/-}$ bone marrow derived macrophage (BMDM) were infected with LCMV (MOI=1) for 24h and isolated naïve WT NK cells were added to the culture. 24h later, NK cell

maturation was measured by flow cytometry (n=6). (F) WT and $Grn^{-/-}$ mice were infected with high dose of LCMV-WE. MHC-I expression on CD8⁺ T cells was measured by FACS (n=4). (G) WT and $Grn^{-/-}$ mice were injected with NK depletion antibody (α NK1.1) as shown in Figure 7D. The survival rate was measured (n=22). Data show mean \pm s.e.m.; *ns* represents no significance, *p < 0.05, **p < 0.001.

Supprementary Tuble 1		
Targets		Sequence (5'-3')
CDK9	Forward	GTACGACTCGGTGGAATGCC
	Reverse	GATGGGGAACCCCTCCTTCT
Cyclin T1	Forward	ATGCCTGATCGTACCGAGAAG
	Reverse	GTCGTTGGCGTAAATGAGCTG
Granzyme B	Forward	CCACTCTCGACCCTACATGG
	Reverse	GGCCCCCAAAGTGACATTTATT
Perforin	Forward	AGCACAAGTTCGTGCCAGG
	Reverse	GCGTCTCTCATTAGGGAGTTTTT
Grn	Forward	GTGTTGTGAGGATCACATTC
	Reverse	CTATGACCTTCTTCATCCAG
GAPDH	Forward	TGCACCACCAACTGCTTAG
	Reverse	GGATGCAGGGATGATGTTC
Actin	Forward	GGCTGTATTCCCCTCCATCG
	Reverse	CCAGTTGGTAACAATGCCATGT

Supplementary Table 1