Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
AMPK induces regulatory innate lymphoid cells after traumatic brain injury
Babak Baban, … , Kumar Vaibhav, Krishnan M. Dhandapani
Babak Baban, … , Kumar Vaibhav, Krishnan M. Dhandapani
Published January 11, 2021
Citation Information: JCI Insight. 2021;6(1):e126766. https://doi.org/10.1172/jci.insight.126766.
View: Text | PDF
Research Article Immunology Neuroscience

AMPK induces regulatory innate lymphoid cells after traumatic brain injury

  • Text
  • PDF
Abstract

The CNS is regarded as an immunoprivileged organ, evading routine immune surveillance; however, the coordinated development of immune responses profoundly influences outcomes after brain injury. Innate lymphoid cells (ILCs) are cytokine-producing cells that are critical for the initiation, modulation, and resolution of inflammation, but the functional relevance and mechanistic regulation of ILCs are unexplored after acute brain injury. We demonstrate increased proliferation of all ILC subtypes within the meninges for up to 1 year after experimental traumatic brain injury (TBI) while ILCs were present within resected dura and elevated within cerebrospinal fluid (CSF) of moderate-to-severe TBI patients. In line with energetic derangements after TBI, inhibition of the metabolic regulator, AMPK, increased meningeal ILC expansion, whereas AMPK activation suppressed proinflammatory ILC1/ILC3 and increased the frequency of IL-10–expressing ILC2 after TBI. Moreover, intracisternal administration of IL-33 activated AMPK, expanded ILC2, and suppressed ILC1 and ILC3 within the meninges of WT and Rag1–/– mice, but not Rag1–/– IL2rg–/– mice. Taken together, we identify AMPK as a brake on the expansion of proinflammatory, CNS-resident ILCs after brain injury. These findings establish a mechanistic framework whereby immunometabolic modulation of ILCs may direct the specificity, timing, and magnitude of cerebral immunity.

Authors

Babak Baban, Molly Braun, Hesam Khodadadi, Ayobami Ward, Katelyn Alverson, Aneeq Malik, Khoi Nguyen, Skon Nazarian, David C. Hess, Scott Forseen, Alexander F. Post, Fernando L. Vale, John R. Vender, Md. Nasrul Hoda, Omid Akbari, Kumar Vaibhav, Krishnan M. Dhandapani

×

Figure 5

Metformin increased the frequency of ILC2reg after TBI.

Options: View larger image (or click on image) Download as PowerPoint
Metformin increased the frequency of ILC2reg after TBI.
(A) Placebo or M...
(A) Placebo or Metformin (3 μg) was intracisternally administered at 2 hours after TBI, and isolated meninges were analyzed at day 5 after sham/TBI by forward scatter (FSC)/side scatter (SSC). Lin–, CD127+, GATA3+ ILC2s were gated and further analyzed for the expression of the regulatory cytokine IL-10. Representative panels are provided for each group. (B and C) Quantification of ILC subtypes (B), including IL-10+ ILC2reg (C). Data are mean ± SD (n = 4-7 mice/group). Data were compared using a One-Way ANOVA followed by Tukey’s post-hoc test (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001).

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts