Supplemental Methods

Additional clinical details on the HALT-MS study. Twenty-five subjects were enrolled on the HALT-MS clinical trial (1). Patients had an average age of 37 yrs, (range 27-53); there were 17 females and 8 males. The average disease duration was 6.4 yrs. (range 1.0-13.0). The baseline EDSS (expanded disability status scale) ranged from 3.0 to 5.5 with a mean value of 4.5.

All 25 subjects were mobilized and an autologous graft collected. The graft, Auto-CD34+HPC, was manufactured under a Type II Drug Master File (FDA BBIND-11821, V1.0 July 14, 2004) (2). CD34+ cells were selected using the Baxter Isolex device. The Certificate of Analysis specified viable CD34+ selected cells of > 70% with other cells including T cells (CD3+), B cells (CD19+), NK cells (CD56+) and monocytes (CD14+) < 30% combined.

Twenty-four subjects proceeded to transplantation. Subjects received a standard BEAM preparative regimen of BCNU (300 mg/m2, day -6), etoposide (100 mg/m2/day, BID days -5 to -2), ara-C (100 mg/m2/day, BID days -5 to -2) and melphalan (140 mg/m2, day -1) with rabbit antithymocyte globulin (ATG, 2.5 mg/kg/day on days -2 and -1). On day 0, the autologous graft was thawed and infused. Patients received a minimum of 2.0 x 10e6 CD34+ cells/kg of patient body weight per the protocol; the median viable CD34+ dose was 5.1 (range 3.9 - 12.8) x 10e6 cells/kg, and the median viable CD3+ dose was 2.34 x 10e4 cells/kg (2). HALT-MS subjects engrafted neutrophils with an ANC of greater than 500 cells/uL at a median of day 11, and platelets at greater than 20,000/uL with no platelet transfusions in the preceding seven days, at a median of day 18. Treatment failure was defined as one or more of: death from any cause, MS clinical relapse, EDSS

progression as evidenced by an increase of greater than >0.5 in EDSS confirmed at 3

months or later, or presence of 2 or more independent MRI lesions indicative of disease

activity.

References for Supplemental Methods

- 1. Nash RA, Hutton GJ, Racke MK, Popat U, Devine SM, Steinmiller KC, Griffith LM, Muraro PA, Openshaw H, Sayre PH, et al. High-dose immunosuppressive therapy and autologous HCT for relapsing-remitting MS. *Neurology*. 2017;88(9):842-52.
- Keever-Taylor CA, Heimfeld S, Steinmiller KC, Nash RA, Sullivan KM, Czarniecki CW, Granderson TC, Goldstein JS, and Griffith LM. Manufacture of Autologous CD34(+) Selected Grafts in the NIAID-Sponsored HALT-MS and SCOT Multicenter Clinical Trials for Autoimmune Diseases. *Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation.* 2017;23(9):1463-72.

Supplemental Table 1. TCR β productive reads and re-arrangements for CSF

msid 🗵	timept 🚬	smptp 🗾	total_productive_reads	productive_rearrangemen 🗾
P1	M00	CSF	1,081,367	15,817
P1	M24	CSF	49,286	70
P1	M48	CSF	4,658	19
P2	M00	CSF	19,655	82
P2	M24	CSF	6,716	42
P2	M48	CSF	5,753	93
Р3	M00	CSF	452,232	3,934
P3	M24	CSF	13,481	54
P4	M00	CSF	13,964	73
P4	M24	CSF	32,875	168
P5	M00	CSF	413,563	21,185
P5	M24	CSF	338,724	1,313
P5	M48	CSF	993,356	3,741
P6	M00	CSF	2,583,215	12,989
P6	M24	CSF	125,241	640
P6	M48	CSF	1,651,976	5,543
P8	M00	CSF	2,576,621	7,587
P8	M24	CSF	1,172,362	3,460
Р9	M00	CSF	1,828,100	13,995
Р9	M24	CSF	477,499	3,063
P10	M00	CSF	1,595,274	25,978
P10	M24	CSF	41,289	260
P10	M48	CSF	11,862	259
P11	M00	CSF	878,455	3,586
P11	M24	CSF	145,494	433
P12	M00	CSF	363,864	3,570
P12	M24	CSF	94,878	293
P14	M00	CSF	898,866	26,972
P14	M24	CSF	909,409	4,597
P15	M00	CSF	142,480	395
P15	M24	CSF	26,177	269
P16	M00	CSF	337,644	19,923
P16	M24	CSF	64,789	267
P19	M00	CSF	20,735	78
P19	M24	CSF	966,922	13,379
P19	M48	CSF	59,495	1,651
P23	M00	CSF	496,492	6,476
P23	M24	CSF	59,405	1,150
P24	M00	CSF	269,105	1,417
P24	M24	CSF	61,859	258
P25	M00	CSF	225,839	1,019
P25	M24	CSF	30,134	301
P25	M48	CSF	22,607	396

Supplemental Table 2: TCR β productive reads and re-arrangements for blood

msid	-	timept *	smoto 🖅	total productive reads *	productive rearrangement*
P1		M00	CD4	7 440 098	78 584
D1	-	M412	CD4	62 372	9.170
P1	_	W112	0.04	02,372	3,170
P1	_	M24	CD4	5,840,310	118,544
P1		M48	CD4	4,744,848	115,479
P2		M00	CD4	9,201,556	203,260
P2		M12	CD4	3,956,786	153.144
02	-	M24	CD4	9.075.910	251.205
P2	_	N124	004	6,073,810	201,285
PZ	_	M48	CD4	0,358,942	133,224
P3		M00	CD4	11,286,649	104,325
P3		M12	CD4	1,785,620	29,882
P3		M24	CD4	5,332,708	152,614
P4		M00	CD4	7.040.392	183,705
	-	1413	004	2,422,440	40.000
P4	_	M12	CD4	3,442,148	49,800
P4		M24	CD4	7,863,741	106,562
P5		M00	CD4	19,482,412	162,773
P5		M12	CD4	3,890,698	183.241
P5	-	M24	CD4	4 843 212	212,603
05	-	1440	004	3,699,029	77,005
PS	_	M48	CD4	2,088,938	//,3/0
P6	_	MOO	CD4	17,740,397	171,206
P6		M12	CD4	5,747,151	239,327
P6		M24	CD4	5,161,325	203,171
P6		M48	CD4	2 263 158	54.198
07	-	NA00	004	9 207 014	105 530
P/	_	1100	0.04	8,237,014	103,339
P7	_	M12	CD4	5,790,777	80,052
P8		M00	CD4	5,306,056	152,598
P8		M12	CD4	6,896,122	116.977
P8		M24	CD4	5 129 463	128,354
00	-	1400	CD4	44 332 453	104.000
P9	_	NUU	004	11,230,137	184,862
P9	_	M12	CD4	6,423,648	237,181
P9		M24	CD4	5,995,291	210,455
P9		M48	CD4	3,465,904	80,444
P10		M00	CD4	14 373 964	222.992
P 20	-	140	004	44.045.005	112 515
P10	_	M12	CD4	11,045,085	143,616
P10		M24	CD4	7,025,708	356,620
P10		M48	CD4	3,495,295	125,822
P11		M00	CD4	6.412.481	193.796
D11		M12	CD4	9 260 724	121 202
P11	_	N112	004	8,200,734	121,352
P11	_	N124	CD4	3,182,904	66,044
P12		M00	CD4	6,882,408	146,744
P12		M12	CD4	4,975,161	184,249
P12		M24	CD4	2.112.274	43,431
P1.4	-	M00	CD4	9 552 610	214 240
04.4	-	1413	004	5 335 046	200,000
P14	_	M12	CD4	5,325,016	186,905
P14		M24	CD4	6,168,942	247,004
P15		M00	CD4	13,246,503	228,078
P15		M12	CD4	3.923.814	99.167
P15		M24	CD4	2 903 975	79 229
016	-	1400	004	10 445 910	228,442
P10	_	NUU	0.04	10,443,819	228,443
P16	_	M12	CD4	2,861,604	118,188
P16		M24	CD4	2,448,021	135,563
P17		M00	CD4	4,173,133	151.954
P17		M12	CD4	2.482.317	121.278
P17		M24	CD4	5 906 240	169 657
040	-	1400	004	5,000,240	100,007
P18	_	N100	CD4	5,387,807	161,343
P18	_	M12	CD4	3,237,543	135,015
P18		M24	CD4	3,756,000	100,730
P19		M00	CD4	9,942,215	309.951
P19		M12	CD4	7 594 917	219 079
D10	-	M24	CD4	202,000	344.005
P13	_	re124	104	3,3/3,948	211,095
P19	_	M48	CD4	6,487,993	142,818
P20		M00	CD4	7,772,064	121,787
P20		M12	CD4	4.637.596	229.842
P20		M24	CD4	6,968,653	133 848
021	_	1400	CD4	0,500,003	200,040
P21	_	100	004	9,009,0/1	235,81/
P21		M12	CD4	4,122,281	80,581
P21		M24	CD4	8,478,402	251,417
P23		M00	CD4	10,272,413	224.346
P23		M12	CD4	7 167 462	140.660
022		M24	CD4	2 270 442	97.004
004	_	1.400	004	2,5/5/412	67,534
P24	_	MUU	CD4	3,000,325	141,903
P24		M12	CD4	4,038,748	137,317
P24		M24	CD4	3,247,939	207,891
P25		M00	CD4	5 206 654	76 267
P25		M12	CD4	200,23C A	37 /5/
723	_	1112	0.04	4,200,905	27,454
P25	_	M24	CD4	4,323,900	84,928
P25		M48	CD4	4,726,740	77,024

04	L ADD	coo.		productive_real algement
P1	MUU	CD8	5,111,962	23,52
P1	M12	CD8	5,733,421	23,62
P1	M24	CD8	4,838,382	43,90
P1	M48	CD8	5.935.003	44.31
D2	M00	CDR	14 091 699	99.02
F2	1410	000	2,001,005	30,02
P2	M12	CD8	3,724,004	du,ee
P2	M24	CD8	6,651,072	60,44
P2	M48	CD8	2,500,915	50,93
P3	M00	CD8	6.308.060	98.79
PG	M12	CD8	2 501 501	47.87
	1424	0.00	4,407,950	457.20
P3	IV124	0.08	4,407,850	157,28
P4	MOD	CD8	6,626,331	112,95
P4	M12	CD8	5,333,549	16,01
P4	M24	CD8	9.203.837	23,47
P5	M00	CD8	6.036.054	55.85
ne	1413	600	4,440,057	
PS	M12	CD8	4,149,057	61,05
P5	M24	CD8	4,255,371	62,40
P5	M48	CD8	3,140,368	59,30
P6	M00	CD8	3,452,809	64.29
D6	0.412	CDR	3 652 963	79.96
ne	1424	0.00	3,332,003	73,0
PO	1/12/4	0.08	3,722,007	90,03
P6	M48	CD8	1,997,070	28,35
P7	M00	CD8	4,439,954	87,04
P7	M12	CD8	3,226,827	37.52
P8	M00	CD8	7 182 462	158.44
00	6.417	CDP	2024205	
n0 00	1/112	000	2,834,305	
F8	M24	CD8	3,313,489	20,31
P9	M00	CD8	6,901,342	131,73
P9	M12	CD8	9,972,157	54,93
P9	M24	CD8	2,899,539	21.93
D0	0.449	CDR	2 005 177	22.05
	14140	000	2,353,177	22,00
P10	MOU	CD8	4,140,957	141,90
P10	M12	CD8	5,137,537	85,93
P10	M24	CD8	3,600,176	45,08
P10	M48	CD8	3 723 451	118.17
011	1400	0.00	3,723,401	71.70
	14100	000	2,372,302	/1,/e
P11	M12	CD8	4,008,777	14,61
P11	M24	CD8	3,194,039	11,48
P12	M00	CD8	3,205,380	58,23
P12	M12	CD8	4.095.498	90.36
P12	M24	CDR	1.462.102	42.02
D14	8,400	CDB	5 404 507	45,53
- 14	IVIUU	0.08	5,434,697	222,41
P14	M12	CD8	5,480,782	192,66
P14	M24	CD8	7,083,576	356,85
P15	M00	CD8	5.911.245	161.58
P15	M12	CD8	2 708 215	26.64
045	1424	0.00	4 354 304	20,0
-12	IV124	008	1,251,204	38,05
P16	M00	CD8	5,696,461	94,36
P16	M12	CD8	2,567,505	33,98
P16	M24	CD8	5,059,874	74,62
P17	M00	CD8	3 522 939	42 5 <i>4</i>
P17	M12	CDP	5,771,760	
- 17	1112	000	3,2/1,/00	49,13
۳1/	IV124	0.08	2,456,967	59,98
P18	M00	CD8	4,321,210	81,62
P18	M12	CD8	4,699,821	73,96
P18	M24	CD8	4,879,598	112.70
P19	M00	CDP	7 007 669	1/1 0/
. 15	1415	000	1,332,008	141/64
P19	M12	0.08	4,022,396	99,04
P19	M24	CD8	1,090,904	42,11
P19	M48	CD8	6,161,514	128,24
P20	M00	CD8	4.246.153	165.84
P20	M12	CDP	5 613 705	147.30
000	8.424	000	2,012,782	11/,23
-20	11124	0.08	3,033,189	30,08
P21	M00	CD8	9,370,023	170,97
P21	M12	CD8	4,297,320	16,99
P21	M24	CD8	9.283.926	168.06
073	1400	CDP	5,000,520	100,00
-23	IVIUU	0.08	5,849,063	158,78
P23	M12	CD8	7,479,006	31,90
P23	M24	CD8	2,832,517	37,22
P24	M00	CD8	9.690.114	174.36
P24	M12	CDP	5 060 216	25.77
- 24	14122	000	018,800,6	33,2/
F24	M24	CD8	2,815,269	67,47
P25	M00	CD8	1,453,413	25,00
P25	M12	CD8	14,816,580	7,8
P25	M24	CDR	5 262 995 5	AC DC
0.05	1440	000	5,200,350	20,20
- 22	141442	LCD8	3,901,180	20,08

Supplemental Table 3: Median and range of TCR β productive reads and rearrangements for blood and CSF samples

smptp	timept	min	median	max
CD4	M00	3,000,325	8,553,619	19,482,412
CD4	M12	62,372	4,265,905	11,045,085
CD4	M24	2,112,274	5,145,394	8,478,402
CD4	M48	2,263,158	4,111,018	6,487,993
CD8	M00	1,453,413	5,696,461	14,081,689
CD8	M12	2,501,501	4,297,320	14,816,580
CD8	M24	1,080,804	3,707,598	9,283,926
CD8	M48	1,997,070	3,431,910	6,161,514
CSF	M00	13,964	432,898	2,583,215
CSF	M24	6,716	63,324	1,172,362
CSF	M48	4,658	22,607	1,651,976

productive reads

re-arrangements

smptp	timept	min	median	max
CD4	M00	76,267	171,206	309,951
CD4	M12	9,170	135,015	359,581
CD4	M24	43,431	144,089	356,620
CD4	M48	54,198	97,962	142,818
CD8	M00	23,528	98,791	222,417
CD8	M12	7,883	37,526	192,666
CD8	M24	11,487	52,534	356,858
CD8	M48	22,058	47,627	128,245
CSF	M00	73	5,205	26,972
CSF	M24	42	297	13,379
CSF	M48	19	396	5,543

Supplemental Figure 1.

TCR overlap percentage was used to determine the percent of clones that were undetectable, termed new (teal) versus detected, termed persistent (grey) in the CSF repertoire at month 24 compared to pre-therapy for each participant as in Figure 3A. To ensure the robust changes observed were not due to differences in sampling depth between time points, randomized, permutation testing was performed to match the sampling depths for CSF samples collected pre-therapy and at month 24 post-transplant. Data represent the mean from 1000 permutations of down-sampled pre-therapy repertoire to match the sampling depth at month 24 post-transplant.

Supplemental Figure 2 (individual lines for Figure 3C).

Longitudinal evaluation of new clones in CSF at month 24 as the percentage detected by ultra-deep sequencing in CD4⁺ or CD8⁺ T cells in blood. Filled triangles are participants that met the primary endpoint for the HALT-MS study before month 60 post-transplant, and open circles are participants that stayed in remission from active MS until the last follow-up. *p<0.05 between month 0 pre-therapy versus months 12 and 24 posttransplant using mixed model for repeated measures.

Supplemental Figure 3 (individual lines for Figure 4).

Proportions of TCR clones pre-existing in blood that are (A) pre-existing in CSF pre-therapy and undetectable in CSF at month 24, termed removed, (B) new in CSF at month 24 post-transplant, and (C) persisting in CSF at month 24 post-transplant. Proportions were aggregated per subject within circulating CD4⁺ or CD8⁺ T cell repertories pre-to-post transplant and then log-transformed. Filled triangles are participants that met the primary endpoint for the HALT-MS study before month 60 post-transplant, and open circles are participants that stayed in remission from active MS until the last follow-up. The line represents the mean of participants evaluated. *p<0.05 between month 0 pre-therapy versus months 12, 24, and 48 post-transplant using mixed model for repeated measures.

Supplemental Figure 4 (individual lines for Figure 5). CMV infection post-AHSCT therapy is associated with impaired TCR diversification and an increased ratio of effector memory to naïve cell subsets in circulating CD8 T cells. (A) TCR repertoire diversity was analyzed using the Shannon entropy index in blood CD4 and CD8 T cells before therapy and at months 12, 24 and 48 post-transplant. (B) Ratios of circulating CD4 (top) and CD8 (bottom) central memory (Tcm) and effector memory (Tem) to naïve (Tn) cells were analyzed by flow cytometry as previously reported (Harris et al 2018). Filled triangles are participants that met the primary endpoint for the HALT-MS study before month 60 post-transplant, and open circles are participants that stayed in remission from active MS until the last follow-up. Participants were further stratified based on CMV infection status post-transplant. Black shapes are participants that were CMV negative, and red shapes are participants that were CMV positive, by PCR post-transplant. The line represents the mean of all participants evaluated at each time point. *p<0.05 between month 0 pre-therapy versus months indicated post-transplant using mixed model for repeated measures in panels A and B. ¥p<0.05 between CMV+ vs. CMV- groups post-transplant at each visit using mixed model for repeated measures in panels A and B.

в

Supplemental Figure 5 (individual lines for Figure 6A). TCR diversification in CSF is reduced at month 24 post-AHSCT therapy. TCR repertoire diversity was analyzed using the Shannon entropy index in CSF before therapy and at months 24 and 48 post-transplant. Filled triangles are participants that met the primary endpoint for the HALT-MS study before month 60 post-transplant, and open circles are participants that stayed in remission from active MS until the last follow-up. *p<0.05 between month 0 pre-therapy and at month 24 post-transplant.