The small molecule Chicago Sky Blue promotes heart repair following myocardial

infarction in mice

Oren Yifa¹, Karen Weisinger¹, Elad Bassat¹, Hanjun Li², David Kain¹, Haim Barr³, Noga

Kozer³, Alexander Genzelinakh¹, Dana Rajchman¹, Tamar Eigler¹, Kfir-Baruch Umansky¹,

Daria Lendengolts¹, Ori Brener⁴, Nenad Bursac² and Eldad Tzahor¹.

¹Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100,

Israel.

²Department of Biomedical Engineering, Duke University, Durham, North Carolina

27708, USA.

³HTS unit, G-INCPM, Weizmann Institute of Science, Rehovot, 7610001, Israel.

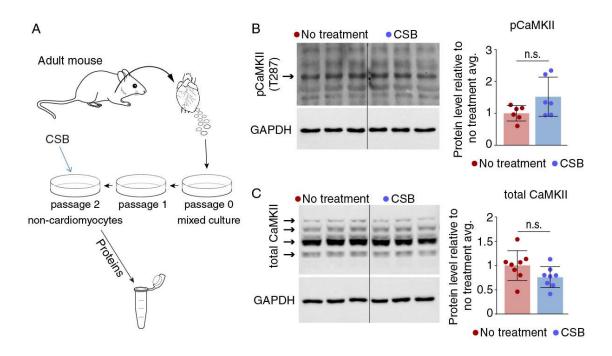
⁴Department of Veterinary Resources, Weizmann Institute of Science, Rehovot 76100,

Israel.

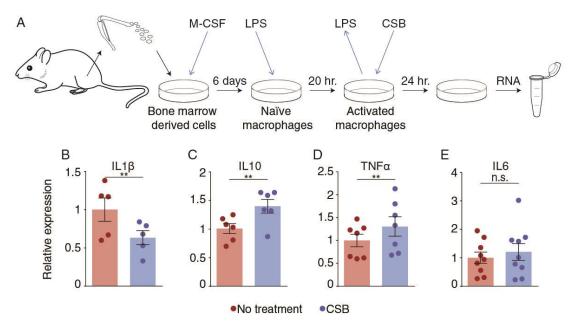
Corresponding author: Eldad Tzahor Email: eldad.tzahor@weizmann.ac.il

Conflict of interest: The authors declare no conflict of interest

1


Supplemental data

Supplemental Figure 1.


Supplemental Figure 1. CSB improves cardiac function of adult mice following MI without inducing cardiomyocyte proliferation - additional validation. (A) Schematic representation of the MI experiment timeline. (B) Cardiac ejection fraction of uninjured mice (n=4), PBS treated mice (n=5) and CSB treated mice (n=10) up to 21 days post MI measured by *Vevo 770* (*VisualSonics*) echocardiography system (mean \pm S.E.M, one-way ANOVA and Dunnett's post-hoc test). (C) Number of Ki67⁺ cardiomyocytes per section in the heart of uninjured adult mice (n=3) or in the border zone of PBS treated (n=6) or CSB treated (n=5) adult mice 8 days post MI (mean \pm S.E.M, one-way ANOVA and Tukey's post-hoc test,). Hearts were sectioned transversely and border zone was defined as 0-400 μ m from injured zone. For all panels: *p<0.05, **p<0.01, n.s.-not significant.

Supplemental Figure 2.

Supplemental Figure 2. CSB does not decrease total-CaMKII or phospho-CaMKII protein level in non-cardiomyocyte cells. (A) Illustration of experimental scheme. Cardiac cells were isolated from adult mice and were plated *in vitro*. After two passages during 8 days the culture did not contain cardiomyocytes. The cells were incubated for 4 days with CSB 10 μ M and proteins were purified for analysis. (B and C) Western blot images and quantification of total-CaMKII (C) and phospho-CaMKII (pCaMKII) (B) protein level in non-cardiomyocyte cells that were incubated for 4 days with or without CSB. For quantification in panel B: n=6 from 2 separate isolations. For quantification in panel C: n=8 from 3 separate isolations. For all panels: mean \pm STDEV, unpaired two-tailed Student's t-test, n.s.-not significant.

Supplemental Figure 3.

Supplemental Figure 3. CSB modulates inflammatory gene expression in macrophage culture.

(A) Schematic representation of the experiment procedure. Bone marrow cells were differentiated to macrophages (BMDM) using macrophage colony-stimulating factor (M-CSF) and were activated with lipopolysaccharide (LPS). The activated macrophages were treated with CSB and RNA was purified. (B-E) Inflammatory and anti-inflammatory gene expression in BMDM. Expression is relative to no-treatment average. For each treatment: IL1 β : n=5, IL10: n=6, TNF α : n=7, IL6: n=9, data are mean \pm S.E.M. All genes were tested on cells from 3 separate isolations. Statistical analysis was performed using paired two-tailed Student's t-test; **p<0.01, n.s.-not significant.