925 Supplemental Data **Supplemental Figure 1: Comparison between Collagen IV and Isolectin B4 Staining for the Detection of Vaso-obliteration. A:** Representative image of retinal flatmount stained with Collagen IV (red). **A':** The retina in panel A with areas of vaso-obliteration highlighted (yellow). **B:** Representative image of retinal flatmount stained with Isolectin B4 (green). **B':** The retina in panel B with areas of vaso-obliteration highlighted (yellow). **C:** Summary of quantification of vaso-obliteration areas. Values are expressed as percentage of total retina ± SEM, n = 3 retinas for each data set. Table S1. Genes differentially regulated in the OIR model as compared to normoxia. | Gene ID | Description | Fold change | p value | |--------------------|--|----------------------------|----------------------| | | Up-regulated | | | | | esis, proliferation and endothelial physioogy | 04.00 | 0.705.00 | | Esm1
Igfbp3 | endothelial cell-specific molecule 1 insulin-like growth factor binding protein 3 | 21.23
5.76 | 3.73E-08
1.10E-05 | | Angpt2 | angiopoietin 2 | 3.76 | 6.21E-06 | | Vwf | Von Willebrand factor homolog | 3.86 | 2.94E-08 | | lgfbp5 | insulin-like growth factor binding protein 5 | 3.55 | 6.87E-05 | | Ednra | endothelin receptor type A | 3.18 | 1.93E-08 | | Pecam1 | platelet/endothelial cell adhesion molecule 1 | 2.76 | 6.58E-08 | | Procr | protein C receptor, endothelial | 2.42
2.40 | 1.28E-05 | | Vegfa
Vwa1 | vascular endothelial growth factor A von Willebrand factor A domain containing 1 | 2.40 | 9.47E-07
3.99E-04 | | Angptl2 | angiopoietin-like 2 | 2.24 | 2.34E-03 | | Eng | endoglin | 1.91 | 5.43E-06 | | Kit | kit oncogene | 1.84 | 7.10E-05 | | Ephb4 | Eph receptor B4 | 1.77 | 3.27E-05 | | Efna1 | ephrin A1 | 1.68 | 5.29E-06 | | Ece1 | endothelin converting enzyme 1 | 1.51 | 6.43E-04 | | Inflammat | | 6 88 | 2.23E-09 | | Tgfbi
Egln3 | transforming growth factor, beta induced egl-9 family hypoxia-inducible factor 3 | 6.88
6.24 | 2.23E-09
1.27E-04 | | Cxcr4 | chemokine (C-X-C motif) receptor 4 | 2.97 | 2.25E-07 | | Ctla2b | cytotoxic T lymphocyte-associated protein 2 beta | 2.93 | 1.90E-05 | | lfitm3 | interferon induced transmembrane protein 3 | 2.79 | 2.97E-04 | | Ctla2a | cytotoxic T lymphocyte-associated protein 2 alpha | 2.34 | 9.42E-05 | | Lyn | Yamaguchi sarcoma viral (v-yes-1) oncogene homolog | 2.26 | 1.77E-04 | | Tgfb1 | transforming growth factor, beta 1 | 2.13 | 7.63E-05 | | Tgfbr2 | transforming growth factor, beta receptor II | 2.02 | 1.23E-05 | | Ets2
Ets1 | E26 avian leukemia oncogene 2, 3' domain E26 avian leukemia oncogene 1, 5' domain | 1.94
1.88 | 3.60E-04
2.29E-05 | | Egln1 | egl-9 family hypoxia-inducible factor 1 | 1.88 | 2.29E-05
4.68E-05 | | Tgif1 | TGFB-induced factor homeobox 1 | 1.74 | 5.21E-05 | | ECM remo | | | J.L | | Col1a1 | collagen, type I, alpha 1 | 4.63 | 2.22E-03 | | Col4a1 | collagen, type IV, alpha 1 | 4.21 | 2.84E-07 | | Col3a1 | collagen, type III, alpha 1 | 3.54 | 3.79E-04 | | Col4a2 | collagen, type IV, alpha 2 | 3.54 | 9.82E-06 | | Lama4 | laminin, alpha 4 | 3.41 | 5.39E-08
2.84E-05 | | Fn1
Nid1 | fibronectin 1
nidogen 1 | 3.30
3.29 | 2.84E-05
4.47E-04 | | Nid2 | nidogen 2 | 3.02 | 2.19E-06 | | Col5a2 | collagen, type V, alpha 2 | 2.60 | 3.54E-05 | | Col5a3 | collagen, type V, alpha 3 | 2.39 | 7.29E-05 | | Lamb1 | laminin B1 | 2.38 | 1.06E-04 | | Lamc1 | laminin, gamma 1 | 2.29 | 9.52E-08 | | Col15a1 | collagen, type XV, alpha 1 | 2.00 | 3.99E-04 | | Coll montri | collagen, type II, alpha 1 | 1.89 | 5.24E-07 | | | x interaction | 2.30 | 4 225 05 | | Itga6
Icam1 | integrin alpha 6 intercellular adhesion molecule 1 | 2.39
2.09 | 1.23E-05
3.77E-04 | | Itga9 | integrin alpha 9 | 1.98 | 5.74E-04 | | ltgb1 | integrin beta 1 (fibronectin receptor beta) | 1.98 | 1.80E-05 | | lcam2 | intercellular adhesion molecule 2 | 1.70 | 1.01E-04 | | Gene ID | Description | Fold | p value | | Gelle 15 | | change | p valide | | | Down-regulated Company of the Compan | | | | | and retina-specific pathways | 2.00 | = 00E 0E | | | thyrotropin releasing hormone receptor | -2.66
-2.17 | 7.90E-05 | | Tacr3
Grik1 | tachykinin receptor 3 | -2.17
-1.78 | 1.22E-03
8.13E-04 | | Grik1
Arr3 | glutamate receptor, ionotropic, kainate 1 arrestin 3, retinal | -1.78
-1.74 | 8.13E-04
1.10E-04 | | Nova1 | neuro-oncological ventral antigen 1 | -1.7 4
-1.62 | 4.20E-04 | | Syt2 | synaptotagmin II | -1.59 | 9.79E-04 | | Cadps | Ca2+-dependent secretion activator | -1.59 | 2.11E-03 | | Transport | ers and channels | | | | Slc22a29 | solute carrier family 22. member 29 | -2.57 | 2.20E-03 | | | solute carrier organic anion transporter family, member 1a4 | -2.56 | 2.26E-04 | | Slc22a8 | solute carrier family 22 (organic anion transporter), member 8 | -1.99 | 1.74E-05 | | | calcium channel, voltage-dependent, alpha2/delta subunit 3 | -1.90
1.93 | | | Aqp4 | aquaporin 4 | -1.83 | 5.42E-05 | | | ATP-binding cassette, sub-family A (ABC1), member 8a | -1.80
1.55 | 2.65E-04 | | Atxn7l1
Slc2a3* | ataxin 7-like 1 solute carrier family 2 (facilitated glucose transporter), member 3 | -1.55
1.54 | 1.47E-04
2.13E-03 | | Slc2a3*
Slc39a8 | solute carrier family 2 (facilitated glucose transporter), member 3 solute carrier family 39 (metal ion transporter), member 8 | 1.54
1.72 | 2.13E-03
8.61E-04 | | Slc39a8
Slc7a1 | solute carrier family 39 (metal ion transporter), member 8 solute carrier family 7 (cationic amino acid transporter, y+ system), member 1 | 1.72
1.85 | 8.61E-04
2.63E-06 | | Slc16a3 | solute carrier family 16 (monocarboxylic acid transporters), member 3 | 2.11 | 1.10E-04 | | | solute carrier family 12, member 4 | 2.35 | 1.77E-04 | | | | | | ## Table S2. Genes differentially regulated in the combination treatment as compared to the individual cellular treatments, in the P5/P17 model | Gene ID | Description | Fold
change | p value | |--------------------|--|------------------------|----------------------| | | CD34 ⁺ /ECFCs vs. CD34 ⁺ Up-regulated | | | | | al structure and function | | | | Mbp*
Mobp* | myelin basic protein myelin-associated oligodendrocytic basic protein | 8.60
7.05 | 8.20E-03
2.36E-02 | | Slc17a6 | solute carrier family 17 (Na-dependent inorganic phosphate cotransporter) | 6.56 | 3.61E-04 | | Cldn11*
Tspan2 | claudin 11
tetraspanin 2 | 4.65
4.09 | 1.42E-02
1.94E-03 | | Sncg | synuclein, gamma | 3.53 | 2.95E-03 | | Olig1* | oligodendrocyte transcription factor 1 | 3.42
3.27 | 2.61E-02
3.13E-03 | | Apod
Kcnd2 | apolipoprotein D potassium voltage-gated channel, Shal-related family, member 2 | 3.27 | 3.13E-03
5.82E-04 | | Gng4 | guanine nucleotide binding protein (G protein), gamma 4 | 3.07 | 1.27E-03 | | Chrna6
Scn2a1 | cholinergic receptor, nicotinic, alpha polypeptide 6 sodium channel, voltage-gated, type II, alpha 1 | 2.88
2.70 | 5.49E-04
2.33E-03 | | Tacr3 | tachykinin receptor 3 | 2.68 | 1.13E-04 | | Scn1a
Nefl | sodium channel, voltage-gated, type l, alpha neurofilament, light polypeptide | 2.67
2.67 | 5.32E-04
1.51E-03 | | Cplx1 | complexin 1 | 2.62 | 2.07E-03 | | Cacng5 | calcium channel, voltage-dependent, gamma subunit 5 | 2.62 | 1.90E-04
2.42E-03 | | Chrnb3
Cacnb4 | cholinergic receptor, nicotinic, beta polypeptide 3 calcium channel, voltage-dependent, beta 4 subunit | 2.37
2.35 | 2.42E-03
2.16E-04 | | Gabra1 | gamma-aminobutyric acid (GABA) A receptor, subunit alpha 1 | 2.21 | 1.50E-05 | | Caln1
Syn2 | calneuron 1 synapsin II | 2.13
2.02 | 3.44E-04
3.30E-03 | | - | stem genes | 2.02 | 0.002 | | Vsnl1 | visinin-like 1 | 2.28 | 7.31E-04 | | Vsx1
Plcb1 | visual system homeobox 1 homolog (zebrafish) phospholipase C, beta 1 | 2.17
1.94 | 5.92E-04
2.10E-03 | | Gucy1b3 | guanylate cyclase 1, soluble, beta 3 | 1.94 | 1.32E-04 | | Cabp2 | calcium binding protein 2 | 1.84 | 1.37E-04 | | Gnao1
Prkcg | guanine nucleotide binding protein, alpha O protein kinase C, gamma | 1.71
1.71 | 3.33E-06
3.18E-03 | | Gucy1a3 | guanylate cyclase 1, soluble, alpha 3 | 1.69 | 1.81E-06 | | Vsx2
Slc24a3 | visual system homeobox 2 solute carrier family 24 (sodium/potassium/calcium exchanger), member 3 | 1.68
1.64 | 2.35E-06
7.87E-04 | | Cabp5 | solute carrier family 24 (sodium/potassium/calcium exchanger), member 3 calcium binding protein 5 | 1.64 | 7.87E-04
3.91E-04 | | Calm1 | calmodulin 1 | 1.59 | 5.46E-06 | | Gnai1 | guanine nucleotide binding protein (G protein), alpha inhibiting 1 Down-regulated | 1.51 | 2.64E-04 | | Extracell | ular matrix, WNT pathway | | | | Sfrp1 | secreted frizzled-related protein 1 | -10.49 | 1.52E-06 | | Sdc1
Wnt7b | syndecan 1 wingless-type MMTV integration site family, member 7B | -4.70
-4.28 | 7.46E-07
3.15E-03 | | Plau | plasminogen activator, urokinase | -3.91 | 3.21E-03 | | Col4a6
Col4a3 | collagen, type IV, alpha 3 | -3.79
-3.29 | 1.86E-05
7.09E-05 | | Col4a3
Col8a1 | collagen, type IV, alpha 3
collagen, type VIII, alpha 1 | -3.29
-3.27 | 7.09E-05
2.14E-03 | | Gene ID | | Fold | p value | | WIs | wntless homolog (Drosophila) | change
-2.93 | 4.95E-06 | | Nid1 | nidogen 1 | -2.93
-2.57 | 3.38E-03 | | Col4a5 | collagen, type IV, alpha 5 | -2.50 | 3.69E-04 | | LoxI1
Wnt5b | lysyl oxidase-like 1 wingless-type MMTV integration site family, member 5B | -2.50
-2.47 | 2.15E-04
5.89E-07 | | Col4a4 | collagen, type IV, alpha 4 | -2.44 | 7.47E-06 | | Bgn
Emid1** | biglycan EMI domain containing 1 | -2.43
-2.10 | 3.03E-04
1.60E-05 | | Timp3 | tissue inhibitor of metalloproteinase 3 | -2.01 | 1.55E-04 | | Col4a1 | collagen, type IV, alpha 1 | -1.94 | 1.32E-03 | | Fmod
P4ha2 | fibromodulin
proline 4-hydroxylase, alpha II polypeptide | -1.88
-1.72 | 2.39E-03
7.04E-04 | | P4ha1 | proline 4-hydroxylase, alpha 1 polypeptide | -1.69 | 3.83E-05 | | Lama5
Stress re | laminin, alpha 5 | -1.57 | 3.25E-03 | | Nupr1 | nuclear protein transcription regulator 1 | -9.48 | 1.91E-04 | | Gsta2 | glutathione S-transferase, alpha 2 (Yc2) | -3.30 | 1.02E-04 | | Pon3
Gsta3 | paraoxonase 3
glutathione S-transferase, alpha 3 | -3.06
-2.55 | 1.48E-04
7.00E-05 | | Gsta3
Gpx3 | glutathione beroxidase 3 | -2.55
-2.52 | 3.27E-03 | | Gss | glutathione synthetase | -2.50 | 8.49E-04 | | Ggct
Gstm2 | gamma-glutamyl cyclotransferase
glutathione S-transferase, mu 2 | -2.47
-2.46 | 9.07E-04
6.67E-04 | | Mgst1 | microsomal glutathione S-transferase 1 | -2.45 | 1.61E-03 | | Gstm1 | glutathione S-transferase, mu 1 | -2.44
-2.26 | 1.85E-05 | | Rrm2
Prdx4 | ribonucleotide reductase M2
peroxiredoxin 4 | -2.26
-1.61 | 1.61E-03
3.81E-03 | | Pon2 | paraoxonase 2 | -1.57 | 1.87E-04 | | | CD34 ⁺ /ECFCs vs. ECFCs | | | | Myelin st | Up-regulated
ructure and function | | | | Mbp* | myelin basic protein | 9.87 | 5.37E-03 | | Mobp* | myelin-associated oligodendrocytic basic protein | 6.86 | 2.53E-02 | | Plp1 Olig1* | proteolipid protein (myelin) 1 oligodendrocyte transcription factor 1 | 5.42
3.57 | 9.65E-03
2.18E-02 | | Mal | myelin and lymphocyte protein, T cell differentiation protein | 2.99 | 3.60E-02 | | Slc15a2
Cldn11* | solute carrier family 15 (H+/peptide transporter), member 2 claudin 11 | 2.47
3.80 | 3.94E-02
3.02E-02 | | Cldn11*
Scd1 | claudin 11 stearoyl-Coenzyme A desaturase 1 | 3.80
2.10 | 3.02E-02
7.60E-03 | | | Down-regulated | | 1.0 | | Immune r | - | -3.51 | 1.26E-02 | | Tgtp1
H2-Q6 | T cell specific GTPase 1 histocompatibility 2, Q region locus 6 | -3.51
-2.77 | 1.26E-02
2.12E-02 | | Ccl5 | chemokine (C-C motif) ligand 5 | -2.62 | 3.62E-02 | | H2-Q7 | histocompatibility 2, Q region locus 7 | -2.50 | 1.05E-02 | | H2-K1
H2-T10 | histocompatibility 2, K1, K region histocompatibility 2, T region locus 10 | -2.14
-1.74 | 3.64E-02
1.57E-02 | | H2-D1 | histocompatibility 2, D region locus 1 | -1.74 | 1.79E-02 | | | ularization | 4 70 | 225 03 | | Crispld1
Ptger4 | cysteine-rich secretory protein LCCL domain containing 1 prostaglandin E receptor 4 (subtype EP4) | -1.78
-1.68 | 3.29E-03
1.05E-02 | | ECM | prostagianant in receptor in (easily point) | | 1.00_ | | Emid1** | EMI domain containing 1 | -1.61 | 1.64E-03 | | Table S3. Proteomic analysis in the OIR model with the various treatments | | | | | | | | | |---|---------------------|---|--|--|--|--|--|--| | Pathway | Score | Proteins | | | | | | | | | | vs. Normoxia | | | | | | | | Up-regulated | | | | | | | | | | Growth factors signaling pathways | | ABL1, NFKB1, MAP2K1, MAPK3, PTPN11, STAT3, RAF1, | | | | | | | | Development HGF Signaling Pathway | 51.42 | BRAF, EIF4E, ERBB2, RPS6KA1, CDK1 | | | | | | | | Development IGF-1 Receptor Signaling | 46.34 | NFKB1, MAP2K1, MAPK3, GYS1, PTPN11, BCL2L11, STAT3, RAF1, RPS6, RPS6KA1 | | | | | | | | PI3K-Akt Signaling Pathway | 40.84 | NFKB1, MAP2K1, MAPK3, MCL1, GYS1, BCL2L11, RAF1,
EIF4E, PDGFRA, ERBB2, RPS6, FN1, KDR | | | | | | | | Development VEGF Signaling Via VEGFR2 - Generic Cascades | 33.52 | NFKB1, MAP2K1, MAPK3, PTPN11, STAT3, RAF1, BRAF, KDR | | | | | | | | Development EGFR Signaling Via Small GTPases | 33.42 | MAP2K1, MAPK3, PTPN11, STAT3, RAF1, PDGFRA, ERBB2 | | | | | | | | EGF/EGFR Signaling Pathway | 32.29 | ABL1, MAP2K1, PTPN11, STAT3, RAF1, BRAF, ERBB2,
RPS6KA1 | | | | | | | | Angiopoietin Like Protein 8 Regulatory Pathway | 25.28 | MAP2K1, MAPK3, GYS1, PTPN11, RAF1, EIF4E, RPS6KA1 | | | | | | | | Inflammation and immune response | | | | | | | | | | Interleukin-11 Signaling Pathway | 40.12 | MAP2K1, MAPK3, PTPN11, STAT3, RAF1, RPS6, RPS6KA1 | | | | | | | | Cytokine Signaling in Immune System | 37.96 | NFKB1, LCK, MAP2K1, MAPK3, MCL1, PTPN11, HIST1H3A, STAT3, RAF1, BRAF, EIF4E, PDGFRA, ERBB2, FN1 | | | | | | | | HIF-1 Signaling Pathway | 37.90 | NFKB1, MAP2K1, MAPK3, STAT3, HK2, EIF4E, ERBB2, RPS6 | | | | | | | | TGF-Beta Pathway | 36.49 | NFKB1, MAP2K1, MAPK3, HIST1H3A, STAT3, RAF1, BRAF,
EIF4E, PDGFRA, ERBB2, RPS6, RPS6KA1, KDR | | | | | | | | B Cell Receptor Signaling Pathway (KEGG) | 33.92 | NFKB1, LCK, MAP2K1, MAPK3, PTPN11, RAF1, BRAF,
RPS6KA1 | | | | | | | | IL-2 Pathway | 33.76 | ABL1, NFKB1, LCK, MAP2K1, MAPK3, STAT3, RAF1, BRAF,
ERBB2, RPS6KA1 | | | | | | | | Immune Response IL-23 Signaling Pathway | 32.50 | NFKB1, MAPK3, YAP1, PTPN11, STAT3, PDGFRA, ERBB2,
FN1 | | | | | | | | IL6-mediated Signaling Events | 24.00 | MAP2K1, MAPK3, MCL1, PTPN11, STAT3 | | | | | | | | Cell-Matrix interaction | | | | | | | | | | Focal Adhesion | 30.87 | MAP2K1, MAPK3, STAT3, RAF1, BRAF, PDGFRA, ERBB2,
FN1, KDR | | | | | | | | | Do | wn-regulated | | | | | | | | ErbB Signaling Pathway | 25.36 | MAPK9, PRKCA, STAT5A, PAK4, PDK1, CCND1 | | | | | | | | Autophagy - Animal | 20.79 | MAPK9, ATG3, PTEN, BCL2L1, BECN1 | | | | | | | | The manufactural | CD34 ⁺ / | /ECFCs vs. CD34 ⁺ | | | | | | | | Up-regulated | 21.00 | MDM2 STATEA BAE1 DAKA | | | | | | | | ErbB Signaling Pathway Autophagy | 21.00
15.93 | MDM2, STAT5A, RAF1, PAK4
MDM2, BECN1, RAF1, IRS1 | | | | | | | | Down-regulated | 13.33 | WDWZ, DEONI, IVALI, IKOI | | | | | | | | Class I MHC Mediated Antigen Processing | a = : | UDAGA TARTA ORUM | | | | | | | | and Presentation | 9.74 | UBAC1, ZAP70, CDH1 | | | | | | | | Cytoskeletal Signaling | 8.27 | STMN1, CDH1, MYH11 | | | | | | | | Un an and And | CD34 ⁺ | /ECFCs vs. ECFC | | | | | | | | Up-regulated | 15 11 | DLCC2 DOLISE1 DDKAA2 SOV2 DAE4 | | | | | | | | Nanog in Mammalian ESC Pluripotency
Retinoblastoma (RB) in Cancer | 15.11
14.83 | PLCG2, POU5F1, PRKAA2, SOX2, RAF1
RAF1, MSH6, CHEK1 | | | | | | | | Down-regulated | 17.00 | TO G. 1, MOI IO, OFILIXI | | | | | | | | Donniegaratea | | | | | | | | | 14.25 COL6A1, SMAD3, ZAP70, CDK1 ERK Signaling