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IgG antinuclear antibodies (ANAs) are a dominant feature of several autoimmune diseases.
We previously showed that systemic lupus erythematosus (SLE) is characterized by
increased ANA* IgG plasmablasts/plasma cells (PCs) through aberrant I1gG PC differentiation
rather than an antigen-specific tolerance defect. Here, we aimed to understand the
differentiation pathways resulting in ANA* IgG PCs in SLE patients. We demonstrate distinct
profiles of ANA* antigen-experienced B cells in SLE patients, characterized by either a

high frequency of PCs or a high frequency of IgG* memory B cells. This classification of

SLE patients was unrelated to disease activity and remained stable over time in almost all
patients, suggesting minimal influence of disease activity. A similar classification applies to
antigen-specific B cell subsets in mice following primary immunization with T-independent
and T-dependent antigens as well as in lupus-prone mouse models (MRL/Ipr and NZB/W).
We further show that, in both lupus-prone mice and SLE patients, the classification
correlates with the serum autoantibody profile. In this study, we identified B cell phenotypes
that we propose reflect an extrafollicular pathway for PC differentiation or a germinal center
pathway, respectively. The classification we propose can be used to stratify patients for
longitudinal studies and clinical trials.

Introduction

Antinuclear antibodies (ANAs) are present in many patients with autoimmune disease and in essentially
all patients with systemic lupus erythematosus (SLE). We and others have shown that B cells reactive with
nuclear antigens (ANA* B cells) are censored during B cell maturation (1-5). This censoring occurs in
SLE patients as well as in healthy individuals (1, 2). We previously identified a major tolerance checkpoint
for ANA* IgG* plasma cells/plasmablasts (hereafter commonly referred to as PCs) in nonautoimmune
mice and healthy individuals that is attenuated in SLE patients and in lupus-prone mice (2). In SLE, this
correlates with an overall enhanced IgG* PC differentiation, resulting in an increase in ANA* IgG PCs in
SLE, rather than an antigen-specific selection defect. Although the percentage of IgG PCs that are ANA*
is the same as in healthy controls, there are more IgG PCs in SLE patients.

PCs may arise through 2 main pathways: germinal center (GC) or extrafollicular; both have been
implicated in the autoantibody production in SLE (6, 7). GC responses are well known to be increased in
lupus-prone mice, and some SLE patients have increased numbers of circulating pre-GC B cells, switched
memory B cells and T follicular helper (Tth) cells, suggestive of enhanced GC responses (8—10). Given
that many IgG anti-DNA autoantibodies, which are considered to be pathogenic in SLE, show evidence
of somatic hypermutation (SHM) (11), the production of autoreactive PCs by SHM of nonautoreactive
naive B cells within the GC has been considered to be an important contributor to the development of
SLE in both mice (12) and humans (13) In contrast, extrafollicular PC differentiation in autoimmunity
has not been emphasized, although recent studies indicate this pathway may also contribute to SLE (6,
14, 15). MRL/1pr mice exhibit extrafollicular PC generation, although they have increased formation of
spontaneous GCs as well (8, 14, 16). In humans, recent research demonstrates that a large proportion
of the PCs in some SLE patients are clonally related to naive cells rather than IgG* memory B cells,
suggesting an extrafollicular origin (6).
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Because there are no definitive markers that discriminate PCs based on their pathway of differenti-
ation, it is hard to establish the pathway through which they were derived, especially in humans where
access to lymphoid organs is limited. In addition, most studies discriminating extrafollicular responses
from GC responses use acute immunization models, and it is not clear if all the paradigms that have been
proposed for the distinction between extrafollicular and GC responses apply in the chronic immune activa-
tion present in autoimmune conditions.

Here, we aimed to understand the differentiation pathways resulting in ANA* IgG PCs in SLE patients.
Using our flow cytometry—based assay for ANA* B cells and PCs, we have identified 3 patterns of ANA*
antigen-experienced B cells. We now propose a classification of patients based on the relative frequency of
ANA* memory B cells and PCs.

By correlating this classification with primary immune responses in nonautoimmune mice and the
autoimmune response in lupus-prone mice, we identified one pattern that we propose reflects an extrafollic-
ular pathway for PC differentiation and another pattern that reflects a GC pathway. Furthermore, we show
that, in the majority of patients, the pattern is stable over time and correlates with antigen recognition by
serum autoantibodies.

Results
Distinct phenotypes of ANA" antigen-experienced B cells in SLE patients. We recently reported that a major B
cell abnormality in SLE patients is an increase in total and ANA* IgG PCs, measured using a flow cyto-
metric assay that determined the frequency of transitional, naive, switched, and unswitched memory cells
and IgM and IgG PCs and the proportion of ANA™ cells within each subset (2). Here, we were interested
in whether this analysis could help refine our understanding of the differences between healthy subjects
and SLE patients and characterize the heterogeneity of SLE patients. We expanded our cohort to 36 SLE
patients and confirmed that the frequency of ANA* IgG PCs and total IgG PCs was significantly increased
in SLE patients compared with healthy controls, whereas no significant differences were observed among
the other B cell subsets (Figure 1, A-F, and Supplemental Figure 1, A-D; supplemental material available
online with this article; https://doi.org/10.1172/jci.insight.127885DS1). Demographic characteristics of
the SLE patients and healthy subjects were not significantly different, except for ethnicity (Supplemental
Table 1). We observed a large spread in the frequency of ANA* IgG PCs in SLE patients. A proportion
of patients (~40%) did not demonstrate increased frequencies of ANA* IgG PCs compared with healthy
subjects (using a nonparametric cutoff for the frequency of ANA* IgG PCs in healthy subjects (quartile 3 +
1.5 x interquartile range within the healthy subjects) (Figure 1E). We designated these patients as cluster 0.

We performed a principal component analysis, based on all flow cytometry B cell parameters studied
(percentages of total and ANA* transitional, naive, IgG memory, IgM, and IgG PCs) to analyze clustering
of SLE patients and healthy subjects in a nonbiased way and to see if we could use these parameters to
stratify the SLE patients (Figure 1, G and H). Cluster 0 patients, without PC expansion, overlapped largely
with the healthy controls (Figure 1, G and H). The cluster 0 phenotype was not related to clinical param-
eters such as disease activity or medication (Supplemental Table 2). Although there are no suggestions of
active ongoing ANA* PC differentiation in blood of individuals within cluster 0, the proportion of patients
with anti-dsDNA positivity and the range of anti-DNA titers was similar to that of the patients with circu-
lating PC expansion, suggesting that serum autoantibodies in cluster 0 may be derived from long-lived PCs
residing in the bone marrow or other tissues. To understand pathways of PC differentiation in SLE, we next
focused on SLE patients with significantly higher numbers of circulating ANA* PCs.

The frequencies of ANA* and total IgM and IgG PCs all contributed strongly to principal component
1 (Figure 1G), which was the main discriminator for SLE patients without or with PC expansion (Figure
1H). Another main contributor to principal component 1 was the IgG* memory B cell subset (Figure 1G).
Importantly, in SLE patients with an expansion of ANA* IgG PCs, the memory B cells and PCs are pres-
ent in inverse frequency, such that the patients with the highest ANA* PC numbers generally have lower
numbers of ANA* memory B cells and vice versa, leading to opposing vectors for PCs and memory B cells
in the principal component analysis (Figure 1, G and I). To assess these 2 groups of patients and enable a
classification paradigm, patients were grouped based on ANA* IgM and IgG PCs relative to ANA* memo-
ry B cells. A 20% cutoff for the relative proportion of ANA* PCs among ANA* antigen-experienced B cells
(PCs and memory cells) was chosen to distinguish cluster 1 (>20% ANA* PCs compared with ANA* IgG
memory B cells) from cluster 2 (<20% ANA* PCs compared with ANA* IgG memory B cells) (Figure 1J).
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Using this cutoff, the principal component analysis showed a separation of the 2 groups of patients
with expansion of circulating ANA* PCs (Figure 1K). Approximately one-third of the patients with an
expansion of ANA* PCs showed a cluster 1 phenotype, whereas the remaining two-thirds of the patients
belonged to cluster 2.

Interestingly, although it has been reported that patients with active disease have increases in total PC
frequency (17), the clustering seemed independent of SLE disease activity index (SLEDAI) scores, which
overlapped in all 3 groups (Figure 1J and Supplemental Table 2), and we did not observe a correlation of
SLEDALI with the frequency of total IgG PCs or ANA* IgG PCs (data not shown). Furthermore, when
including only patients with active disease (SLEDAI >4), the same clustering was observed (data not
shown). Patients from cluster 2 were less likely to be on steroids (Supplemental Table 2), although each
cluster contained patients that did not use this medication.

There is a conflict in the literature as to whether SLE autoreactivity is a consequence of activation of
naive cells into PCs directly through an extrafollicular pathway or via activation of a GC response with
generation of both memory B cells and PCs. Our data suggest that there are 2 clusters of SLE patients with
an expanded proportion of PCs, 1 of which has a high and 1 a low frequency of ANA* memory B cells.
We believe that a cutoff of 20% although arbitrary, provides a simple method to define and classify patients
based on the relative proportions of ANA* antigen-experienced B cell subsets.

Phenotype of ANA* B cells and PCs in SLE patients is stable over time. Clinical data suggested that there
is no clear correlation of the cellular phenotypes with disease activity, or other patient characteristics,
except steroid use; nonetheless, we sought to establish the stability of the classification over time. This is
particularly important, as T-dependent immune responses, such as in response to vaccination or infection,
are usually characterized by an initial wave of PCs derived from an extrafollicular response, followed by
GC response with IgG* memory B cells and PCs. Therefore, a response that is characterized initially by
large numbers of PCs might develop into a response dominated by memory B cells over time, in particular
when the initial analysis is done during a clinical flare. Using our classification paradigm, 13 patients
were reassessed between 1 and 12 months after their initial assessment (Figure 2A). Of the 5 patients from
cluster 1 that were analyzed twice, 4 remained in this cluster over a time period ranging from 2 months to
1 year, demonstrating that individuals in this cluster do not routinely progress to a cluster 2 classification.
Of the 6 patients from cluster 2 with repeat analyses occurring from 1 month to 1 year, 5 showed the same
classification. Two patients in cluster 0 were analyzed a second time and both maintained the same ratio
of memory to PCs. Furthermore, using the principal components identified in Figure 1 to analyze the
repeat assessments showed similar clustering of the individual patients (Figure 2B). Even the 2 patients
whose classification based on the relative frequency of ANA* PCs relative to ANA* memory cells changed
(black dotted arrows) generally fell within the same area on the principal component analysis plot (Figure
2B). Importantly, all patients with considerable changes in disease activity (change in SLEDAI =5) (SLE
01, SLE 05, SLE 25, SLE 32) and clinical features of disease (SLE 01, SLE 05, SLE 07, SLE 25) and all
patients who had a flare during one of the measurements (SLE 05, SLE 07, SLE 32), except one (SLE19),
retained the same classification, and almost all subjects with a considerable change in medications (SLE
01, SLE 05, SLE 07, SLE 09, SLE 25, SLE 32) also preserved their cluster classification (Figure 2A and
Supplemental Table 3). Two patients in cluster 2 started using PDN (SLE 01, SLE 09), but each retained
the same classification, suggesting that the more frequent use of PDN in cluster 1 patients was not directly
affecting their clustering.

These data suggest that although the classification scheme is necessarily arbitrary, the vast majority of
patients (85%) show stability of their classification, further confirming the robustness of our ANA assay.
Moreover, the relative proportions of autoreactive memory B cells and PCs in SLE patients seems imprinted,
possibly by genetic risk factors.

Classification paradigm in prototypical GC and extrafollicular responses in mice. We next wanted to study
how the frequencies of memory B cells and PCs would relate to prototypical immune responses. Sev-
eral characteristics are known for extrafollicular and GC responses in mice (Figure 3A): extrafollicular
responses are usually characterized by a high number of PCs in the absence of IgG* memory B cells,
whereas GC responses are characterized by class-switched PCs and memory B cells. We therefore wanted
to test if our classification method that we used in SLE patients can distinguish these responses based on
frequencies of antigen-specific B cells following immunization. We immunized wild-type C57BL/6 mice
with the T-independent antigen 4-Hydroxy-3-nitrophenylacetyl-Ficoll (NP-Ficoll) and the T-dependent
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Figure 1. Distinct phenotypes of ANA* B cells and PC in SLE patients. (A-F) Frequencies of ANA* and total B cell subsets in healthy controls (n = 15) and
SLE patients (n = 36). Each dot indicates an individual, and the bars represent the median. *P < 0.05; **P < 0.01, using Mann-Whitney test. (G and H)
Principal component analysis of all B cell parameters analyzed (frequencies of ANA* and total B cell and PC subsets). The percentage indicated on the axis
is the percentage of variance explained by that principal component. SLE patients were separated based on whether they displayed an increase in the fre-
quency of ANA* 1gG PCs compared with healthy controls (quartile 3 + 1.5 x interquartile range). Patients without expansion are denoted as “cluster 0.” (G) The
variables contributing to each dimension in principal component analysis. The length and direction of each arrow shows the strength of their contribution
to each PC. (H) The coordinates of each healthy individual and SLE patient. Ellipses represent the 95% confidence interval for each group. (1) Frequency

of ANA* 1gG* memory B cells and ANA* PCs in SLE patients with an expansion of ANA* PCs. Each dot indicates a patient (n = 22). (J) Relative proportion of
ANA* 1gG memory B cells and ANA* IgM and IgG PCs in healthy controls and SLE patients. The median and range of SLEDAI scores is shown below each
circle. Patients were defined as “cluster 1" when their ANA* PCs were >20% of the total ANA* antigen-experienced cells (memory B cells and PCs). Patients
were defined as “cluster 2” when their ANA* PCs were <20% of the total ANA* antigen-experienced cells. (K) Principal component analysis as in C and D,
here only showing patients from cluster 1and 2. ANA, antinuclear antibody; HC, healthy control; PC, plasmablast/plasma cell; SLE, systemic lupus erythe-
matosus; SLEDAI, SLE disease activity index.

antigen nitrophenylated—chicken y globulin (NP-CGG). We analyzed NP-Ficoll-immunized mice at day
7 and NP-CGG-immunized mice at day 7, 14, and 21. NP-Ficoll induces an extrafollicular response, and
NP-CGG induces a T-dependent response with the generation of PCs through a T-dependent extrafollicular
pathway on day 7 and PC generation through the GC on day 14 and 21 (18-20). We analyzed antigen-
specific NP* IgG* GC B cells, NP* IgG* non-GC B cells (“switched memory B cells”), and NP* PCs (sep-
arated for cytoplasmic IgM and IgG) following immunization (Figure 3B). As expected, NP* IgG* GC B
cells were present only following immunization with NP-CGG (Figure 3, C—F). The generation of extrafol-
licular IgM and IgG NP* PCs had similar kinetics with a peak of NP* PCs on day 7. To characterize each
response with respect to the clusters we observed for ANA™ B cells in SLE patients, we analyzed the propor-
tions of antigen-specific IgG* non-GC (memory) cells, IgM* PCs, and IgG* PCs (Figure 3G). We observed
that the pattern of NP* antigen-experienced cells in the extrafollicular response following NP-Ficoll (day 7)
and NP-CGG (day 7) was characterized by a dominant PC phenotype, with only a few IgG* memory B cells.
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Figure 2. Stability of clustering over
time. SLE patients were classified as
described in Figure 1, and a follow-up
was done between 1 month and 1
year. (A) Relative proportion of ANA*
IgG memory B cells and ANA* IgM
and IgG PCs in healthy controls and
SLE patients. The SLEDAI scores at
the time of each measurement are
shown below each circle. Patients
indicated in red had a change in
classification between the first and
second assessment. (B) Principal
component analysis as in Figure 1,
including all initial measurements
for healthy subjects and patients,
was used to predict the follow-up
measurements in each patient.
Individual dots represent only those
patients with a follow-up measure-
ment. Arrows indicate the follow-up
measurement. Dotted black arrows
indicate 2 patients (SLE 19 and SLE
23) for whom the classification based
on the proportions in A changed over
time. ANA, antinuclear antibody; HC,
healthy control; PC, plasmablast/
plasma cell; SLE, systemic lupus
erythematosus; SLEDAI, SLE disease
activity index.
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Figure 3. Frequencies of memory B cells and PCs upon primary immunization in mice. (A) Model for differentiation of PCs. Two pathways can result in the
differentiation of ANA* IgG* PCs, extrafollicular and germinal center, each leading to different proportions of IgG* memory cells, IlgM PCs, and IgG PCs. (B-G)
C57BL/6 mice were immunized with NP-Ficoll or NP-CGG and analyzed at day 7, 14, and 21 after immunization. (B) Representative flow cytometry plots
showing the frequency of NP* cells among GC B cells, memory B cells, and PCs (the latter was analyzed upon cytoplasmic staining for NP). (C-F) Frequencies
of NP* GC B cells, NP* memory B cells, NP* IgM PCs, and NP* IgG PCs. Each dot shows an individual mouse, and the bar represents the median. (G) Proportion
of NP* memory B cells and PCs These were calculated after subtracting the number of NP-specific cells in each population in unimmunized mice. Each pie
chart shows the median for each strain (n = 4-6 mice per group). P values were calculated using y? test. ANA, antinuclear antibody; CGG, chicken y globulin;
FVD, fixable viability dye; GC, germinal center; NP, 4-hydroxy-3-nitrophenylacetyl; PC, plasmablast/plasma cell; SHM, somatic hypermutation.
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In contrast, the GC response on day 14 and 21 induced by immunization with NP-CGG was characterized
by a major decrease in the ratio of PCs to memory B cells. These data demonstrate that relative frequencies
of antigen-specific memory and PCs correlate with an extrafollicular or GC origin.

Classification of memory B cells and PCs in lupus mice. As the frequencies of memory B cells and PCs in a
primary immunization are to a large degree defined by the kinetics of the response, which do not necessarily
display the same characteristics as a chronic autoimmune response, we next sought to analyze the relative
frequencies of autoreactive antigen-experienced cells in 2 well-studied lupus mouse models, MRL/Ipr and
NZB/W mice, with chronic B cell activation. Our previous data showed that both of these mouse strains are
characterized by increased frequencies of ANA* IgG PCs (2), similar to SLE patients. These mouse models
are well known to have dominant G activation (NZB/W) or extrafollicular PC differentiation (MRL/lpr),
respectively (14, 16, 21-23), NZB/W mice develop autoantibodies at a later time point than MRL/lpr mice
(2). We therefore analyzed NZB/W mice before (age 3 months) and after (age 6 months) seroconversion to
IgG anti-DNA reactivity to determine whether the pattern of antigen-specific cells would change around the
time that autoantibodies develop. Seropositive NZB/W mice had an increase in ANA* IgG* switched B cells
coincident with a change in PC phenotype from IgM to IgG compared with young mice, which only had an
increase in I[gM* PCs (Figure 4A). In contrast, the pattern of ANA* antigen-experienced cells in MRL/Ipr
mice was very distinct with a large increase in ANA* PCs with only few IgG* switched B cells. Although the
relative frequency of ANA* IgM PCs in NZB/W mice was more than 20% of antigen-experienced cells, the
change at the time of seroconversion from young to old mice showed a dominant ANA* IgG* memory B cell
compared with PC frequency (Figure 4A, right circle).

These different frequencies of ANA* memory B cells and PCs are similar to what was observed following
immunization with NP and analogous to what we observed in SLE patients.

Distinct IgG isotype usage, autoantibody affinity, and antigen recognition profiles characterize MRL/Ipr versus
NZB/W mice. 1gG3 antibodies are characteristic of T-independent extrafollicular responses (24, 25). We,
therefore, explored IgG isotypes in ANA* PCs from MRL/lpr and NZB/W mice and from mice immunized
with NP-Ficoll and NP-CGG. There was an increase in the frequency of ANA* IgG3* PCs in MRL/Ipr mice
compared with NZB/W mice (Figure 4, B-D). The IgG3 anti-dsDNA titer was also increased in MRL/Ipr
mice (Figure 4E), as has been reported in the literature (26, 27), consistent with the increase in ANA* IgG3*
PCs we observed. The relative frequency of IgG3 over the other IgG isotypes (IgG1, 2a/c, and 2b) was
increased in MRL/Ipr mice compared with NZB/W mice (Figure 4, F and G), a pattern that correlated with
the T-independent response to NP-Ficoll (Figure 4, H and I).

We next asked whether our classification paradigm correlates to other parameters that can be mea-
sured in serum, in particular ones that could be studied in humans as well. If the ANA* PCs arise from
different PC differentiation pathways in the 2 lupus-prone strains, we might expect to see a difference
in affinity of autoantibodies and the spectrum of their specificities. We first determined the relative
affinity of anti-dsDNA antibodies by inhibition ELISA. We observed a higher IC, in IgG anti-dsDNA
from MRL/1pr mice compared with NZB/W mice, suggesting that the relative affinity in MRL/1pr mice
is lower (Figure 5, A and C). Importantly, no difference was observed in the relative affinity of IgM
anti-dsDNA antibodies between the 2 strains (Figure 5, B and D). In addition to affinity and IgG sub-
class, we also analyzed the ANA specificity profile of serum IgG and IgM, as extrafollicular antibodies
may bind to a broader array of antigens. We used hierarchical clustering to analyze whether a nonsuper-
vised clustering would independently show a difference between these strains. Antigen recognition by
IgG from serum of these lupus-prone mice clustered by strain (except for 1 NZB/W mouse) (Figure 5E),
with IgG from MRL/Ipr mice recognizing an increased number of antigens compared with IgG from
NZB/W mice (Figure 5F). In contrast, the IgM profile did not cluster by strain and the number of anti-
gens recognized was comparable between the 2 strains of mice (Figure 5, G and H).
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Together, these results suggest that the serum autoantibody response of lupus mice correlates to the
classification paradigm. IgG autoantibodies in MRL/Ipr mice have characteristics of an extrafollicular
response (lower affinity, dominant IgG3 isotype, and broader antigen recognition profile), whereas the
characteristics of IgG autoantibodies in NZB/W mice are consistent with a GC origin (higher affinity,
lower frequency of IgG3, and more restricted antigen recognition profile). Interestingly, the IgM autoan-
tibodies in NZB/W mice were similar to those in MRL/Ipr mice in both affinity and antigen recognition
profile, which may suggest that the IgM ANA* PCs, which are already present in young NZB/W mice, are
of extrafollicular origin and that these may be unrelated to the emergence of IgG autoantibodies in older
NZB/W mice that have characteristics of a GC origin.

Serum autoantibody characteristics correlate to classification of SLE patients. We next wanted to study whether
autoantibody characteristics in SLE patients correlate to their classification, which may buttress the paradigm
of a GC versus extrafollicular activation. We used hierarchical clustering to analyze whether a nonsupervised
clustering would independently show a difference between the 2 clusters that we identified. When analyzing
the ANA antigen specificity profile in serum IgG, we observed clustering of patients in accordance with our
classification (Figure 6A). Serum IgG from cluster 1 patients recognized significantly more nuclear antigens
than IgG from cluster 2 patients, similar to the difference we observed between MRL/Ipr and NZB/W mice
(characterized by an extrafollicular and GC differentiation pathways, respectively) (Figure 6B). In addition,
we previously reported increased total ANA-IgG levels in MRL/Ipr mice compared with NZB/W mice (2).
Consistent with our paradigm, patients from cluster 1 also had higher titers of ANA-IgG in serum than
patients in cluster 2 (Figure 6C). Likewise, although the number of patients with sufficient titers of anti-
dsDNA to allow for determination of affinity was low, we observed a trend toward higher affinity in the
patients from cluster 2 (Figure 6, D and E).

Importantly, the serum characteristics (number of nuclear antigens recognized and ANA-IgG titer)
correlated most strongly with the relative proportion of ANA* PCs among ANA* antigen-experienced B
cells (Supplemental Figure 2, A and D), rather than the frequency of ANA* or total PCs (Supplemental
Figure 2, B, C, E, and F), further confirming that the classification paradigm we developed here, rather than
simply the number of PCs, correlates to serum autoantibody characteristics and may thus correlate to an
extrafollicular or GC response.

When including serology in the principal component analysis, the number of nuclear antigens that
were recognized as well as total ANA-IgG in serum went in the same direction as PC frequencies and
maintained the patient clusters (Figure 6, F and G). There are a few exceptions. One patient without
PC expansion overlapped with cluster 1 on the initial principal component analysis based on flow
cytometry data (Figure 1H); this patient also overlapped with patients from cluster 1 when ELISA data
were included in the principal component analysis, and the antigen recognition profile of serum IgG
resembled that of cluster 1 patients. Another exception is patient SLE 23, who was classified in cluster
2 in the first measurement but changed to cluster 1 upon a repeated measurement. Based on serology,
this patient would classify as cluster 1. We did not include serology in the initial clustering, as serum
was not available for all of our patients.

Discussion

In this study we observed distinct phenotypes of ANA* antigen-experienced B cells in patients with
SLE. We propose that these reflect 2 pathways for PC differentiation, an extrafollicular pathway and a
GC pathway. The stratification we propose may be relevant to other diseases with ANA autoantibodies
(such as Sjogren’s syndrome) or other autoantibodies, as several of these are heterogeneous diseases
that have ectopic B cell activation that can represent GC or extrafollicular responses as well (28).

The first group of patients had no expansion of ANA* PCs compared with healthy controls. In
addition, these patients clustered with healthy controls in principal component analysis. Several pos-
sible mechanisms could explain the absence of an abnormal B cell profile in these patients: (a) lower
disease activity; (b) medication; (c) absence of current immune activation (there can be presence of
autoantibody-producing PCs in the bone marrow without them being observed in the circulation); and
(d) SLE pathogenesis caused by myeloid cell abnormalities rather than B cells. As we did not observe
a lower disease activity or differences in medication of this group compared with the other groups,
option 1 and 2 seem unlikely. Because these patients did not show any B cell abnormalities compared
with healthy controls, we have not further analyzed them in this study.
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Figure 4. Frequencies of ANA* memory B cells and PCs in MRL/Ipr and NZB/W mice. (A-G) Splenocytes from MRL/Ipr and NZB/W mice were stained
with nuclear extract to analyze the percentage of ANA* B cells. Each dot indicates an individual mouse (n = 5-8 for each group), and the bars represent the
median. (A) Proportion of ANA* antigen-experienced cells in the spleens of each mouse strain. NZB/W “Change during seroconversion” was calculated by
subtracting the maximal measurements in young mice (quartile 3 + 1.5 x interquartile range) from the measurements in old mice. (B-D) The frequencies of
total and ANA* I1gG3* PCs. (E) dsDNA-reactive 1gG3 in serum of MRL/Ipr and NZB/W mice was determined by ELISA. (F and G) The relative number of 1gG3*
and 1gG1/2* cells within the population of IgG ANA* PCs of MRL/Ipr and NZB/W mice. (H and 1) The relative number of IgG3* and 1gG1/2* cells within the
population of IgM- NP* PCs of C57BL/6 mice immunized with NP-Ficoll (day 7) and NP-CGG (day 7 and day 21). *P < 0.05; **P < 0.01; ***P < 0.001, using

y? test (A), Mann Whitney U test (B-E), or 2-way ANOVA with Bonferroni post-hoc test (G and I). ANA, antinuclear antibody; CGG, chicken y globulin; NP,

4-hydroxy-3-nitrophenylacetyl; PC, plasmablast/plasma cell.
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Figure 5. Characteristics of serum autoantibodies in lupus mice. (A-D) Relative affinity of anti-dsDNA IgG and IgM was measured in serum of MRL/Ipr
and NZB/W mice by inhibition ELISA. (A and B) Relative OD (average + SEM) of each strain. (C and D) IC,; values for each individual mouse. (E-H) Profiles
of recognition of nuclear antigens by serum IgG (E and F) and IgM (G and H). (E and G) Heatmaps, including hierarchical clustering based on the profile of
antigen recognition. (F and H) The number of nuclear antigens recognized. Each dot indicates an individual mouse (n = 6-9 for each group), and the bars
represent the median. *P < 0.05; **P < 0.01, using Mann Whitney U test. ANA, antinuclear antibody; cyto, cytoplasmic; PC, plasma cell; SS-A/B, anti-
Sjogren’s syndrome-related antigen; Sm, Smith antigen.

The second group of SLE patients (cluster 1) was characterized by a large number of ANA™* PCs
and reduced memory B cells, whereas the other group of patients (cluster 2) had a lower frequency
of ANA* PCs (although still higher than healthy controls) and a higher frequency of ANA* memory
B cells. Importantly, the clustering was not dependent on SLEDALI scores and was stable over time in
the vast majority of patients, suggesting a way to subset SLE patients that is independent from disease
activity. Similar frequencies (~20%) of patients with a plasmablast signature were found in another
study of gene expression in pediatric SLE patients (29). This novel approach may have therapeutic
implications. Although patients in cluster 1 were more frequently on steroids, this medication is asso-
ciated with lower plasmablast gene signatures in blood (29) and reduces PC differentiation in vitro
(30). Therefore, the phenotype we observed in cluster 1 (high frequency of ANA* PCs) is unlikely to
be the consequence of treatment with steroids. It may be possible that patients in cluster 1 had a more
intense medication scheme due to more cumulative disease activity (over the past few years) that was
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Figure 6. Characteristics of serum autoantibodies in SLE patients. (A and B) Profiles of recognition of nuclear antigens by serum IgG. Patients are
separated based on classification, as described in Figure 1, into cluster 1and cluster 2. (A) Heatmap, including hierarchical clustering based on the profile
of antigen recognition. Blocks that show 2 colors represent the patients in which the classification changed over time (Figure 2), in which case the top
left triangle represents the classification in the first measurement and the lower right represents the classification in the second measurement. (B) The
number of nuclear antigens recognized. Each dot indicates an individual patient, and the bars represent the median. (C) Total ANA-IgG was determined
by ELISA. (D and E) Relative affinity of anti-dsDNA 1gG was measured in serum of SLE patients by inhibition ELISA. (D) Relative OD (average + SEM) of
each group is shown. (E) IC_, values for each individual patient. (F and G) Principal component analysis of all parameters analyzed (frequencies of ANA*
and total B cell and PC subsets as well as ELISA recognition of nuclear antigens). The percentage indicated on the axis is the percentage of variance
explained by that principal component. A selection of the vectors for direction of parameters is shown here. The parameters omitted here (ANA* and
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systemic lupus erythematosus.
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not directly reflected in current activity scores or clinical symptoms. This could also be related to a
higher probability of patients in cluster 1 to experience clinical flares. A larger patient cohort with
longitudinal data would be needed to confirm this.

We have correlated the relative frequencies of antigen-specific cells we observed in SLE patients to
those in mice after primary immunization and in mice with lupus. The pattern we observed in patients
from cluster 1 was comparable to extrafollicular immune activation during a primary immunization and
to the pattern in MRL/Ipr mice. The pattern we observed in patients from cluster 2 was comparable
to GC immune activation and to the pattern in NZB/W mice. These data suggest that ANA* PCs in
patients from cluster 1 derive from an extrafollicular pathway, whereas those in patients from cluster
2 may derive from a GC response. Importantly, the difference in several serum autoantibody charac-
teristics (ANA titer, number of different antigens recognized, and affinity) between patients from each
cluster further strengthens this notion. Literature suggests that extrafollicular autoreactive responses are
characterized by higher autoantibody titers with lower affinity (31). Importantly, both extrafollicular
and GC-derived autoantibodies led to similar kidney deposition and pathogenesis. This is in line with
the data we present here in which patients from each cluster have comparable SLEDATI scores and renal
involvement. Therefore, we believe that both extrafollicular and GC PC differentiation can lead to
disease pathogenesis in SLE (32) and that our classification represents a simple way to stratify patients
with respect to these pathways.

GC responses are well known to be increased in lupus-prone mice, and SLE patients often have increased
numbers of circulating pre-GC B cells, switched memory B cells, and Tth cells, suggestive of enhanced GC
responses (8—10). Given that IgG anti-DNA autoantibodies that are considered to be pathogenic in SLE show
evidence of SHM and often a loss of autoreactivity when reverted to the germline sequence (11), the pro-
duction of autoreactive PCs by SHM of nonautoreactive naive B cells within the GC has been considered
an important contributor to the development of SLE in both mice (12) and humans (13). Recent studies
indicate the extrafollicular pathway also has a role in autoimmunity (6, 14, 15, 33). MRL/Ipr mice exhibit
extrafollicular PC generation, although they have increased formation of spontaneous GCs as well (8, 14, 16).
Consistent with our results, two elegant studies by Sanz and colleagues have shown that activated naive B cells
and age-associated B cells (ABCs) (designated DN2 in their study) can be clonally related to circulating PCs in
SLE patients with active flares, and these may therefore derive from extrafollicular pathways (6, 33). In addi-
tion, Ettinger and colleagues have also shown a correlation of ABCs with disease activity, and in each study,
the population also correlates with the frequency of PCs in SLE (34). Therefore, the extrafollicular pathway
can be related to disease pathogenesis. However, the correlation to disease activity and PC frequencies is only
evident when analyzing large patient numbers and is not dichotomous: Several patients have a high frequency
of these cell subsets with a low disease activity and vice versa, suggesting that multiple pathways for disease
pathogenesis exist. While neither group specifically proposed 2 pathways of PC differentiation, their data are
consistent with the dichotomy we propose. Of the 5 patients Sanz and colleagues analyzed for activated naive
cells, 2 exhibited more clonal relationships between PCs and naive cells, whereas the 3 other patients exhibited
more clonal relationships between PCs and memory cells (6). Of the 8 patients they analyzed for switched
ABCs, 3 had more clonal relationships between PCs and ABCs, whereas 4 had more clonal relationships
between PCs and memory cells, and 1 additional patient had a comparable frequency of clonal relationships
of PCs to ABCs and memory B cells (33). As they study primarily patients during a clinical flare, they may be
observing a T-dependent response during the time of extrafollicular B cell activation prior to the GC response
(Figure 1G). In any case, these data are in line with our hypothesis that SLE patients cluster in 2 groups based
on distinct PC differentiation pathways that can be observed in circulating PCs.

Several studies have attempted to stratify SLE patients, most using gene expression profiles of
peripheral leukocytes or subsets thereof, such as T cells or neutrophils (29, 35-37). Most of these studies
have focused on correlations with disease activity or clinical symptoms, such as nephritis. These studies
revealed correlations of plasmablast signatures and IFN signatures with disease activity in pediatric
patients (29) and correlations of neutrophil signatures with lupus nephritis (29, 36). Two of these studies
proposed stratification schemes based on the correlations of molecular parameters with SLEDALI score.
In each scheme, the assignment of an individual patient to a cohort required longitudinal data (29, 36).
Importantly, the correlations of specific groups of genes or signatures with disease activity suggest that
different molecular pathways can contribute to active disease in patient groups, similar to what we pro-
pose here with respect to plasmablast derivation.
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We believe the most important question is whether any proposed classification can identify those
patients most likely to respond to a given therapeutic agent. Although providing novel insights into the
heterogeneity of SLE, the stratifications proposed in the studies mentioned above often require multiple
longitudinal measurements to determine patient clusters (29, 36), thereby limiting their applicability for
stratifying patients going into clinical trials. While we currently cannot answer the question whether our
classification will predict a response to particular therapy, this question can be addressed by using our
methodology to analyze patients entering clinical trials with the methods we present. It is interesting
to note that the mouse strains that we have described differ in their response to anti-IFN therapy, even
though both strains have an IFN signature (38—40). It is likely that some therapeutic agents will prefer-
entially target the GC PC differentiation pathway, while others will target the extrafollicular pathway.
Classification of SLE patients by their PC differentiation pathway and then treating with an agent
targeting that pathway should maximize the therapeutic response to a given agent and brings precision
medicine to the lupus clinic.

Methods

Mice. C57BL/6, NZB/W F1, and MRL/Ipr female mice were purchased from The Jackson Laboratory.
Two- to six-month-old lupus-prone mice and age-matched controls were sacrificed at the time points indi-
cated in Results, and bone marrow and spleens were obtained. For NP immunizations, C57BL/6 mice were
immunized i.p. with 50 pg NP-AECM-Ficoll (at a conjugation ratio of 55:1) (Biosearch Technologies) in
saline or with 100 ug NP-CGC (at a conjugation ratio of 20:1) (Biosearch Technologies) in alum (Thermo
Fisher), after which spleens were obtained at day 7, 14, and 21. Single-cell suspensions were obtained from
these tissues by standard procedures, and red blood cells were lysed using RBC lysis buffer (Biolegend).
Serum from lupus-prone mice and their age-matched controls was obtained by submandibular bleeding.

SLE patients and healthy subjects. Blood from 36 SLE patients and 15 healthy subjects was collected
in heparinized tubes, and PBMCs were obtained using standard Ficoll procedure. SLE diagnosis was
based on 1997 revised ACR criteria (41). SLE patients receiving rituximab, belimumab, or cyclophos-
phamide in the preceding 12 months for the initial assessment were excluded from the study. One
patient (SLE 32) used cyclophosphamide at the repeat measurement. At the time of the blood draw, all
SLE patients were assessed for disease activity using the SLEDAI-2K (42). Patient characteristics are
shown in Supplemental Tables 1 and 2.

Flow cytometry for ANA™ B cells. Nuclear extract from HeLa cells was obtained as described previously
(1). Briefly, nuclei from HeLa cells were isolated using the Nuclei EZ lysis kit (MilliporeSigma), frag-
mented by vortexing with 0.5-mm cell disruption glass beads (Scientific Industries), and biotinylated using
EZ-Link-Sulfo-NHS-LC-biotin (Thermo Scientific). Staining for ANA* B cells was done as described pre-
viously (2). Briefly, cells were incubated with biotinylated nuclear extract in HBSS + 1.5% nonfat dry
milk (LabScientific) for 30 minutes on ice. After thorough washing, cells were stained in HBSS + 2% FBS
containing 1 pg/ml streptavidin-APC (Life Technologies) and cell surface antibodies. eFluor 506-labeled
fixable viability dye (eBioscience) was added during staining with cell surface antibodies. For intracellular
staining, cells were fixed and permeabilized with the Transcription Factor Staining Buffer Set (eBioscience)
according to the manufacturer’s instructions. After permeabilization, cells were stained in 1.5% nonfat dry
milk (LabScientific) dissolved in permeabilization buffer with nuclear extract followed by streptavidin and
anti-Ig antibodies dissolved in permeabilization buffer as described above.

The following anti-mouse antibodies were used: IgG1-FITC and -BV605 (clone A85-1), IgG2a,b-FITC and
-BV605 (clone R2-40), IgG3-FITC and -BV605 (clone R40-82), IgD-PE (clone 11-26¢.2a), and CD95-PECy7
(clone Jo2) (all from BD Biosciences); B220-PE-eF610 (clone RA3-6B2), IgM-eFluor450 (clone 11/41), and
GL7-FITC (clone GL7) (all from eBioscience); and CD3-BV510 (clone 17A2), CD19-BV711 (clone 6D5), and
CD138-PE or -PerCpCy5.5 (clone 281-2) (all from Biolegend).

For staining of NP-specific B cells in immunized mice, NP-BSA-biotin (at a conjugation ratio of 6:1)
(Biosearch Technologies) was preincubated for 30 minutes with streptavidin-APC in a 1:1 molar ratio, after
which cells were incubated with 0.1 pg/ml NP-BSA-biotin + streptavidin-APC.

The following anti-human antibodies were used: IgG-FITC (G18-145, BD Biosciences); CD3-eF506
(UCHT1), CD14-eF506 (61D3), CD56-eF506 (TULY56), CD20-eF450 (2H7), CD38-PE-eF610 (HIT2),
and CD27-PE (0323) (all from eBioscience); and CD19-PECy7 (HIB19) and IgM-PerCpCy5.5 (MHM-88)
(both from Biolegend).
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Flow cytometric acquisition was performed on Fortessa (BD). Analysis was performed using FACS
Diva (BD) and FlowlJo software.

We previously published the gating of our mouse and human B cell subsets (2). Briefly, gating was
as follows for human B cells: transitional B cells were Dump- (FVD/CD3/CD14/CD56) CD19*C-
D38**CD27IgM**; naive B cells were Dump CD19*CD38*CD27 IgM* " IgG~; IgM*CD27* cells were
Dump D19*CD38*-CD27*IgM*IgG~; IgG* memory cells were Dump CD19*CD38*-CD27*IgM~
IgG* and IgM*; and IgG* PCs were Dump CD19*CD20-CD27+**CD38** and cytoplasmic IgM*IgG~
or IgG*IgM, respectively. Gating was as follows for mouse B cells: switched mIgG* B cells were
FVD mIgG1/2a,b'mIgM; 1gG GC B cells were FVD B220*IgG*GL7**CD95*; 1gG non-GC B cells
were FVD B220*IgG*GL7; IgM* PCs were FVD B220°CD138*cIgM**cIgG; and IgG* PCs were
FVDB220°CD138*clgG**cIgM .

ELISA. Half-area 96-well ELISA plates (Corning) were coated with 400 pg/ml sonicated filtered
calf-thymus DNA (Calbiochem). For analysis of binding to separate nuclear antigens, coated plates from
the anti-ENA SLE profile-2 ELISA (Euroimmun) were used, combined with detection using AP-labeled
anti-mouse IgM, IgG, or anti-human IgG (Southern Biotech). For analysis of total ANA-IgG titers in
human samples, the Quanta Lite ANA ELISA (Inova diagnostics) was used, combined with detection
using AP-labeled anti-human IgG (Southern Biotech).

Washing steps were performed with 0.05% Tween20 (Fisher) in PBS (Invitrogen). Plates were blocked
with 1% BSA fraction V (Roche) in PBS for 1 hour at 37°C. Samples were diluted in 0.2% BSA in PBS,
and incubated for 1.5 hours at 37°C. Serum samples were diluted x40—x400 (depending on manufacturer’s
instructions). After washing, 1 pug/ml alkaline phosphatase—labeled goat anti-mouse IgM, total IgG, or
IgG3 (Southern Biotech) was incubated for 1 hour at 37°C. For detection, 1 mg/ml phosphatase substrate
(MilliporeSigma) was dissolved in substrate buffer (50 mM NaHCO,, 1 mM MgCl,; MilliporeSigma) for
detection. The plates were read at 405 nm on a 1430 Multilabel Counter Spectrometer (PerkinElmer).

For inhibition ELISA to determine relative affinities of anti-dsDNA, plates were coated with 1 pg/ml
calf thymus dsDNA (43). The EC, was first established for each serum by performing serum titrations to
ensure that the inhibition ELISA was performed in a linear range of the serum dilution. Subsequently, serum
was diluted to the concentration equivalent to the EC,  and mixed with dsDNA, in 3-fold dilutions ranging
from 5 to 0.0068 pg and 1 condition containing no dsDNA.

Statistics. Unless indicated otherwise, P values of less than 0.05 were considered statistically significant.
Each experiment was performed at least twice to ensure reproducibility. For comparison of groups of mice
or subjects, the Mann Whitney U test (2 tailed) was used. To compare frequencies, y* test and Fisher exact
test were used as indicated. To determine IC,; values for inhibition ELISAs, normalized OD values were
calculated based on the maximum OD values when no inhibitor was present. Nonlinear regression [log(ag-
onist) vs. response — variable slope] was used to interpolate the IC, values at ¥ = 0.5. Correlations were
calculated using Spearman’s rank correlation.

Principal component analysis was performed using flow cytometry and ELISA data. Briefly, parameters
were log transformed, scaled, and centered, after which principal components were calculated using prcomp.
Principal components were visualized using the FactoExtra package. Heatmaps from ELISA data were gen-
erated using log-transformed OD values in the heatmap function. Heatmaps were scaled by column.

Statistical analysis was performed using GraphPad Prism 5 and R Studio 1.1.

Study approval. Mice were housed in according to AAALAC regulations, and all mouse studies were
approved the Institutional Animal Care and Use Committee of the Feinstein Institute for Medical Research.
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