FULL, UNE	DTIED		
GEL FOR FIG. S1	Test vorbereitet: 84 Gel vorbereitet: 4	Datum: 6.3 Uhrzeit:	.18
	$\frac{1 E E - P R O T O}{1 E E - P R O T O}$		ngabe:
s used	Patient 1. 1. 2. 1. 2. 1. 3. Patient 7 T1 4. Patient 7 T1 9. Patient 2 T1 9. Patient 2 T2 10. 10.		ErgebnisAuffälligkeiten.LISILISISILIS<
Lane	11. Patient 3 T1 12. Patient 3 T1 Patient 3 T2 Patient 3 T2 13. Patient 3 T2 14. Patient 3 T2 14. Patient 1 T1 15. Patient 1 T1 16. Patient 1 T2 18. Patient 6 T1 19. Patient 6 T1 20. Patient 6 T1 Patient 6 T2 Patient 6 T2 21. Patient 10 T1 23. Patient 10 T1 24. Patient 10 T2	in a large de la contra de la	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Patient 10 12 25. 26. Patient 8 T1 27. Patient 8 T1 28. Patient 8 T2 29. 30.		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

31 Hb Human Kontrolle

Bemerkung:

Formblatt IEF-Protokoll Stand 25.02.2010

Supplementary Materials:

Figure S1. CSF-unique OCBs are mostly stable over time. Isoelectric focusing with IgG immunoblotting of CSF and serum at both time points for Pts 1-3, 6-8, and 10. The contrast and brightness of the original image were adjusted to improve visibility of bands, and the original image was flipped to present T1 and T2 in order and show CSF (C) before serum (S). The image was cropped to remove image parts that did not contain data relevant to this study. No specific features were enhanced, obscured, moved, removed, or introduced. The fact that patients do not appear in order is due to the order in which the respective samples were applied to the isoelectric focusing gel. All samples for a given patient were run the same gel. Pt, patient. CSF (C), cerebrospinal fluid. (S), serum. OCB, oligoclonal band. Pt, patient. IgG, immunoglobulin G. T1, time point 1. T2, time point 2. Refer to table S2 for description of CSF OCB comparisons between T1 and T2.

Figure S2: Naïve B-cells are more prevalent in blood; in CSF, SM B-cells are relatively increased. Shown are proportions of B-cell subsets in CSF (blue) and PB (red) among CD19+ B-cells as determined by multiparameter flow cytometry for N, USM, SM, DN, PC B-cell subsets. Overall CD19+ B-cells were 3.0% (+/- 3.0 SD) of all CSF lymphocytes and 7.2% (+/- 4.4 SD) of all PB lymphocytes. There were no significant differences between each subset per time point (not shown); therefore, shown here are combined data per subset from T1 and T2. T1-CSF subsets were measured in n=8 patients, in T2-CSF in n=9 patients, in T1-PB in n=9 patients, and in T2-PB in all 10 patients. Shown are naïve B-cells (N: CD19+IgD+CD27-), unswitched memory B-cells (USM: CD19+IgD+CD27+), class-switched memory B-cells (SM: CD19+IgD-CD27+), double negative B-cells (DN: CD19+IgD-CD27-), plasma cell (PC: CD27+CD38+ of CD19+IgD-), and CSF plasmablast/plasma cells (PC: CD19+IgD-CD27^{hi}). Comparisons between CSF and PB subsets were made using Anova (corrected for multiple comparisons using Sidak method); only significant differences are indicated, *** p < 0.001.

Figure S3. Number of Ig-VH clusters in a sample is correlated with cell count. Spearman correlation for number of Ig-VH clusters versus CSF B-cell count (p<0.0001) and for number of Ig-VH clusters versus PB B-cell count (p<0.0001) (log10 scale on x-axes as well as y-axis of PB plot). Ig-VH, immunoglobulin heavy chain variable region.

Figure S4. The majority of CSF immune repertoire Ig-VH clusters express either IgM or IgG. Each patient is represented by a point within each box plot showing the percentage of IgG-VH-only clusters or IgM-VH-only clusters, and of clusters with both IgG-VH and IgM-VH at T1 and T2. IgM, immunoglobulin M. Comparisons between Ig-VH cluster isotypes were made using Anova (corrected using Sidak method for multiple comparisons) in GraphPad Prism; only significant differences are indicated, ** p < 0.01, **** p < 0.0001.

Figure S5. Different B-cell subsets compose CSF Ig-VH repertoires at T1 and T2. Of patients with sorted CSF B-cells, the number of Ig-VH clusters in T1-CSF and T2-CSF (and not in PB) containing each B-cell subset. As Ig-VH cluster is used as a unit of clonally-related populations in this study, this figure shows in which B-cell subsets these Ig-VH clusters have members. Bulk, unsorted B-cells.

Figure S7. Patients with persistent CSF Ig-VH clusters show no significant difference in B-cell type prevalence in CSF or PB compared to patients without persistent CSF Ig-VH clusters. Blue circles: CSF. Red circles: PB. Shown are naïve B-cells (N: CD19+IgD+CD27-), unswitched memory B-cells (USM: CD19+IgD+CD27+), class-switched memory B-cells (SM: CD19+IgD-CD27+), double negative Bcells (DN: CD19+IgD-CD27-), plasma cell (PC: CD27+CD38+ of CD19+IgD-), and CSF plasmablast/plasma cells (PC: CD19+IgD-CD27^{hi}). (+), patients with persistent CSF Ig-VH clusters. (-), patients without persistent CSF Ig-VH clusters. T1-CSF subsets were measured in n=8 patients, in T2-CSF in n=9 patients, in T1-PB in n=9 patients, and in T2-PB in all 10 patients. Kruskal-Wallis with Dunn correction for multiple comparisons, p<0.05 was considered significant (none of the (+) vs (-) comparisons were statistically significant).

Figure S8. Patients without identifiable persistent CSF Ig-VH clusters still have clonal connections between CSF and PB. Within T1, Ig-VH clusters spanning CSF and PB are often SM, followed closely by USM. At T2, CSF-PB Ig-VH clusters are often SM. Clonal relationships between B-cell subsets are shown for each patient. Lines represent Ig-VH clusters shared between two subsets. Grey lines: PB-only Ig-VH clusters. Red lines: CSF-containing Ig-VH clusters. Yellow lines: T1-PB B-cell subsets, or bulk PB IgG and IgM (from Pt 9), that provide input to T2-CSF without involving T1-CSF. Grey font indicates subsets/Ig isotypes from which no Ig-VH libraries could be obtained.

Figure S9. Somatic hypermutation rates follow expected patterns along B-cell lineage. Shown are somatic hypermutation profiles for B-cell subsets in CSF and PB from Patient 1. The x-axis shows the number of amino acid differences from reference germline *IGHV* sequences, i.e. mutations. The y-axis shows the percentage of sequences in the sample with a given number of mutations on the x-axis. Overall, the degree of somatic hypermutation follows the expected increase along the B-cell maturation stages as antigen exposure and affinity maturation occur: somatic hypermutation is least in naïve B-cells, and greater in IgG-expressing SM and PC. In this patient, there is a particularly high degree of SHM in IgG SM B-cells in T2-CSF. SHM, somatic hypermutation.

Figure S10: Clonal relationships between IgM-expressing USM B-cells and IgG-expressing B-cell subsets suggest Ig class-switch recombination and further maturation of USM B-cells. Shown are three representative Ig-VH cluster networks of clonally related B-cells, with *IGHV*, *IGHJ* and most common CDR3 amino acid sequences indicated per network. Each node represents a specific CDR3 expressed by the indicated B-cell subset; the node size is relative to the number of sequences found for each *IGHV-IGHJ*-H-CDR3 combination (range 2 to 317,112). IgM-expressing B-cell subsets are represented by circles, those expressing IgG by triangles. CSF B-cell subsets are indicated in blue, PB subsets in red; light gray rims indicate T1 subsets, dark gray rims indicated subsets that derive from T2. Shown below the cluster networks is an amino acid alignment of representative sequences from the indicated B-cell subsets from patient 10 together with the closest related germline *IGHV*. Color-shaded amino acids indicate differences from the germline. Regions of the immunoglobulin sequence are numbered and labeled according to IMGT (53).

	Patients with persistent CSF Ig-VH clusters (n=5)	Patients without persistent CSF Ig-VH clusters (n=5)
Age (years)	30.4 (+/-3.1)	40 (+/-3.8)
Sex (M, F)*	0, 5	4, 1
Disease Duration (years)	2.2 (+/-1.2)	1.4 (+/-0.6)
EDSS	3.4 (+/-0.5)	2.7 (+/-0.8)
Time between T1 and T2 (months)	15.2 (+/- 1.8)	13 (+/- 1.1)
Clinical relapse between T1-T2	4	2
IgG Index (normal <0.66)	1.2 (+/-0.1)	0.9 (+/-0.1)
No. of Patients on IMT	4	3
Anti-lymphocyte trafficking IMT (i.e. fingolimod or natalizumab)	2	2
Gadolinium enhancement on MRI (at T1, T2)	4, 2	4, 2
CSF volume (mL)	11.5 (+/- 3.9)	13.7 (+/- 3.3)

Table S1. Patient characteristics based on presence or absence of CSF persistent Ig-VH

Patients with and without persistent CSF Ig-VH clusters did not differ with respect to clinical metrics. More men had persistent CSF B-cells than women (*p<0.05 Fisher's exact test). EDSS, expanded disability status scale. IMT, immune modulating therapy. MRI, magnetic resonance imaging. IgG index, immunoglobulin G index ((CSF IgG/CSF albumin)/(serum IgG/serum albumin)).

Patient ID	Time Point	CSF WBC (cells/uL)	CSF collected (mL)	IgG Index (normal <0.66)	OCB	OCB Comparison
1	T1 T2	8 3	15 16	0.83 0.65	5 3	Decrease in number
2	T1 T2	12 10	6 10	1.1 1.75	>5 >5	Increase in number
3	T1 T2	7 3	7 17.5	NP 0.75	>5 >5	Stable
4	T1 T2	3 1	9.5 10	1.27 0.94	>5 >5	NP
5	T1 T2	4 4	14 10	1.64 1.55	>5 >5	NP
6	T1 T2	3 1	16 17	1 0.85	5 >5	Stable
7	T1 T2	2 1	9.5 11.5	0.9 0.74	>5 5	Stable
8	T1 T2	4 2	14 17	0.62 0.67	>5 >5	Stable overall: 1 band more prominent, 1 less prominent
9	T1 T2	0 0	9.5 13.5	1 0.62	>5 >5	NP
10	T1 T2	8 12	11 10	1.48 1.32	>5 >5	Stable overall: 1 band more prominent

Table S2. Clinical CSF biometrics.

Clinical diagnostic laboratory CSF WBC count, IgG index and OCBs present are shown for each patient at each time point. In n=7 patients, there was additional available CSF, and in these patients the pattern of CSF OCBs at T2 was compared to the OCB pattern at T1. NP, not performed. WBC, white blood cell. IgG index, immunoglobulin G index ((CSF IgG/CSF albumin)/(serum IgG/serum albumin)). OCB, oligoclonal band.

Time Sample **B-cell** Number of Aligned Pt Ig-VH Raw Isotype Exp ID Point Type **B-cells** Clusters Reads Subset Reads Naïve 112 IgM 62 Ι 39948 20587 USM 142 73 49025 24978 IgM Ι 64 I IgG 53241 23042 SM 460 35 9615 5255 IgM I CSF IgG 14 I 37097 12231 DN 83 0 I 0 IgM 0 I IgG 36 207795 86877 PC 120 IgM 0 I 0 0 T1 175179 IgM 9151 I 220760 41385 Naïve USM 84463 IgM 8832 I 339153 105179 I IgG 7842 553275 180184 95720 SMIgM 635 I 219349 103118 PB 2963 IgG I 626941 234604 DN 19072 99 12421 IgM I 73403 298704 IgG 202 I 846488 PC 1055 IgM 124 I 195769 81500 I 659 0 Naïve 77 IgM 14 TR 9456 1420 TR 162 0 Ι 157 0 26 0 USM 239 IgM 48 TR TR 2989 1009 1 I 142 67 TR 161 0 IgG 112 5871 2323 TR TR 1332980 625014 SM880 59 Ι 0 TR 285201 159982 CSF IgM 83 TR 192 13 0 T2 TR 0 339 0 Ι IgG 0 TR 1325 0 * DN 47 I 6480 0 0 IgM TR 2143 0 201 Ι 736 IgG 11 330 0 TR TR 11873 4531 PC 71 I 3 0 IgM 0 TR 0 0 0 TR 77 49100 Naïve 60917 IgM 6640 I 262400 PB IgM USM 79605 5480 Ι 53849 266747 4482 SM 47200 IgG Ι 769897 220884

Table S3. B-cell samples analyzed by IgSeq.

					IgM	1101	Ι	231100	56482
			DN	14654	IgG	1675	Ι	609380	185738
			DN	14654	IgM	97	Ι	46488	12816
			DC	1220	IgG	194	Ι	550130	190036
			PC	1229	IgM	125	Ι	139235	50504
		COL	111.	27(72	IgG	44	Ι	81628	45243
		CSF	DUIK	3/0/3	IgM	7	Ι	1133	308
			Naïve	200000	IgM	7822	Ι	152323	31911
			USM	146293	IgM	7450	Ι	162622	47212
	т1		SM	200000	IgG	6793	Ι	423906	155698
	11	DD	5111	200000	IgM	1117	Ι	81672	37788
		ГD	DN	42720	IgG	5654	Ι	577341	244324
			DN	43729	IgM	650	Ι	172128	95214
			DC	7595	IgG	1049	Ι	349470	149936
			PC	/383	IgM	211	Ι	50291	28296
			Naïve	47	IgM	18	Ι	33126	17856
			USM	102	IgM	12	Ι	32198	19097
2			SM	240	IgG	30	Ι	92267	32018
2		COF	21/1	249	IgM	11	Ι	2486	569
		CSF	DN	20	IgG	24	Ι	46805	19529
			DN	30	IgM	0	Ι	34	0
			DC	(9	IgG	20	Ι	50993	23903
	TO		PC	08	IgM	0	Ι	2151	1
	12		Naïve	61533	IgM	6308	Ι	154660	39006
			USM	10634	IgM	2508	Ι	146168	57403
			SM	15001	IgG	1926	Ι	562184	184976
		DD	SIVI	13001	IgM	285	Ι	83634	30364
		ГD	DN	(797	IgG	1297	Ι	337274	150492
			DN	0/8/	IgM	85	Ι	29104	15681
			DC	62	IgG	35	Ι	359362	114119
			rC	03	IgM	8	Ι	107154	66322
		CSE	bulk	82000	IgG	63	Ι	1161091	522507
		CSF	UUIK	82900	IgM	140	Ι	209102	39341
			Naïve	200000	IgM	9660	Ι	745241	161869
			USM	84400	IgM	5030	Ι	732578	209200
	Т1		SM	200000	IgG	925	Ι	1163560	373157
3	11	DB	5111	200000	IgM	365	Ι	352938	111239
5		1 D	DN	170000	IgG	8572	Ι	538099	150224
			DIN	170000	IgM	783	Ι	109361	25553
			PC	2410	IgG	245	Ι	985465	379640
				2410	IgM	179	Ι	223450	100665
	т2	CSE	Naïve	14	IgM	12	Ι	635998	196072
	12	Cor	USM †	4	IgM	7	Ι	2083	172

			SM	(2)	IgG	19	Ι	875008	368535
			SIM	63	IgM	0	Ι	291842	0
			DN	17	IgG	1	Ι	1036	4
			DN	17	IgM	4	Ι	2311	114
					I.C.	12	Ι	666444	402357
			DC 4	0	IgG	15	TR	600838	492251
			PC	9	I~M	1	Ι	27352	1
					Igivi	1	TR	35400	3
			Naïve	200000	IgM	10223	Ι	461166	66739
			USM	14878	IgM	1818	Ι	394218	124183
			SM	122479	IgG	5088	Ι	830086	315358
		DD	5111	133478	IgM	459	Ι	114407	34347
		ГD	DN	02053	IgG	10286	Ι	1548667	670757
			DN	92933	IgM	854	Ι	287615	88721
			DC	12028	IgG	1062	Ι	737288	330353
			rc	13038	IgM	595	Ι	208666	62988
			Naïve	190	IgM	70	Ι	33043	13483
			USM	146	IgM	29	Ι	24853	8364
		CSE	SM DC	1022	IgG	28	Ι	53400	18138
		CSF	SIVI-FC	1022	IgM	0	Ι	0	0
			DN	80	IgG	6	Ι	86651	12354
			DN	07	IgM	0	Ι	0	0
	Т1		Naïve	290198	IgM	18074	Ι	466054	97254
	11		USM	89486	IgM	7123	Ι	415706	125276
			SM	188264	IgG	8258	Ι	1160979	249186
		PR	5101	100204	IgM	1081	Ι	245366	78639
		ID	DN	35706	IgG	5492	Ι	1912127	469120
			DI	55700	IgM	253	Ι	279055	60085
			PC	1001	IgG	113	Ι	1008112	207739
4			10	1001	IgM	50	Ι	89606	41889
			Naïve	19	ΙσΜ	1	Ι	16961	17
			Traive	17	18111	1	TR	2764	0
			USM	34	ΙσM	0	Ι	83755	0
			ODW	51	15111	0	TR	50290	0
							Ι	1863	1045
					IgG	2	TR	18520	8543
	T2	CSF	SM	142			TR	723	51
			5111	112			Ι	3	0
					IgM	0	TR	2	0
							TR	31	0
					InG	0	Ι	622	0
			DN	14	150	0	TR	106	0
					IgM	0	Ι	4831	0

*

*

							TR	764	0
							Ι	2266	559
					IgG	1	TR	19903	10698
			DG				TR	675	0
			PC	12			Ι	510	0
					IgM	1	TR	16334	11
							TR	189	0
			Naïve	200000	IgM	2107	Ι	163845	8893
			USM	200000	IgM	2133	Ι	140853	17597
			CL (200000	IgG	9447	Ι	514188	138860
		DD	SM	200000	IgM	541	Ι	53707	6956
		РВ	DN	40100	IgG	2082	Ι	584643	166918
			DN	40109	IgM	474	Ι	81251	14395
			DC	(70	IgG	34	Ι	282182	92666
			PC	6/9	IgM	59	Ι	203153	51466
							Ι	1361	325
					IgG	23	TR	23091	7962
		COL	1 11.	1			TR	571	0
		CSF	DUIK	unknown			Ι	132	0
					IgM	3	TR	2595	386
							TR	43	0
	т1		Naïve	200000	IgM	4976	Ι	242268	49347
	11		USM	200000	IgM	4523	Ι	257151	59188
			SM	200000	IgG	1876	Ι	720826	249298
		DD	21/1	200000	IgM	253	Ι	123144	46742
		ГD	DN	81400	IgG	6827	Ι	746881	229740
			DN	81400	IgM	246	Ι	35456	7616
5			DC	1800	IgG	80	Ι	223187	94706
3			re	1890	IgM	147	Ι	595747	270258
					IaG	245	Ι	14221	2631
		CSE	bulk	unknown	IgO	243	TR	1324791	564943
		CSF	UUIK	ulikilowii	IaM	70	Ι	260	3
					Igivi	70	TR	14057	2843
			Naïve	200000	IgM	16802	Ι	366778	116156
	т2		USM	200000	IgM	4907	Ι	414710	202128
	12		SM	200000	IgG	9098	Ι	896283	295044
		PR	5101	200000	IgM	472	Ι	50416	15033
		10	DN	115849	IgG	10397	Ι	809315	258011
			DI	115015	IgM	148	Ι	19478	3128
			PC	162	IgG	15	Ι	543166	217384
			10	102	IgM	20	Ι	178884	77425
6	Т1	CSF	Naïve	105	IgM	0	Ι	264476	0
U U	11	0.01	USM	128	IgM	3	Ι	327565	55744

*

		1	1	1		1		1		
			SM	340	IgG	3	Ι	31953	14499	
			5111	540	IgM	9	Ι	336665	158245	
			DN	110	IgG	4	Ι	325684	10319	
			DN	110	IgM	0	Ι	32410	0	
			DC	10	IgG	8	Ι	764076	122329	
			PC	19	IgM	0	Ι	8833	0	
			Naïve	200000	IgM	1002	Ι	543933	5352	
			USM	78176	IgM	180	Ι	257389	36782	
			CM	15(710	IgG	972	Ι	237251	13302	
		חת	SIM	156/10	IgM	199	Ι	170953	14970	
		PB	DN	257(2	IgG	550	Ι	145676	3856	
			DN	33762	IgM	16	Ι	7339	167	
			DC	000	IgG	44	Ι	394103	61993	
			PC	889	IgM	28	Ι	185208	28922	
			Naïve	45	IgM	0	Ι	0	0	*
			USM	64	IgM	14	Ι	396630	356366	
			<u></u>	1.42	IgG	13	Ι	506718	391468	
		GGE	SM	143	IgM	10	Ι	333972	260293	
		CSF	DM	25	IgG	16	Ι	688318	521557	
			DN	25	IgM	5	Ι	112268	667	
			DCI	10	IgG	15	Ι	470279	378332	
	T2		PC†	12	IgM	12	Ι	449574	349612	
	12		Naïve	200000	IgM	17858	Ι	375931	182899	
			USM	78954	IgM	1792	Ι	453932	325066	
			<u></u>	200000	IgG	5140	Ι	528853	365527	
		DD.	SM	200000	IgM	891	Ι	151177	99882	
		PB	DM	00401	IgG	9108	Ι	668534	444711	
			DN	98481	IgM	412	Ι	116891	77454	
			DC	2(0.11	IgG	1899	Ι	704335	489843	
			PC	26941	IgM	860	Ι	237060	171077	
		COL	1 11	1(200	IgG	9	Ι	50692	15008	
		CSF	bulk	16399	IgM	15	Ι	762	324	
			Naïve	200000	IgM	6026	Ι	152040	25046	
			USM	200000	IgM	4731	Ι	159363	39758	
	T 1		G) (200000	IgG	6839	Ι	437850	126749	
	11	DD	SM	200000	IgM	2096	Ι	132495	48575	
7		PB	DN	0.6617	IgG	8579	Ι	429833	125093	
			DN	86617	IgM	1440	Ι	80089	23517	
			DC	5705	IgG	589	Ι	462064	166191	
			PC	5785	IgM	405	Ι	93627	44582	
		GGE	1 11	1010	IgG	2	Ι	35623	18926	
	T2	CSF	bulk	4210	IgM	2	Ι	177	97	
		PB	Naïve	25417	IgM	3128	Ι	115211	45698	

			USM	9912	IgM	2335	Ι	193174	84241	
			GM	2079	IgG	228	Ι	946058	364072	
			SM	30/8	IgM	54	Ι	190029	76307	
			DN	1551	IgG	132	Ι	421432	157055	
			DN	1551	IgM	4	Ι	13520	1396	
				10	IgG	18	Ι	143120	49583	
			PC †	19	IgM	10	Ι	531331	220280	
			Naïve	32	IgM	7	Ι	117980	76362	
			USM	59	IgM	8	Ι	121560	101569	
							Ι	1627	867	
					IgG	8	TR	14353	5565	
			GM	100			TR	380	0	
			SM	108			Ι	31	0	
					IgM	1	TR	325	170	
							TR	6	0	
							Ι	1412	234	
				36	IgG	2	TR	12793	4419	
		COL	DM				TR	375	0	
		CSF	DN				Ι	84	0	
				36	IgM	0	TR	1378	0	
							TR	23	0	
	TT1						Ι	1524	0	
	11			0	LC	2	TR	290934	300	
				8	IgG	2	TR	14464	45	
0			DC				TR	430	0	
ð			PC				Ι	1	0	
				0	I-M	0	TR	20	0	
				8	Igivi	0	TR	334	0	
							TR	0	0	
			Naïve	181753	IgM	28341	Ι	3938585	1131870	
			USM	14649	IgM	4	Ι	107	30	*
			SM	17624	IgG	203	Ι	969745	423212	
		DD	SIM	17024	IgM	131	Ι	249957	96678	
		РВ	DN	2000	IgG	165	Ι	758428	267570	
			DN	3909	IgM	75	Ι	145441	46026	
			DC	21	IgG	2	Ι	168262	105243	
			PC	21	IgM	5	Ι	37121	27987	
			Naïve	13	IgM	2	Ι	4724	1164	
			USM	22	IgM	3	Ι	8453	2550	
	т2	CSE	SM	55	IgG	0	Ι	16	0	
	12	Cor	SIVI	33	IgM	0	Ι	75	0	*
				7	IgG	0	Ι	4	0	
				/	IgM	15	Ι	9655	1999	

			1		IgG	1	Ι	78520	32697	
			PC	2	IgM	0	Ι	27699	0	1
			Naïve	200000	IgM	13265	Ι	551204	146660	1
			USM	57800	IgM	2908	Ι	2020938	634198	1
					IgG	1553	Ι	593767	182970	1
			SM	140118	IgM	0	Ι	26	2	1
		РВ	DV		IgG	378	Ι	544174	160618	1
			DN	20474	IgM	151	Ι	261438	87403	1
			DC	2565	IgG	277	Ι	122810	38172	1
			PC	3565	IgM	210	Ι	155272	55287	
							Ι	1960	874	
				unknown	IgG	4	TR	700	0	
		COL	111.				TR	18527	6855	
	TT1	CSF	bulk				Ι	59	0	
	11			unknown	IgM	0	TR	21	0]
							TR	1097	0	
		מת	h11-		IgG	960	Ι	1017427	703518]
		PB	bulk	unknown	IgM	10559	Ι	3698830	2163377]
			Naïve	3	IgM	0	Ι	25	0	*
			USM	5	IgM	0	Ι	20	0	*
			SM	16	IgG	5	Ι	17095	8150	
0		CSE	5111	10	IgM	1	Ι	34416	99	
9		CSF	DN	6	IgG	1	Ι	9533	17]
			DN	0	IgM	0	Ι	1031	0]
			DC	0	IgG	n/a	n/a	n/a	n/a]
	тэ		PC	0	IgM	n/a	n/a	n/a	n/a]
	12		Naïve	200000	IgM	26685	Ι	463680	172023	
			USM	35263	IgM	5757	Ι	440115	253640	
			SM	08748	IgG	4733	Ι	818738	452511	
		DD	5111	90/40	IgM	289	Ι	79508	39915	
		ID	DN	20358	IgG	1621	Ι	767356	487204	
			DN	29338	IgM	186	Ι	73377	21868	
			PC	2031	IgG	484	Ι	494349	309270	
			rt	2031	IgM	106	Ι	42157	26743	
			Naïva	74	IaM	13	Ι	1494917	127665	
			INAIVC	/4	Igivi	15	TR	1088739	159791	
			USM	95	IgM					
			SM	202	IgG					
10	T1	CSF	SIVI	292	IgM	no PCR pro	duct			*
			DN	06	IgG					1
				90	IgM					
			DC	14	InC	2	Ι	407278	189715	
			ru	14	IgO	5	TR	474419	1018	

				IaM	1	Ι	60102	0
				Igivi	1	TR	72897	3
		Naïva	200000	IaM	16088	Ι	279121	60479
		Indive	200000	Igivi	10900	TR	351486	202860
		USM	83604	IaM	016	Ι	226432	118098
		USIVI	83094	Igivi	910	TR	336683	223244
				IaC	1	Ι	496	25
		SM	86347	IgO	1	TR	1	0
		SIVI	80347	IaM	1	Ι	258700	59
	DD			Igivi	1	TR	141	84
	ГD			IaC	251	Ι	279017	176994
		DN	8242	Igo	231	TR	264356	167374
		DN	8342	IaM	20	Ι	20296	2961
				Igivi	38	TR	25569	5624
				I ₂ C	2	Ι	314085	200898
		DC	50	Igo	5	TR	549128	443931
		PC	39	I-M	4	Ι	225174	142723
				IgM	4	TR	423936	323116
		Naïve	206	IgM	40	Ι	1901177	105912
		USM	218	IgM	10	Ι	531781	175800
		SM	649	IgG	no DCD n	raduat		
	CSE	SIM	048	IgM	порскр	roduct		
	CSF	DN	47	IgG	5	Ι	462534	140602
		DN	47	IgM	2	Ι	137253	62
		DC	40	IgG	3	Ι	632600	188073
тγ		rC	49	IgM	1	Ι	11956	16
12		Naïve	200000	IgM	5779	Ι	339081	37038
		USM	200000	IgM	3779	Ι	289896	66564
		SM	200000	IgG	2280	Ι	621418	173182
	DD	SIM	200000	IgM	323	Ι	187316	53827
	ГĎ	DN	10282	IgG	2176	Ι	507080	123160
		DN	49302	IgM	147	Ι	81149	9991
		PC	2860	IgG	66	Ι	375733	131626
		rt	3000	IgM	62	Ι	79833	30496

*

On average 2118 (+/- 9953 SD) aligned reads were obtained per cell. Shown are the number of B-cells in each patient's sorted or bulk sample(s) at T1 and T2. Bulk samples contain all B-cells from a given time point sorted into a single sample tube; FACS-sorted B-cell subsets are naïve, USM, SM, DN, or PC. The number of IgG-VH/IgM-VH clusters derived from each sample's IgG-VH and IgM-VH sequencing libraries are shown as well as initial and technical replicate raw sequencing read counts and aligned post-MiXCR read counts. Exp, Experiment: I, initial. TR, technical replicate. FACS, fluorescence-activated cell sorting. *Subsets/Ig isotypes from which no Ig-VH libraries could be obtained. † 5 subsets yielded more Ig-VH clusters than the number of input cells. For these samples, we analyzed the most abundant Ig-VH clusters, such that the number of clusters did not exceed the number of input cells.

Table S4: CSF Ig-VH cluster persistence rate is similar to PB Ig-VH cluster persistence rate.

	% of T1 Ig-VH clusters (+/- SD)	% of T2 Ig-VH clusters (+/- SD)	p-value CSF-persistence vs PB-persistence (T1, T2)
CSF-persistence rate patients with persistent CSF Ig-VH clusters	5.4% (+/- 7.2)	13.1% (+/- 20.9)	n/a
PB-persistence rate patients with persistent CSF Ig-VH clusters	6.4% (+/- 2.9)	7.9% (+/- 3.2)	p=0.8 and p=0.6
PB-persistence rate patients without persistent CSF Ig-VH clusters	5.6% (+/-3.8)	4.3% (+/-5.5)	p=1.0 and p=0.5

Ig-VH cluster persistence rate is defined as the percent of total Ig-VH clusters from T1 or T2 that are found in both T1 and T2 samples (Persistence rate as % of T1 = # Ig-VH clusters found at both T1 and T2 / Total # Ig-VH clusters at T1). Persistence rate in the CSF is compared to the PB-persistence rate in the five patients with persistent CSF Ig-VH clusters as well as the PB-persistence rate in the five patients without persistent CSF Ig-VH clusters. Unpaired t-tests, p<0.05 was considered significant.

Sort panel	BV421	FITC	PerCP- Cy5.5	eF710	PE-Cy7	РЕ	APC	APC- Alexa750
3	CD4	CD20	CD19			CD14	CD3	CD8
6	IgD	CD20	CD38		CD3	CD138	CD27	CD19
7	IgD	CD19		CD5		CD38	CD27	
8	IgD	CXCR5	CD38			CD138	CD27	CD19
19	IgD	CXCR5	CD38		CD3	CD138	CD27	CD19
22	IgD	CD20	CD19			CD3	CD27	CD8
18	IgD	CXCR5	CD38		CD3	CD138	CD27	CD19

Table S5. FACS antibody sort panels.

Panels of fluorescent antibodies used to identify and sort B-cell subpopulations by flow cytometry. IgD Brilliant Violet 421 (Biolegend 11-26c.2a), CD4 Brilliant Violet 421 (Biolegend OKT4), CD20 FITC (Beckman Coulter B9E9), CXCR5 FITC (Biolegend J252D4), CD19 FITC (Biolegend HIB19), CD38 PerCPCy5.5 (BioLegend HIT2), CD19 PC5.5 (Beckman Coulter J3-119), CD5 PerCP-eFluor710 (eBioscience YKIX322.3), CD3 PE-Cy7 (Beckman UCHT1), CD138 PE (Miltenyi 449), CD3 PE (Beckman Coulter UCHT1), CD38 PE (eBioscience 90), CD14 PE (eBioscience 61D3), CD27 APC (eBioscience O323), CD3 APC (Beckman UCHT1), CD19 APC-Alexa750 (Beckman J3-119), CD8 APC-Alexa750 (Beckman B9.11). BV421, brilliant violet 421.

Patient ID	Time point	PB sort panel (1)	PB sort panel (2)	CSF sort panel
1	T1	7		22
	T2	18		19
2	T1	7	3	
	T2	7	3	22
3	T1	7		
	T2	18		19
4	T1	7	3	22
	T2	7	3	6
5	T1	7	3	
	T2	7	3	
6	T1	7	3	8
	T2	18		19
7	T1	7	3	
	T2	7	3	
8	T1	7	3	8
	T2	18	3	19
9	T1			
	T2	18		19
10	T1	7	3	8
	T2	18		19

Table S6. FACS antibody sort panels used on cerebrospinal fluid and peripheral blood.

Panels of fluorescent flow cytometry antibodies that were used on each sample at each time point. See Table S5 for details of each sort panel.