SUPPLEMENTARY MATERIAL FOR:

A glucose-dependent spatial patterning of exocytosis in human β -cells is disrupted in type 2 diabetes

Jianyang Fu¹, John Maringa Githaka², Xiaoqing Dai¹, Gregory Plummer¹, Kunimasa Suzuki¹, Aliya F. Spigelman¹, Austin Bautista¹, Ryekjang Kim¹, Dafna Greitzer-Antes³, Jocelyn E. Manning Fox¹, Herbert Y. Gaisano³, Patrick E. MacDonald¹

¹Alberta Diabetes Institute and the Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2E1, Canada

²Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2E1, Canada

³Departments of Medicine and Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada

Supplementary Figure Legends

Figure S1. Fusion events occur at sites of previous or concurrent membrane-resident granules.

A) Membrane-associated granules labelled with NPY-EGFP observed at the beginning of the recording are marked in green (*left*); all subsequent fusion events are shown in red (*center*); fusion events occurring at sites were membrane-localized granules were observed are shown in yellow (*right*). The latter may represent fusion of the membrane-localized granule itself (single yellow event), or of several events at a clustered site (multiple yellow events). Scale bars are 5 μm.

Figure S2. Upregulation of Kv2.1-WT increases membrane resident granules in ND and T2D.

A-B) Expression of Kv2.1-WT but not Kv2.1- Δ C318 in ND β -cells (**A**) or T2D β -cells (**B**) increases the density of membrane-resident granules and the proportion of fusion events at sites marked by these. Significance was determined by ANOVA and Bonferroni post-test.*p<0.05, **p<0.01 and ***p<0.001.

Figure S3. Conserved SUMOylation motifs in the N- and C-termini of the Kv2.1 channel.

A) Two previously demonstrated Kv2.1 SUMOylation motifs are conserved across species and between some members of the voltage-dependent K⁺ channel family. **B)** Overlay of N-terminal domains of Kv2.1 and Kv1.5 showing location of demonstrated and predicted SUMOylation sites.

Figure S4. The impact of Kv2.1 channel manipulation on fusion event density and spatial organization.

While Kv2.1 knockdown reduces the overall frequency and density of fusion events in human β cells, the effects of channel up-regulation depend its SUMOylation status and its ability to form multichannel clusters. A truncated channel (Kv2.1- Δ C318) that, while electrically functional, cannot form multichannel clusters and does not increase membrane resident granule and fusion hotspot density (it may even act as a dominant-negative in some measures). SUMOylated Kv2.1 is sufficient to increase membrane granule density but these do not undergo fusion, resulting in a decreased targeting of granules to fusion hotspots. Figure. S1

events

Membrane-resident granules that don't fuse
Fusion at 'docked granule' sites
Fusion at random sites

Figure.S3

