#### Supplementary Figures, Figure Legends and Tables



#### Supplementary Figure 1. Generation and validation of *skm-KO* animals.

(A) Schematic representation of the strategy used to specifically delete *Cullin-3* in skeletal muscles. (B) Result of PCR done on genomic DNA used to genotype Cullin-3 floxed animals. M: molecular-weight marker; *ctl*: control; *f/f*: flox/flox (C) RT-PCR on Cullin-3 mRNA using ex2-3.fwd and ex8.rev primers in various tissues showing a recombined transcript only in E18.5 skeletal muscles of *skm-KO*. dia: diaphragm. (D) Semi-quantitative RT-PCR of Cullin mRNA levels in E18.5 diaphragms of *ctl* and *skm-KO*.



Supplementary Figure 2. Early developmental loss of skeletal muscle Cullin-3 leads to postnatal death and respiratory defects.

(A) Breeding outcome at E18.5 and weaning stages. Number of analyzed animals and corresponding percentages (in brackets) for each genotype are indicated. (B) Quantification of the cyanotic embryos 5 minutes after delivery (n=18 for *ctl* and n=13 for *skm-KO*).



Supplementary Figure 3. Absence of Cullin-3 leads to severe skeletal muscle myopathy.

(A) Analysis of tongue weights revealing a strong muscle atrophy in E18.5 *skm-KO*. (n=9 for *ctl*, n=20 for heterozygous (*f/+;cre+*) and n=8 for *skm-KO*). \*\*\**P*<0.0001 by Anova and Bonferroni's multiple comparisons test. (B) Cross-sections of whole hindlimbs stained with Hematoxylin-Eosin, indicating muscle atrophy in *skm-KO*. Scale bar = 200 $\mu$ m. (C-D) Cross-sections of E18.5 diaphragms stained with Hematoxylin-Eosin (C) or modified Gomori trichrome (D) reveal aggregates in *skm-KO*. Arrowheads indicate accumulated material. Scale bar = 100 $\mu$ m for C and D.



Supplementary Figure 4. Loss of Cullin-3 leads to muscle fiber hypotrophy and maturation defects.

(A-C) Quantification of (A) sarcomeric Myosin, (B) Filamin-C (FInC) and (C) Desmin protein levels showing a decrease in the expression of muscle maturation markers in E18.5 diaphragms of *skm-KO* (n=3 for each genotype). (D-E) Quantification of sarcomeric ACTN2 (D) and ACTN3 (E). n=3 for each genotype. \**P*<0.05, \*\*\**P*<0.001 by two-tailed t-test. (F) Average cross-sectional area (CSA, in  $\mu$ m<sup>2</sup>) of fibers showing hypotrophy in *skm-KO* (n=3 for each genotype). \*\*\*\*\**P*<0.0001 by two-tailed t-test. (G) Average number of fibers that constitute E18.5 diaphragms of *ctl* and *skm-KO* (n=3 for

each genotype). P=0.378 by two-tailed t-test. (H) Quantification of the fusion index of *skm-KO* satellite cells and controls, revealing a strong decrease in the number of nuclei per myotube after three days of differentiation. ( $n \ge 182$  per group). \*\*\*\**P*<0.0001 by two-tailed t-test. (I) Quantifications of Cullin-3 and Myosin protein levels in C2C12 myotubes transfected with *Cullin-3* or *scramble siRNA* after 5 days of differentiation (n=3 for each condition). \**P*<0.05 by two-tailed t-test. (J) Immunofluorescence staining of C2C12 myotubes differentiated for 5 days and transfected with a *Cullin-3* (siCul3) or a *scramble siRNA*. Cells were labeled with sarcomeric ACTN2 antibody and DAPI. Scale bar = 100µm.



Supplementary Figure 5. Loss of Cullin-3 in skeletal muscles leads to deregulation of proteins involved in metabolism, mitochondria, calcium-handling, ribonucleoprotein and DNA as well as proteins involved in heat-shock and degradation. (A) Results of the proteome analysis performed on E18.5 diaphragms of *skm-KO* compared to *ctl*. Total numbers of significantly deregulated proteins are shown. (B) Volcano plot of significantly deregulated proteins in diaphragms of *skm-KO* that are involved in metabolism and mitochondria. (C) Immunoblot analysis demonstrating decreases for several mitochondrial proteins (using the OxPhos antibody cocktail) in diaphragms of *skm-KO* compared to controls. (D) Volcano plot of proteins that are significantly

deregulated in diaphragms of *skm-KO* and that are associated with Ribonucleoproteins or DNA, muscle and calcium handling, or heat shock (HSP) and protein degradation.



Supplementary Figure 6. ACTN1 protein levels are decreased during normal muscle differentiation.

(A) Validation of ACTN1 antibody by immunoblot analyses using C2C12 cells expressing *Actn1 siRNA* (si Actn1). (B) Immunoblots of alpha-Actinin protein isoforms in C2C12 revealing a decreased expression of non-muscle actinins (ACTN1 and 4) and increased expression of the muscle ACTN2. (C-D) Analysis of ACTN1 protein (C) and mRNA (D) levels in C2C12 over 5 days of differentiation (n=3 per time point). (n=3 per time point) *\*P<0.05* by Anova and Bonferroni's multiple comparisons test. (B-D) *Pro*: proliferation; *D1-5*: differentiation day 1 to 5. (E) Immunofluorescence staining of C2C12 cells in

proliferation (*Pro*) or after 3 (*D3*) and 5 days (*D5*) of differentiation with an antibody against ACTN1. Scale bar =  $10\mu$ m.





#### Supplementary Figure 7. Over-expression of ACTN1 in C2C12.

(A) C2C12 over-expressing HA-ACTN1 and stained with HA antibody (red), Phalloidin (green) and DAPI (blue) showing correct localization of the tagged protein. Scale bar = 10 $\mu$ m. (B) Quantification of Myosin protein expression in C2C12 expressing HA or HA-ACTN1 constructs after 5 days of differentiation (n=3 per condition). \**P*<0.05 by two-tailed t-test.



Supplementary Figure 8. Regulation of Cullin-3, Cullin activity and ACTN1 are important for normal AchR clustering. (A) Quantification of Cullin-3 (Cul3) protein levels in C2C12 myotubes following neural Agrin stimulation, indicating a marked increase after 48 hours (n=3 per time point). \*\**P*<0.01, by Anova and Bonferroni's multiple comparisons test. (B) Quantification of Nedd8-linked protein levels (measured at 80kDa) in C2C12 myotubes following neural Agrin stimulation, showing a marked increase in neddylated-Cullin proteins after 48 hours (n=3 per time point). \**P*<0.05 by Anova and Bonferroni's multiple comparisons test. (C) Quantification of polyubiquitylated protein levels in C2C12 myotubes following neural Agrin stimulation, showing a marked increase in K48-ubiquitylated proteins after 48 hours. (n=3 per time point). \**P*<0.05 by Anova and Bonferroni's multiple comparisons test. (D) Immunofluorescence staining of AchR clusters in C2C12 myotubes expressing HA-ACTN1

or HA-control constructs with fluorescent-Bungarotoxin (BGTX) after 48 hours. Scale bar =  $100\mu$ m. (E) Quantification of AchR cluster-sizes in C2C12 myotubes expressing HA-control or HA-ACTN1 constructs after 48 hours of stimulation with neural Agrin (n=3 per condition). \*\*\*\*P<0.0001, by two-tailed t-test.

| Gene names    | Oligonucleotide names | Sequences             |
|---------------|-----------------------|-----------------------|
| Cullin-1      | Cul1.fwd              | GAATAAACAGGTAACAAATG  |
|               | Cul1.rev              | ATTCTTTATACACTGTTAACG |
| Cullin-2      | Cul2.fwd              | GAGCTAGCATTGGATATGTGG |
|               | Cul2.rev              | ATGGATTACTTTCTGGTTTGG |
| Cullin-3      | Cul3.fwd              | GACTATATCCAGGGCTTATTG |
|               | Cul3.rev              | TGAGAGGTATTCAGGAGACC  |
| Cullin-4A     | Cul4A.fwd             | CTCCAGGTGTACAAAGACTC  |
|               | Cul4A.rev             | CGGTTTTTGTGTGCTGTGGTC |
| Cullin-4B     | Cul4B.fwd             | CTACCAGGCTGTAGAAAATC  |
|               | Cul4B.rev             | GGTTTTGCCAGCATCTATCG  |
| Cullin-5      | Cul5.fwd              | GAGTGGCTAAGAGAAGTTGG  |
|               | Cul5.rev              | CGGAATCAGCTGGTAATGCC  |
| Cullin-7      | Cul7.fwd              | GCTGGGACCCGGACCCAGAT  |
|               | Cul7.rev              | CTGGGACCTGTGGCAGCTG   |
| ACTN1         | Actn1.fwd             | GCCAGGACCATCAATGAAGT  |
|               | Actn1.rev             | GAACTCTTCGGGACCCAAC   |
| cyclophilin B | cycloB.fwd            | GATGGCACAGGAGGAAAGAG  |
|               | cycloB.rev            | AACTTTGCCGAAAACCACAT  |
|               |                       |                       |

#### Supplementary Table 1. Oligonucleotides for RT-PCR and RT-qPCR

#### Supplementary Table 2. List of antibodies.

| Antigen           | Antibody reference/Clone number | Manufacturer, comments                         |
|-------------------|---------------------------------|------------------------------------------------|
| Alpha-Actinin 1   | sc-135819, clone 23             | Santa Cruz Biotechnology                       |
| (ACTN1)           |                                 |                                                |
| Alpha-Actinin 1   | Home-made, clone 3A2            | Courtesy of Dr. Beggs, Children's Hospital     |
| (ACTN1)           |                                 | Boston, Massachusetts, USA                     |
| Alpha-Actinin 2   | EA-53                           | VWR                                            |
| ACIN2             |                                 | Countrous of Dr. Doorse, Children la Upperital |
|                   | Home-made, clone 4A3            | Boston Massachusetts USA                       |
| Alpha-Actinin 3   | ab68204 (EP2531Y)               | Abcam                                          |
| ACTN3             |                                 |                                                |
| Alpha-Actinin 4   | ab108198                        | Abcam                                          |
| ACTN4             |                                 |                                                |
| Alpha-Actinin 4   | Home-made, clone 6A2            | Courtesy of Dr. Beggs, Children's Hospital     |
| ACTN4             |                                 | Boston, Massachusetts, USA                     |
| Beta-Actin        | sc-47778                        | Santa Cruz Biotechnology                       |
| Cullin-1          | C7117                           | Sigma-Aldrich                                  |
| Cullin-3          | Home-made                       | Generated in the laboratory of Dr. Singer      |
|                   |                                 | (21)                                           |
| Desmin            | sc-14026                        | Santa Cruz Biotechnology                       |
| Filamin-C         | NBP1-89300                      | Novus Biologicals                              |
| GAPDH             | sc-32233                        | Santa Cruz Biotechnology                       |
| НА                | 3F10                            | Roche                                          |
| KBTBD13           | LS-C166810                      | LS Bio                                         |
| KBTBD5            | PA5-23933                       | Thermo Scientific                              |
| KCTD6             | ab62596                         | Abcam                                          |
| КСТD9             | SAB1105110                      | Sigma-Aldrich                                  |
| KLHL9             | PA5-25097                       | Thermo Scientific                              |
| Lamin B1          | #12586 (D4Q4Z)                  | Cell Signaling Technology                      |
| Myogenin          | F5D                             | DSHB (deposited by Wright, W.E.)               |
| Myomesin-3        | Home-made                       | Kind gift of Dr. Agarkova (87)                 |
| Myom3             |                                 |                                                |
| Nedd8             | #2754                           | Cell Signaling Technology                      |
| Neurofilament     | ab1991                          | Millipore                                      |
| OxPhos            | 458099                          | Novex                                          |
| p62               | GP62-C                          | Progen                                         |
| Sarcomeric Myosin | A4.1025                         | DSHB (deposited by Blau, H.M.)                 |
| Heavy Chain       |                                 |                                                |
| PLZF              | ab39354                         | Abcam                                          |
| Porin/VDAC1       | ab14734 (20B12AF2)              | Abcam                                          |
| Synaptophysin     | H-93                            | Santa Cruz Biotechnology                       |
| Ubiquitin-K48     | #8081 (D9D5)                    | Cell Signaling Technology                      |

## Figure 1A



![](_page_14_Figure_2.jpeg)

## **Beta-Actin**

![](_page_14_Figure_4.jpeg)

# Figure 1C

![](_page_15_Picture_1.jpeg)

Original ponceau

NEDD8

![](_page_15_Picture_3.jpeg)

### Figure 1E

Ubiq. K48

![](_page_16_Picture_2.jpeg)

Original ponceau

![](_page_16_Figure_4.jpeg)

P62

![](_page_16_Picture_6.jpeg)

Original Ponceau (not shown In figure)

![](_page_16_Picture_8.jpeg)

#### Figure 3D

![](_page_17_Figure_1.jpeg)

Figure 4C: DNA gel

![](_page_18_Figure_1.jpeg)

# Figure 4E

Myosin Heavy Chain

![](_page_19_Picture_2.jpeg)

![](_page_19_Picture_3.jpeg)

Beta-Actin

![](_page_19_Picture_5.jpeg)

Figure 5A (1/2)

![](_page_20_Figure_1.jpeg)

# Figure 5A (2/2)

Cul1

L

×

FEERSSEE SEREY

----

the de

KCTD9

![](_page_21_Figure_3.jpeg)

Silverstain Myosin

![](_page_21_Picture_5.jpeg)

Figure 6A

![](_page_22_Picture_1.jpeg)

![](_page_22_Figure_2.jpeg)

Figure 6C

Myosin Heavy Chain

![](_page_23_Picture_2.jpeg)

ACTN1

![](_page_23_Picture_4.jpeg)

**Beta-Actin** 

![](_page_23_Picture_6.jpeg)

#### Figure 6E

![](_page_24_Picture_1.jpeg)

![](_page_24_Picture_2.jpeg)

lines were not included in Figure

original ponceau stain of gel

![](_page_24_Figure_5.jpeg)

#### Figure 6F

![](_page_24_Picture_7.jpeg)

ACTN1 blot and original ponceau stain of membrane

![](_page_24_Picture_9.jpeg)

ACTN2 and GAPDH blots and original ponceau stain of membrane

![](_page_24_Picture_11.jpeg)

![](_page_24_Picture_12.jpeg)

![](_page_24_Picture_13.jpeg)

## Figure 7A

Myosin Heavy Chain

HA-ACTN1

GAPDH

![](_page_25_Picture_4.jpeg)

# Figure 8A

![](_page_26_Figure_1.jpeg)

### Figure 8B

NEDD8

![](_page_27_Figure_2.jpeg)

Figure 8C

Ubiq

Original

![](_page_27_Picture_4.jpeg)

![](_page_27_Figure_5.jpeg)

### Figure 8D

![](_page_28_Figure_2.jpeg)

Original

Ponceau

![](_page_28_Picture_4.jpeg)

Figure 10B (1/2)

![](_page_29_Picture_1.jpeg)

![](_page_29_Figure_2.jpeg)

# Figure 10B (2/2)

Porin

![](_page_30_Figure_2.jpeg)

# Ponceau (Actin Band)

![](_page_30_Picture_4.jpeg)

Supplementary Figure 1C (RT-PCR)

# Cul3 primers

![](_page_31_Picture_2.jpeg)

![](_page_31_Picture_3.jpeg)

![](_page_31_Picture_4.jpeg)

#### Supplementary Figure 1D (RT-PCR)

2.4

![](_page_32_Picture_1.jpeg)

#### **Supplementary Figure 5C**

![](_page_33_Figure_1.jpeg)

**OxPhos:** 

![](_page_33_Picture_3.jpeg)

![](_page_33_Figure_4.jpeg)

### Supplementary Figure 6A

![](_page_34_Picture_1.jpeg)

ACTN1

**Original Ponceau** 

#### **Supplementary Figure 6B**

ACTN1

\_\_\_\_

GAPDH

**Beta-Actin** 

ACTN2

#### ACTN4

![](_page_35_Figure_7.jpeg)

![](_page_35_Figure_8.jpeg)