Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Minimally invasive method for the point-of-care quantification of lymphatic vessel function
Anna K. Polomska, … , Jean-Christophe Leroux, Michael Detmar
Anna K. Polomska, … , Jean-Christophe Leroux, Michael Detmar
Published January 22, 2019
Citation Information: JCI Insight. 2019;4(4):e126515. https://doi.org/10.1172/jci.insight.126515.
View: Text | PDF
Resource and Technical Advance Dermatology Vascular biology

Minimally invasive method for the point-of-care quantification of lymphatic vessel function

  • Text
  • PDF
Abstract

Current clinical methods for the evaluation of lymphatic vessel function, crucial for early diagnosis and evaluation of treatment response of several pathological conditions, in particular of postsurgical lymphedema, are based on complex and mainly qualitative imaging techniques. To address this unmet medical need, we established a simple strategy for the painless and quantitative assessment of cutaneous lymphatic function. We prepared a lymphatic-specific tracer formulation, consisting of the clinically approved near-infrared fluorescent dye, indocyanine green, and the solubilizing surfactant Kolliphor HS15. The tracer was noninvasively delivered to the dermal layer of the skin using MicronJet600 hollow microneedles, and the fluorescence signal decay at the injection site was measured over time using a custom-made, portable detection device. The decay rate of fluorescence signal in the skin was used as a direct measure of lymphatic vessel drainage function. With this method, we could quantify impaired lymphatic clearance in transgenic mice lacking dermal lymphatics and distinguish distinct lymphatic clearance patterns in pigs in different body locations and under manual stimulus. Overall, this method has the potential for becoming a noninvasive and quantitative clinical “office test” for lymphatic function assessment.

Authors

Anna K. Polomska, Steven T. Proulx, Davide Brambilla, Daniel Fehr, Mathias Bonmarin, Simon Brändli, Mirko Meboldt, Christian Steuer, Tsvetina Vasileva, Nils Reinke, Jean-Christophe Leroux, Michael Detmar

×
Problems with a PDF?

This file is in Adobe Acrobat (PDF) format. If you have not installed and configured the Adobe Acrobat Reader on your system.

Having trouble reading a PDF?

PDFs are designed to be printed out and read, but if you prefer to read them online, you may find it easier if you increase the view size to 125%.

Having trouble saving a PDF?

Many versions of the free Acrobat Reader do not allow Save. You must instead save the PDF from the JCI Online page you downloaded it from. PC users: Right-click on the Download link and choose the option that says something like "Save Link As...". Mac users should hold the mouse button down on the link to get these same options.

Having trouble printing a PDF?

  1. Try printing one page at a time or to a newer printer.
  2. Try saving the file to disk before printing rather than opening it "on the fly." This requires that you configure your browser to "Save" rather than "Launch Application" for the file type "application/pdf", and can usually be done in the "Helper Applications" options.
  3. Make sure you are using the latest version of Adobe's Acrobat Reader.

Supplemental data - Download (697.99 KB)

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts