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SUPPLEMENTAL METHODS 

Rhesus macaque longitudinal infection  

The longitudinal experiment included baseline collection of venous blood and bone 

marrow aspirates 5 days before sporozoite inoculation and daily follow-up for 100 days after the 

inoculation (about 100 freshly isolated salivary gland sporozoites were inoculated in the 

saphenous vein at day 0).  Capillary blood samples were collected every day during the infection 

(approximately 100 µL), into EDTA-coated capillary tubes, using ear-prick procedures. Capillary 

blood samples were used for complete blood counts (CBCs) analysis using a Beckman Coulter 

AcTDiff hematology analyzer, to quantify parasitemias and stage differentials using Giemsa-

stained thin and thick smears, to quantify reticulocytes by manual counting using new methylene 

blue staining of blood smears, and for plasma collection for cryopreservation and subsequent 

metabolomics. Whole blood samples (10 mL) obtained from the femoral vein and bone marrow 

aspirates derived from iliac crest puncture while the animals were under anesthesia were 



collected into EDTA-coated vacutainer tubes at seven TPs. For parasite transcriptomics, venous 

blood was collected in Blood Tempus RNA tubes containing 6 mL of Stabilizing Reagent, shaken 

vigorously for 10 seconds and stored at -80°C until processing for RNA-Seq.  For metabolomics, a 

300 µL aliquot of venous blood was centrifuged, and plasma was collected and stored at -80°C 

until processing for HRM.   

 To avoid possible clinical complications, subcurative treatment with artemether, a fast-

acting antimalarial drug with a short half-life, was administered intramuscularly (IM) at 1 mg/kg. 

This treatment was repeated when clinically warranted, and fluid support and blood transfusion 

were also treatment options if deemed necessary by veterinarians. Before unassignment, the 

macaques received a curative antimalarial regimen of 4 mg/kg of artemether IM followed by 2 

mg/kg/day IM for seven days.   

For bone marrow cytology, aspirate films were prepared immediately, fixed in methanol 

and stained with Wright-Giemsa. Total counts were determined using a Beckman Coulter AcTDiff 

hematology analyzer. Differential cell counts were performed by a board-certified veterinary 

pathologist using a blinded procedure and manual counting of 500 progenitor cells. To determine 

the absolute counts of erythroid and myeloid progenitor cells, they were summed for each TP 

and multiplied by the total nucleated cell count. This provided a cells/µL measure for both 

lineages.  To summarize these data by phase, mean values were calculated per animal per phase.  

 

Human sample collection 

Venous blood samples were collected in heparin tubes by MVRU staff between August 

2011 and August 2014. Giemsa-stained thick and thin blood smears were prepared for 



parasitemia determination and species identification. PCR was additionally performed at the 

MVRU in Bangkok to confirm the parasite species.  

Venous blood samples were also collected from the NMFI and healthy controls. Three mL 

was collected for a CBC test, parasite checks by microscopy, and PCR. One mL was collected in a 

heparin tube for plasma separation. All blood samples were kept on ice and transferred less than 

4 hours later to the Tropical Disease Research Center in Kanchanaburi, or the MVRU in Bangkok. 

Plasma was separated by centrifugation, aliquoted and frozen at -80°C. A frozen aliquot of 200 

µL from each participant was shipped on dry ice to Emory University and remained frozen until 

used for HRM analysis. Samples were refrozen and thawed later for Biocrates targeted validation 

analyses. 

 

Annotation of untargeted metabolomics data 

Initial evaluation of metabolite features has been previously discussed (1) concerning 

metabolite identification, for example, multiple ions can be formed from a single metabolite, and 

one m/z feature may include ions from different chemicals. For simplicity, m/z features are 

discussed as metabolites; identities of metabolites have been established for this platform by 

tandem mass spectrometry (MS/MS), co-elution with authentic standards and cross-platform 

validation(1). Accurate mass matches (10 ppm) of other ions to metabolites were obtained using 

the xMSannotator R package available on Source Forge 

(https://sourceforge.net/projects/xmsannotator/) (2, 3). xMSannotator, which uses a multi-step 

procedure based on clustering based on intensities across samples, retention time, 

adducts/isotopes, mass defect, and correlation between adducts/isotopes was used to assign 



confidence levels (0: low/no confidence; 2: medium confidence; 3: high confidence) to database 

matches in HMDB. Metabolite identification levels are assigned according to the criteria 

established by the metabolomics standards initiative(4).  Level 1 includes metabolites confirmed 

by matching accurate mass, retention time, and MS/MS relative to authentic standards. Level 2a 

includes metabolites confirmed by MS/MS relative to online spectral libraries. Level 2b includes 

computationally derived putative annotations using xMSannotator with annotation score 2 or 3, 

corresponding to medium to high confidence, respectively.” 

 

Targeted metabolite quantification 

Targeted metabolite quantification was performed according to manufacturer instructions 

(Biocrates Life Sciences AG, Innsbruck, Austria).  Samples were randomized into a 96-well plate 

for extraction.  The methanolic extracts in the 96-well capture plate were split for data acquisition 

using two different approaches- LC-MS/MS in positive mode and flow injection analysis (FIA) in 

positive and negative mode. The LC-MS/MS approach uses column for metabolites separation in 

contrast to the FIA approach that does not utilize column. The data were acquired injecting 10 µl 

of extract into SCIEX LC AC chromatography system coupled to SCIEX QTRAP 5500 (AB SCIEX LLC, 

Framingham, MA, USA). The data acquired in multiple reaction monitor (MRM) mode were 

further processed and quantified using Analyst 1.6.3 and validated using MetIDQ software 

(Biocrates Life Sciences AG, Innsbruck, Austria). 

 

 
Quality Control for Parasite Transcriptional Analysis 



A set of quality control evaluations were conducted to ensure that the results of our parasite 

transcriptional analysis are reliable and meaningful.  The results of these assessments and the 

steps taken to appropriately analyze this data are described below. 

1. Negligible contribution of sequencing error to this dataset.  We aligned reads from TP1 

(pre-inoculation, no Plasmodium in blood) with the P. coatneyi genome in order to test 

for non-specific alignment errors that would have created non-specific reads in our data 

set. The vast majority of the 5,578 annotated P. coatneyi genes had either 0 or 1 reads 

assigned in TP1. Genes found to have greater than 10 reads in any animal at TP1 were 

removed from analysis. 

2. Expression levels for housekeeping genes were used to set the lower limit of detection 

for further analysis of parasite transcriptomes. As RNAseq and differential gene 

expression analysis has previously been shown to work reliably on populations of as 

little as 5,000 parasites with 100,000 reads (Ngara et al 2018), we decided to perform 

analysis on our dataset to determine whether we could reliably detect housekeeping 

markers in our samples that fell in the range of 100,000 parasite reads and greater.  We 

identified putative housekeeping genes by identifying P. coatneyi orthologs of genes 

previously published shown to be constitutively expressed in P. falciparum. We then 

analyzed expression levels of such genes and found that in the samples with at least 

100,000 parasite reads, the constitutively expressed genes could be reliably identified in 

all samples. 

3. A library size normalization was applied to account for differences in parasite read count 

across the acute, post-treatment and chronic phases.  After the samples were selected 



(9 in total: 3 animals with one sample per phase, all of which met the quality control 

criteria), a library normalization was applied to all samples together using DESeq2.  

4. A base mean cutoff was used to eliminate those genes for which expression was very 

low. Following normalization, genes were only analyzed if they had a base mean 

normalized read count of greater than 4. 

 

 

 

  



SUPPLEMENTAL TABLES 

Table S1. Supplemental hematology data. Mean values per animal per phase for various 
hematological factors. Full dataset and metadata descriptions are available on the E03 clinical 
malaria data table on PlasmoDB.org (http://plasmodb.org/plasmo/mahpic.jsp). 
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SUPPLEMENTAL FIGURES 

 

Supplemental Figure 1. Glucose data.  A. Glucose as measured by blood chemistry (i-STAT) and 

B. Sum of hexoses as measured by targeted metabolomics (Biocrates). Data reveal no 

significant differences across phases by ANOVA. 

 

 

Supplemental Figure 2. KIR gene expression data. HCA plots of differentially expressed parasite 

genes of the KIR gene family with manual clustering along the x-axis (columns are grouped by 

clinical phase and are always in the same order of animals: RWr13, Run13, RTi13). 
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Figure S1. Glucose data. A. Glucose as measured by blood chemistry (i-STAT) and B. 
Sum of hexoses as measured by targeted metabolomics (Biocrates).  Data reveal no 
significant differences across phases by ANOVA.

Figure S2. KIR gene expression data.
HCA plots of differentially expressed
parasite genes of the KIR gene family with
manual clustering along the x-axis (columns
are grouped by clinical phase and are
always in the same order of animals:
RWr13, RUn13, RTi13).

acute post-rx chronic



 

Supplemental Figure 3. Differentially expressed genes with reductions in the post-SRx phase. 

NAD metabolism and Nucleotide and nucleoside metabolism genes of P. coatneyi were 

downregulated in the post-SRx phase as compared to the acute and chronic phases.  This 

indicates a reduction in the activity of those pathways, possibly coinciding with drug treatment.   
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