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Introduction
Malaria is the most prevalent blood-borne parasitic disease worldwide, causing over 200 million cases 
and 400,000 deaths annually (1). Despite gains in reducing malaria incidence and mortality (1), chronic 
malaria predominates, with a majority of  Plasmodium infections being asymptomatic (2). This presents a 
major challenge for population-wide treatment and eradication efforts, especially in highly endemic areas 
where incomplete immunity is the norm (2). Chronic blood-stage infections account for around 75% of  all 
malaria cases (3, 4), have significant long-term impacts on human health (2, 5), and serve as a reservoir 
for the parasite’s sexual stages (gametocytes), which are transmitted to the mosquito vector and support 
disease transmission. Investigations into temporal host-parasite interactions may reveal biological factors 

Chronic malaria is a major public health problem and significant challenge for disease eradication 
efforts. Despite its importance, the biological factors underpinning chronic malaria are not 
fully understood. Recent studies have shown that host metabolic state can influence malaria 
pathogenesis and transmission, but its role in chronicity is not known. Here, with the goal of 
identifying distinct modifications in the metabolite profiles of acute versus chronic malaria, 
metabolomics was performed on plasma from Plasmodium-infected humans and nonhuman 
primates with a range of parasitemias and clinical signs. In rhesus macaques infected with 
Plasmodium coatneyi, significant alterations in amines, carnitines, and lipids were detected 
during a high parasitemic acute phase and many of these reverted to baseline levels once a low 
parasitemic chronic phase was established. Plasmodium gene expression, studied in parallel in 
the macaques, revealed transcriptional changes in amine, fatty acid, lipid and energy metabolism 
genes, as well as variant antigen genes. Furthermore, a common set of amines, carnitines, and 
lipids distinguished acute from chronic malaria in plasma from human Plasmodium falciparum 
cases. In summary, distinct host-parasite metabolic environments have been uncovered that 
characterize acute versus chronic malaria, providing insights into the underlying host-parasite 
biology of malaria disease progression.
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leading to and associated with the development of  chronic malaria, and may help to identify novel targets 
for intervention.

A long-held paradigm is that chronic malaria caused by Plasmodium falciparum develops primarily due 
to immune evasion (6). This is supported by epidemiological evidence demonstrating a decreased risk of  
acute malaria with increasing age, exposures, and immunity to variant antigens (6, 7). On the other hand, a 
recent study of  Plasmodium chabaudi in mice demonstrated that chronic malaria develops in the absence of  
host antibodies and coincides with variation in parasite gene expression (8). This and other recent studies 
have postulated that exogenous factors, such as host nutrients (9–11) and parasite-derived quorum-sensing 
molecules (12), may modulate parasite gene expression and trigger a reduction in parasite replication rate, 
thus contributing to the development of  chronic infections (8, 10). As a specific example, a reduction in 
the plasma levels of  the host lipid lysophosphatidylcholine (lysoPC) has been associated with a shift in the 
parasite transcriptome leading to an increase in gametocyte production (9). To what degree other plasma 
metabolites affect parasite gene expression, disease progression, and transmission remains largely unex-
plored, but represents an area of  high importance for the malaria field.

Liquid chromatography–mass spectrometry (LC-MS) is a powerful tool for analyzing the large reper-
toire of  metabolites present in biological samples, and for distinguishing healthy and disease states (13). 
Striking changes in the plasma levels of  amines, fatty acids, glycerophospholipids, endocannabinoids, and 
hemoglobin-related metabolites have been associated with severe P. falciparum malaria in humans (14–17). 
Specific metabolic profiles have also characterized chloroquine-resistant and high-parasite-density Plasmo-
dium vivax malaria in humans (18, 19). Still, longitudinal studies characterizing the temporal dynamics of  
plasma metabolites in Plasmodium-infected hosts have been lacking.

Longitudinal infection studies are possible with animal models. Plasmodium coatneyi (Hackeri strain) 
infection of Macaca mulatta (rhesus macaques) provides a robust model for P. falciparum malaria in humans 
(20). Both P. coatneyi and P. falciparum exhibit a 48-hour infected red blood cell (iRBC) cycle, have charac-
teristic microvascular sequestration of  late-stage iRBCs, undergo antigenic variation, and cause both acute 
and chronic malaria (20, 21). Longitudinal experimental infections of  P. coatneyi in M. mulatta are thus a 
means to gather data on the changes occurring in the host and parasite during the course of  an infection.

The goal of  this study was to identify plasma metabolites and parasite transcriptional features that can 
distinguish acute from chronic malaria, and to pinpoint potential biochemical and parasitological mecha-
nisms associated with chronicity. Differences in the plasma metabolome and parasite transcriptome were 
identified when comparing acute versus chronic malaria in rhesus macaques infected with P. coatneyi, con-
sistent with global changes in host and parasite amino acid, biogenic amine, and lipid metabolism path-
ways. To determine the relevance of  these findings for human malaria, plasma metabolomes were analyzed 
from human cases of  P. falciparum malaria that were defined as acute (high parasitemia, with clinical signs) 
or chronic (low parasitemia, without clinical signs). As in the macaques, differences in amine, carnitine, 
and lipid metabolism were found to distinguish acute versus chronic malaria in humans. Finally, in a par-
allel analysis of  plasma samples from humans with acute non-malarial febrile illnesses (NMFIs), similar 
perturbations were detected in both acute NMFI and acute malaria. Together, these data support the con-
clusion that a large set of  broad, nonspecific metabolic perturbations occur during acute illness that are 
quite distinct from those that occur in chronic malaria, and these may hold clues to a better understanding 
of  the interactions of  the host-parasite system during the course of  malaria disease progression.

Results
Clinical and parasitological features of  acute and chronic malaria are modeled in a cohort of  rhesus macaques 
infected with P. coatneyi. To study acute and chronic malaria, a cohort of  4 malaria-naive spleen-intact 
rhesus macaques were infected with P. coatneyi sporozoites and monitored longitudinally. At the point 
at which parasitemia reached peak levels, a subcurative (subRx) dose of  artemether was administered 
to reduce but not eliminate parasitemia, thereby avoiding clinical complications and enabling the study 
of  chronicity (20). Daily ear-stick capillary blood draws were collected for hematological and parasite 
measurements for 100 days, and 7 venous blood draws and bone marrow (BM) aspirates were acquired at 
specific time points (TPs) to conduct plasma metabolomics, parasite transcriptomics, and quantification 
of  BM progenitors (Figure 1A).

Clinical parameters, plasma metabolomes, and parasite transcriptional profiles were compared 
across multiple phases of  the study: (i) baseline, before parasite inoculation; (ii) pre-patent, between 
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inoculation and detection of  blood-stage parasitemia by microscopy; (iii) acute, between patency and 
peak parasitemia; (iv) post-subRx, following subRx while parasitemia remained over 1,000 parasites/
μl; and (v) chronic, following subRx when parasitemia was sustained at or below 1,000 parasites/μl 
(Figure 1A and Table 1). The threshold of  1,000 parasites/μl was selected to demarcate chronicity 
based on evidence from P. falciparum holoendemic areas suggesting that such parasitemias are associat-
ed with asymptomatic infections (22–24).

The acute phase of  infection was found to be characterized by a slightly elevated mean rectal tem-
perature of  39.4°C (37.2°C–39.2°C = normal range for rhesus), which was significantly higher than in the 
chronic phase (38.2°C, repeat-measures ANOVA, Bonferroni’s correction, P < 0.05) (Figure 1B). High 
parasitemias characterized the acute phases, compared with the chronic phase (Figure 1A, black dots). As 
also anticipated based on prior longitudinal studies with P. coatneyi in macaques (20), the acute phase was 
associated with a sharp drop in hemoglobin (Figure 1A, red dots). This was followed by a delayed compen-
satory erythropoietic response in the post-subRx phase, as determined by microscopy showing an expan-
sion in erythroid progenitors in BM smears (Figure 1C), alongside elevated reticulocytes in the periphery 
(Figure 2, A and D), an increased reticulocyte production index (RPI), and increased red cell distribution 
width (RDW) (Supplemental Table 1; supplemental material available online with this article; https://doi.
org/10.1172/jci.insight.125156DS1). Despite this post-subRx compensatory response, moderate anemia 
persisted throughout the chronic phase of  the infection, with hemoglobin levels significantly lower than 
baseline values (11.82 vs. 15.19 g/dl, repeat-measures ANOVA, Bonferroni’s correction, P < 0.05), similar 
to levels observed in P. falciparum malaria cases (25).

Thrombocytopenia was observed in the acute phase compared with baseline values (267,117 ver-
sus 375,542 platelets/μl, repeat-measures ANOVA, Bonferroni’s correction, P < 0.0001), and post-subRx 
platelet dynamics were characterized by wide fluctuations in number and size (Figure 2B). Leukopenia 
occurred during the acute phase (Figure 2, C and D), alongside a reduction in myeloid progenitors in 
the BM (Figure 1C). Leukocytes progressively increased, however, ultimately resulting in leukocytosis 
in the chronic phase, with significantly higher WBC in the chronic versus acute phase (16,890 vs. 8,637 
WBC/μl, repeat-measures ANOVA, Bonferroni’s correction, P < 0.01) (Figure 2, C and D). The ratio of  
granulocytes to lymphocytes (G/L ratio) was elevated in the acute and post-subRx phases (0.68 and 0.78, 
respectively), compared with the chronic phase (0.41, repeat-measures ANOVA, Bonferroni’s correction, 
P < 0.05) (Figure 2, C and D), consistent with a transition from innate to adaptive mechanisms of  control 
around the onset of  chronicity.

Although each of  the 4 animals had similar clinical signs at the different phases of  infection, similar 
time durations to patency (15–16 days) and from patency to peak parasitemia (7–10 days), a high degree of  
heterogeneity was observed in the length of  time from antimalarial subRx to the onset of  chronicity (15–69 
days). Three of  the 4 macaques self-controlled their high parasitemias following a single subRx dose of  
artemether, while 1 animal required 5 subRx doses before successfully self-controlling (Figure 1A). This 
result suggests the involvement of  host factors (other than solely adaptive immunity) in the establishment 
of  chronicity, as each animal in the cohort was malaria-naive and inoculated with the same quantity and 
strain of  P. coatneyi sporozoites.

Dynamic fluctuations in plasma levels of  glycerophospholipids, fatty acids, and amino acids across preinfec-
tion, acute, and chronic phases of  P. coatneyi infection in rhesus macaques. To identify molecular features of  
the malaria host-parasite interaction that may play a role in the development of  chronicity, metabolites 
were measured in plasma samples from across the phases of  infection using untargeted high-resolution 
metabolomics (LC-MS). An ordination analysis revealed that the metabolomes from the 7 TPs clustered 
according to their clinically defined phases, rather than by animal or TP (Figure 3A). Of  the 5,712 mass 
to charge ratio (m/z) features (i.e., unique combination of  m/z and time), 1,507 were significantly altered 
across the TPs (repeat-measures ANOVA, Benjamini-Hochberg FDR-corrected P < 0.05, Supplemental 
Table 2), and 3 clusters were identified using hierarchical clustering analysis (HCA), consisting primarily 
of  (i) baseline TPs, (ii) acute and post-subRx TPs, and (iii) chronic-phase TPs (Figure 3B). A pathway 
enrichment analysis was performed using the metabolic pathway analysis software mummichog (26) to 
compare the 4 clinical phases. Seventeen metabolic pathways were significantly altered across the phases 
(P < 0.05), including for amino acids (e.g., arginine and proline), vitamins (e.g., ascorbate and folate), 
drug processing (e.g., cytochrome P450), fatty acids (e.g., linoleate and butanoate), hemoglobin-related 
(e.g., porphyrin), and nucleotides (e.g., purine) (Figure 3C).
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Putative annotations were assigned to the 1,507 significantly altered m/z features (18), revealing a 
wide range of  metabolites, including amino acids (e.g., glutamine, Figure 4A), other biogenic amines (e.g., 
kynurenine, Figure 4B), fatty acyls (e.g., palmitoylcarnitine, Figure 4C), and glycerophospholipids (e.g., 
lysoPC 18:1, Figure 4D), each previously confirmed by tandem MS (MS/MS) using spectral values gen-
erated on the same MS instrument (18, 27) (metabolite identification level 2a) (28). Heterogeneity in the 
longitudinal dynamics of  metabolites was evident across the cohort, and this was particularly striking for 
glutamine and lysoPC(18:1), for which a TP2 depletion was followed by a sharp rebound by TPs 4 and 5 in 
the animal presenting the mildest clinical signs (RWr13, Figure 4, A and D, gray lines), although this was 
not as pronounced in the other animals (Figure 4, A and D, blue and black lines).

To validate the metabolic pathway enrichments identified in untargeted LC-MS data, a targeted MS/MS 
approach combining LC-MS/MS and flow injection analysis (FIA-MS/MS) using reference compounds 
(Biocrates Life Sciences) was employed. This allowed for metabolite identification and quantification at level 
1 (matching accurate mass, retention time, and MS/MS relative to authentic standards) (28). These data 
confirmed that multiple amino acids were significantly altered across clinical phases (ANOVA, P < 0.05), 
with the essential amino acids valine, phenylalanine, and leucine being elevated in the acute phase (Figure 
4E), and the nonessential amino acids glutamine, proline, glycine, arginine, ornithine, and citrulline reduced 
in the acute phase (Figure 4F), each returning to baseline or near-baseline levels in the chronic phase.

To further investigate the metabolic pathway activity of  the acute and chronic phases, pathway analyses 
were conducted using the untargeted LC-MS data for the comparisons of  acute versus baseline and chronic 
versus acute phase, respectively. Amino acid, drug processing, vitamin, hemoglobin, glycerophospholipid, 
and purine metabolism were altered in both instances. Of  note, the acute phase was specifically enriched 

Figure 1. Longitudinal rhesus macaque infections with P. coatneyi from acute to chronic disease. (A) Time course of parasitemia (black dots) and hemo-
globin concentrations (red dots) in 4 rhesus macaques (animal codes: RTi13, RUn13, RZe13, and RWr13), with time points (TPs) denoted by orange vertical 
lines. Rx indicates subcurative treatment with artemether. (B) Rectal temperature across disease phases (mean ± SEM, N = 4) with normal range shown in 
yellow. *P < 0.05 by repeat-measures ANOVA with Bonferroni’s correction. (C) Median number of hematopoietic progenitors in the BM at each phase, per 
animal, for erythroid (red) and myeloid (orange) progenitors. PP, pre-patent; A, acute; PS, post-subcurative treatment; C, chronic.
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for fatty acid metabolism pathways (fatty acid activation, de novo fatty acid biosynthesis, and linoleate met-
abolic pathways), while the chronic phase was specifically enriched for carbohydrate energy metabolism 
pathways (galactose, pentose phosphate, pyruvate, fructose, and mannose metabolic pathways) (Figure 5A).

Using the targeted MS/MS data, metabolite ratios that have been used to characterize clinically rele-
vant metabolic perturbations in humans (29) were calculated for each phase of  the infection. The ratios of  
branched-chain to aromatic amino acids (Fischer’s ratio, indicator of  liver dysfunction, Figure 5B) and of  
kynurenine to tryptophan (indicator of  immunosuppression/tolerance, Figure 5C) were found to be sig-
nificantly altered (repeat-measures ANOVA, P < 0.05), peaking in the acute phase when disease was most 
clinically significant. The ratios of  phosphatidylcholines (PCs) containing total mono-unsaturated fatty 
acid (MUFA) to those containing saturated fatty acid (SFA) (Figure 5D) and of  total lysoPC to total PC 
(Figure 5E), which assess the activity of  fatty acid desaturases and phospholipases, respectively, were also 
significantly altered (repeat-measures ANOVA, P < 0.05), with the lowest levels occurring in the acute and 
post-subRx phases. These data validate the results of  the pathway analyses and support the hypothesis that 
both increased fatty acid metabolism and lipid degradation occur in the acute phase. Finally, although the 
pathway analyses indicated a shift in energy metabolism in the chronic phase (Figure 5A), measurements 
of  glucose obtained by both clinical blood chemistry and targeted metabolomics showed no significant 
changes in host plasma glucose (Supplemental Figure 1).

Variation in P. coatneyi parasite gene expression between acute and chronic malaria in rhesus macaques suggests 
changes in antigenic variation, and metabolism of  amines, fatty acids, and terpenoids. To determine whether para-
site transcriptional activity was altered across the phases of  the rhesus infection study, transcriptomic analy-
sis (RNA-Seq) was performed on RNA extracted from whole blood from each TP, and alignment and anno-
tation of  parasite reads were performed using the P. coatneyi (Hackeri strain) genome sequence (30). All 
blood samples had a predominance of  ring- and early trophozoite–stage parasites (>99%), which enabled a 
comparison of  in vivo transcriptomes over the course of  the infection. Of  the 5,516 protein-encoding genes 
in the P. coatneyi genome, 961 parasite genes (17.4%) were found to be differentially expressed as follows: 66 
between acute and chronic phases, 134 between acute and post-subRx phases, and 420 between post-subRx 
and chronic phases (paired, 2-tailed t test, FDR-corrected P < 0.05, Figure 6A).

A particularly striking finding was the expression of variant antigen gene families across the infection 
phases. A total of 117 genes or gene fragments annotated in the genome as the schizont-infected cell agglutina-
tion variant antigen (SICAvar) genes (30, 31) or SICAvar-like were differentially expressed across the phases, with 
one distinct cluster of SICAvar genes having high expression at the post-subRx and chronic phases and another 
showing high expression in the acute and post-subRx phases (Figure 6B). In addition, 63 genes annotated as kir 
or vir (i.e., orthologous to the Plasmodium interspersed repeat (pir) families in other Plasmodium species [ref. 32], 
and in following with the species-specific naming conventions of these gene families can be referred to as coir 
gene families in P. coatneyi) were likewise differentially expressed, with the majority exhibiting low expression in 
the acute phase and upregulated in either or both the post-subRx and chronic phases (Supplemental Figure 2).

Metabolic pathway enrichment analysis was performed on the 961 differentially expressed P. coatneyi genes 
using the MetaCyc metabolic pathway database (33), and 24 pathways were enriched across the clinical phases (P 
< 0.05, Figure 6C), including amino acid and biogenic amine biosynthesis (e.g., L-arginine biosynthesis I via L-or-
nithine), fatty acid and lipid biosynthesis and degradation (e.g., phospholipases), energy metabolism (e.g., partial 
TCA cycle), NAD metabolism (e.g., pyridine nucleotide cycling), nucleoside and nucleotide biosynthesis (e.g., 
pyrimidine deoxyribonucleotides biosynthesis from CTP), and terpenoid biosynthesis (isoprene biosynthesis I).

Table 1. Distribution of the TPs based on the clinically defined phase

Animal code Phases of infection and TPs
PP Acute Post-subRx Chronic

RTi13 T1 T2 T3, T4, T5 T6, T7
RUn13 T1 T2 T3, T4 T5, T6, T7
RZe13 T1 T2 T3, T4 T5, T6, T7
RWr13 T1 T2 T3 T4, T5, T6, T7

Underlined TPs represent those samples used for targeted metabolite measurements. TP, time point; PP, pre-patent; Post-subRx, post-subcurative treatment.
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HCA analysis of  the 34 significantly enriched MetaCyc pathways revealed patterns of  gene expres-
sion coinciding with the clinical phases. A cluster of  genes involved in amino acid, amine, and poly-
amine biosynthesis was upregulated in the acute and post-subRx phases, including multiple genes 
involved in arginine and proline metabolism (e.g., pyrroline-5-carboxylate reductase and arginase, 
Figure 6D, top cluster). A cluster of  genes involved in lipid degradation (e.g., lysophospholipase-like 
protein and phospholipase, Figure 6E, top cluster) were also upregulated in the acute and post-subRx 
phases. De novo fatty acid biosynthesis, NAD metabolism, and nucleotide and nucleoside metabolism 
pathways were all downregulated in the post-subRx phase, possibly in response to treatment with an 
artemisinin derivative (34–36) (Figure 6E and Supplemental Figure 3). The transcriptional profile of  
post-subRx parasites did not, however, match that of  chronic phase parasites, which demonstrated 
their own unique biology. Energy metabolism, particularly the TCA cycle (e.g., citrate synthase, succi-
nyl-CoA synthetase, Figure 6F, top cluster) and terpenoid metabolism genes were specifically upregu-
lated in chronicity (Figure 6G).

Metabolic profiles from human clinical cases of  P. falciparum malaria reveal similar metabolic perturbations to 
those detected in P. coatneyi–infected rhesus macaques. To assess the generalizability of  the clinical phase–spe-
cific metabolic profiles observed in the rhesus macaques, untargeted LC-MS was subsequently performed 
on plasma from humans with malaria. LC-MS was performed on plasma from a cross-sectional study of  
P. falciparum–infected individuals (N = 24), uninfected healthy individuals (healthy, N = 30), and indi-
viduals with acute NMFI (N = 30). The latter included a combination of  dengue, influenza, other viral 
infections, and idiopathic fever (Figure 7A).

Ordination of  all 84 metabolomes demonstrated separate clustering of  P. falciparum, healthy, and 
NMFI cases, indicating the presence of  malaria-specific metabolic fluctuations distinct from NMFI (Figure 
7B). Three hundred seventy-seven m/z features differentiated the 24 P. falciparum cases from the 60 healthy 

Figure 2. Dynamic hematological changes across longitudinal phases of infection with P. coatneyi in rhesus macaques. (A–C) Longitudinal hematolog-
ical parameters from all animals as measured daily by complete blood counts from capillary blood draws. Vertical orange lines denote TP collections. Rx 
denotes timing of subcurative treatment with artemether. (A) Hematopoietic measurements: reticulocytes expressed in number/μl (green) against hemo-
globin (Hb) expressed in grams/deciliter (g/dl) (red). (B) Platelet indices: Platelet counts expressed in number/μl (yellow) against mean platelet volume 
(MPV) expressed in femtoliters (fl) (purple). (C) Leukocyte indices: white blood cell (WBC) count expressed in number/μl (orange) against granulocyte/
lymphocyte (G/L) ratios (blue). (D) Hematological parameters per clinical phases (mean ± range, N = 4). *P < 0.05; **P < 0.01; ***P < 0.001 by repeat-mea-
sures ANOVA with Bonferroni’s correction. PP, pre-patent; A, acute; PS, post-subcurative treatment; C, chronic.
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and NMFI non-malaria controls (ANOVA, Benjamini-Hochberg correction, FDR-corrected P < 0.05, 
Supplemental Table 2). A pathway analysis revealed 16 pathways enriched in a comparison of  malaria 
versus non-malarial (healthy and NMFI) cases. Eight of  these pathways are common with those observed 
from the rhesus macaque infections, including amino acid (aspartate, asparagine, arginine, proline, urea 
cycle/amino group, histidine, glutamate, methionine, and cysteine), hemoglobin (porphyrin), and fatty 
acid (linoleate) metabolism (Figure 6C). Specific m/z features significantly enriched in P. falciparum cases 
compared with all non-malaria controls (ANOVA, Benjamini-Hochberg correction, FDR-corrected P < 
0.05) included the lipid sphinganine (confirmed by MS/MS; metabolite identification level 2a), the heme 
degradation product biliverdin (Figure 6, D and E), multiple carnitines, and the polyamine N-acetylspermi-
dine (putative; metabolite identification level 2b). Interestingly, other m/z features were found to be com-
monly perturbed in both malaria and NMFI cases. These included the tryptophan metabolite kynurenine 
(confirmed by MS/MS; metabolite identification level 2a), significantly elevated in both P. falciparum and 

Figure 3. Significant perturbations in plasma metabolites occur during disease progression in rhesus macaques. (A) Unsupervised, global PCA plot 
of 5,712 metabolite features. Each dot represents an individual TP for each animal. Color-coded ellipses indicate clinical phases. (B) HCA of metabolite 
features significantly changed across phases (each row is one metabolite feature, each column is one sample from a given TP and animal), with statistical 
significance determined using repeat-measures ANOVA with Benjamini-Hochberg FDR correction, P < 0.05, N = 4. (C) Significantly enriched metabolic 
pathways based on untargeted LC-MS data (pathway enrichment using mummichog, P < 0.05).
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NMFI cases, and multiple lysoPC species (putative; metabolite identification level 2b) (ANOVA, Benjami-
ni-Hochberg correction, FDR-corrected P < 0.05) (Figure 6, F and G).

To more directly assess whether human P. falciparum malaria cases also have metabolic differences 
between acute/high parasitemic and chronic/low parasitemic cases, samples were split into 2 categories 
based on their parasitological and clinical metadata. The human samples included a range of  clinical 
and parasitological phenotypes, as samples were obtained from 2 distinct cross-sectional studies with 
different study designs: one focused primarily on asexual-stage parasite carriers (based in Tak Province) 
and the other on gametocyte carriers (based in Kanchanaburi Province) (Figure 8A). As with the rhesus 
macaque study, a threshold of  1,000 parasites/μl was used to discriminate the human cases into high 
parasitemic and low parasitemic cases, and clinical metadata were analyzed to further investigate the 
clinical status. Significant differences were observed in the clinical parameters of  the high versus low 
parasitemic groups, in agreement with previous studies (22–24). The high parasitemic group (N = 7) 
had higher mean body temperatures (38.6°C vs. 37.0°C, 2-tailed t test, P = 0.0002) and higher heart rate 
(107.6°C vs. 93.1°C, 2-tailed t test, P = 0.02), consistent with more clinical signs of  malaria compared 
with the low parasitemic group (N = 17). Finally, a correlation analysis of  all metadata for all cases con-
firmed that parasitemia was positively correlated with temperature, blood pressure, and heart rate, and 
negatively correlated with hemoglobin and gametocyte load (Figure 8B), indicating that high and low 
parasitemic cases of  P. falciparum malaria mirror the clinical and parasitological differences observed in 
the acute versus chronic phases of  P. coatneyi malaria in rhesus macaques. Although gametocyte carriage 

Figure 4. Temporal fluctuations observed in amines, lipids, and carnitines. (A–D) Relative intensity data (LC-MS) across all 7 TPs and all 4 animals 
for 4 metabolites confirmed by LC-MS/MS (metabolite identification level 2a) significantly altered during infection; from top to bottom, metabolites 
shown are the M+H adducts of glutamine (A), kynurenine (B), palmitoylcarnitine (C), and lysoPC (18:1) (D). (E and F) Quantitative plasma concentration 
data at each clinical phase for significantly altered amino acids with a peak (E) or nadir (F) during the acute phase. Each of the amino acids shown 
demonstrated a statistically significant difference in plasma concentration across phases (repeat-measures ANOVA, P < 0.05, N = 3) except for Phe, 
which had a borderline P value of 0.054. Error bars indicate mean ± SEM per phase. Colors indicate phase: baseline (white), acute (orange), post-subRx 
(gray), and chronic (green). Orn ornithine; Cit, citrulline.
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is not a direct indicator of  one’s clinical state, it can be an indicator of  illness duration, as gametocytes 
take 1 week or longer to mature in the tissues and become evident in the circulation (2, 37).

With the acute and chronic groups categorized based on their parasitological and clinical features, targeted 
MS/MS data were used to identify metabolites that were significantly altered in the acute phase of rhesus 
macaques (vs. baseline) and of humans (vs. healthy individuals). A consensus set of 14 metabolites was signifi-
cantly altered in acute malaria of both rhesus macaques and humans, and 16 for chronic malaria. As 6 of these 
were commonly perturbed in both acute and chronic malaria (kynurenine, 4 long-chain alkyl-acyl PCs [36 to 44 
carbon], and 1 sphingomyelin), this left 8 metabolites unique to acute malaria and 10 unique to chronic malaria 

Figure 5. Shift in amino acid, lipid, and energy metabolism from acute to chronic disease in rhesus macaques. (A) Metabolic pathways significantly 
enriched in acute versus baseline (orange bars) and chronic versus acute phase (green bars) based on untargeted LC-MS data (metabolic pathway enrich-
ment using mummichog, P < 0.05). (B–E) Ratios per clinical phase for branched-chain amino acid (BCAA)/aromatic AA (Fischer’s ratio) (B), kynurenine/
tryptophan (C), MUFA(PC)/SFA(PC) (D), and lysoPC/PC (E) based on quantitative targeted metabolite data (mean ± SEM, N = 3). *P < 0.05; **P < 0.01; 
***P < 0.005 by repeat-measures ANOVA with Bonferroni’s correction.
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Figure 6. Changes in expression of variant antigens and amino acid, fatty acid, lipid, energy, and terpenoid metabolism detected in the parasite 
transcriptome during acute versus chronic phases in rhesus macaques. (A) Venn diagram of the 961 parasite genes differentially expressed across 
clinical phases, with colors representing different comparisons, acute versus chronic (yellow), post-subRx versus chronic (blue), and acute versus 
post-subRx (purple). (B) Clusters of SICAvar or SICAvar-like genes having high expression at the post-subRx and chronic phases (i) and at the acute 
and post-subRx phases (ii) are indicated in the form of HCA plots with manual clustering along the x axis (columns are grouped by clinical phase and 
are always in the same order of animals: RWr13, RUn13, and RTi13). (C) Metabolic pathways significantly enriched in the 961 differentially expressed 
genes (metabolic pathway enrichment using MetaCyc, P < 0.05). The number of genes in the data set and in the pathway are shown. (D–G) HCA plots 
of parasite gene subsets with manual clustering along the x axis (with columns in the same order as in C). Gene subsets include 36 genes from the 
significantly enriched MetaCyc pathways, grouped into the following subcategories: (D) amino acid, amine, and polyamine biosynthesis; (E) fatty acid 
and lipid metabolism; (F) energy metabolism; and (G) terpenoid metabolism.
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(2-tailed t test, P < 0.05) (Figure 8C). The 8 consensus metabolic alternations characterizing the acute phase 
included reductions in the levels of 3 lysoPCs (18:0, 18:2, and 20:3), 2 long-chain diacyl PCs (36 to 38 carbon), 
and 2 amino acids (glutamine and arginine), alongside elevations in the levels of 1 acylcarnitine (C3-DC). 
The 10 consensus metabolic alterations characterizing the chronic phase included reductions in the levels of 1 
long-chain diacyl PC (PC 36:6), 4 long-chain alkyl-acyl PCs (34 to 42 carbon), and 7 sphingomyelins (2-tailed t 
test, P < 0.05) (Figure 8C). Altogether, the acute/high parasitemic state in both rhesus macaques and humans 
was characterized by depletions of arginine (Figure 8, D and E), glutamine, multiple lysoPCs (Figure 8, F and 
G), and diacyl PCs and an elevation in hydroxybutrylcarnitine (Figure 8, H and I), while the chronic/low 
parasitemic state was characterized by depletions in sphingomyelins (Figure 8, J and K) and alkyl-acyl PCs.

Discussion
A longitudinal infection of  rhesus macaques with P. coatneyi was performed to determine whether fluctu-
ations in plasma metabolites occurred during the transition from acute to chronic malaria, and whether 
such fluctuations coincided with changes in parasite gene expression. Dynamic fluctuations were observed 

Figure 7. Human malaria exhibits both common and distinct metabolite perturbations as compared with other febrile illnesses. (A) Criteria for enroll-
ment in this study. (B) Unsupervised, global PCA plot of LC-MS features with data points representing individuals, shape and color-coded by disease cate-
gories: P. falciparum (P. f., red triangles), NMFI (light blue circles), and healthy (dark blue crosses). (C) Metabolic pathways significantly enriched in malaria 
compared with non-malaria using untargeted data (metabolic pathway analysis using mummichog, P < 0.05). The number of genes in the data set and 
in the pathway are shown. (D and E) Metabolites (from LC-MS) significantly altered (repeat-measures ANOVA with Benjamini-Hochberg FDR correction, 
P < 0.05) specifically in malaria cases include sphinganine (confirmed by LC-MS/MS; metabolite identification level 2a) and biliverdin (putative; metab-
olite identification level 2b). (F and G) Metabolites (from LC-MS) significantly altered (FDR-corrected P < 0.05) in both malaria and NMFI cases include 
kynurenine (confirmed by LC-MS/MS; metabolite identification level 2a) and lysoPC 18:1 (putative; metabolite identification level 2b).
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in the levels of  both plasma metabolites and parasite transcripts over the course of  infection, coinciding 
with the transition from acute to chronic disease states. To assess whether plasma metabolite profiles 
identified in the macaque model had direct relevance for human malaria, metabolomics was performed 
on plasma from a cross-sectional study of  P. falciparum malaria. Significant differences were also found 
in humans, and overall, a common set of  metabolite perturbances were identified that distinguished the 

Figure 8. Human malaria infections recapitulate acute and chronic-like metabolic profiles. (A) Parasite asexual- and sexual-stage distribution in Thai P. falci-
parum cases by microscopy. (B) Spearman’s correlation of metadata for P. falciparum cases. Blue, positive correlation. Red, negative correlation. Abbreviations are 
as follows: gam, gametocytes per microliter by microscopy; pfs25, gametocyte gene Pfs25 marker expression by RT-PCR; temp, body temperature; pulse, heart 
rate/pulse in beats per minute; para, parasites per microliter by microscopy; hg, hemoglobin level; sBP, systolic blood pressure; dBP, diastolic blood pressure. (C) 
Venn diagram of metabolites confirmed by targeted MS/MS that significantly differ between acute and chronic malaria in rhesus macaques and humans (P < 0.05 
by 2-tailed t test). Orange indicates acute malaria, and green indicates chronic malaria. (D–K) Dot plots of the concentration of metabolites in plasma in rhesus 
macaques (baseline, acute, chronic) and in humans (healthy, acute P.f., chronic P.f.), showing mean and SEM and including arginine (D and E), lysoPC 18:2 (F and G), 
C3-DC (H and I), and SM-OH C14:1 (J and K). *P < 0.05; **P < 0.01; ***P < 0.001 by 2-tailed t test.
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metabolomes of  acute (high parasitemia, high clinical signs) and chronic (low parasitemia, low clinical 
signs) malaria in both host species.

Of  the metabolic changes that were detected in individuals with malaria as compared with healthy 
individuals, a subset has been previously implicated as being involved in malaria pathogenesis, includ-
ing changes in heme metabolites (e.g., biliverdin), sphingolipids (e.g., sphinganine), acylcarnitines (e.g., 
hydroxybutrylcarnitine), and the polyamine N-acetylspermidine. Malaria causes the destruction of  both 
infected and uninfected RBCs (20), leading to the release of  heme, which is metabolized by the host into 
bilirubin and urobilinogen to avoid heme-induced oxidative stress (14), thus explaining the high levels of  
these metabolites in plasma. Sphinganine, an intermediate of  the sphingosine-1-phosphate (S1P) pathway, 
being elevated, suggests an increase in S1P metabolism during malaria. S1P plays a role in signaling relat-
ed to immune responses and vascular integrity, and it has been shown to be elevated in individuals with 
uncomplicated malaria, where it is believed to confer some protection against severe disease (38). Altered 
fatty acid metabolism and the increase in plasma acylcarnitines in the acute phase is consistent with an 
active process of  shuttling fatty acids across membranes. The decreased ratio of  MUFA(PC) to SFA(PC) 
and the depletion of  long-chain saturated PCs could indicate the parasite’s activity in preferentially scav-
enging long-chain MUFA(PC), which may provide the necessary MUFA (e.g., oleic acid) required for para-
site growth and replication (39, 40). Finally, the parasite has the ability to synthesize polyamines (41); thus, 
an increase in plasma N-acetylspermidine levels may be directly related to parasite production.

Although the aforementioned changes appeared specific to malaria, other metabolic changes were 
found in common across human acute malaria and NMFI cases, including tryptophan/kynurenine, argi-
nine, and glycerophospholipid metabolism. This suggests that these pathways are altered through broad 
nonspecific host responses to acute disease. Tryptophan/kynurenine metabolism has been postulated to 
contribute to cerebral malaria through the production of  neurotoxins (42), but its upregulation here, in 
which neither animals nor humans with NMFI or malaria displayed signs of  neurological dysfunction, 
seems consistent with this pathway’s known role in modulating immune tolerance (43). Similarly, plas-
ma hypoarginemia during malaria, which has been previously proposed to be caused by parasite arginine 
uptake (44), has more recently been shown to result from a block in host arginine metabolism (45). Here 
too, a simultaneous depletion of  arginine pathway metabolites (arginine, ornithine, and citrulline) occurred 
in vivo, suggesting that a block in host production was also the primary driver of  plasma arginine deple-
tion. A global reduction in arginine will contribute to a reduction in nitric oxide availability, and this can 
lead to a decrease in epithelial barrier integrity. Thus, reduction in arginine production may contribute to 
the vascular pathology and sequestration that characterizes severe P. falciparum malaria (45). Finally, the 
pronounced depletion of  multiple lysoPC species is particularly intriguing. Although lysoPC is known to 
be taken up by parasites during asexual replication and potentially trigger gametocyte production (9), this 
lipid is also altered in systemic infections involving the upregulation of  phospholipase A2 (PLA2), such as 
bacterial sepsis, where a depletion in lysoPC in plasma is a predictor of  mortality (46). LysoPC depletion 
in malaria may therefore not be caused by parasite uptake directly, but may nonetheless provide a critical 
signal for increased gametocyte production and transmission.

Parasite transcriptional data support the idea that a global shift in both host and parasite biology occurs 
during the course of  malaria disease progression. In the acute phase, coinciding with a significant depletion 
in plasma arginine, P. coatneyi genes related to amino acid metabolism were altered. The upregulation of  
genes from the parasite’s amino acid, amine, and polyamine biosynthesis pathways (pyrroline-5-carboxyl-
ate reductase, arginase, and ornithine aminotransferase) may play a role in the increase in polyamines in 
plasma (47). Further, at the same time as the acute-phase reduction in glycerophospholipids and increase in 
acylcarnitines, elevated expression of  genes from the parasite’s glycerophospholipid metabolism pathway 
(phospholipase and lysophospholipase-like protein) (47) was evident, reflecting increased expression of  
enzymes that cleave fatty acids from larger lipid molecules. As these enzymes are used by the parasite to 
obtain the fatty acids it needs for growth and replication (39), an upregulation of  these enzymes coinciding 
with a reduction in plasma long-chain PCs and an increase in acylcarnitines may indicate a role for para-
sites in driving some of  the fatty acid and lipid changes observed in the plasma metabolome.

Previous studies have suggested that malaria parasites may exhibit multiple distinct metabolic pheno-
types in vivo, including starvation states and normal glycolytic growth states, with variation in the expres-
sion of  glycolysis, TCA cycle, and fatty acid metabolism genes (48–50). While these studies have not 
been conclusive in terms of  which host environments trigger such variation in parasite metabolic states, 
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in agreement with these previous studies, the present study also finds evidence of  variation in TCA and 
fatty acid metabolism genes in vivo. Specifically, amino acid, fatty acid, and lipid metabolism genes were 
upregulated in the acute and post-subRx phases, while de novo fatty acid biosynthesis, mitochondrial 
TCA cycle, and terpenoid metabolism were upregulated in chronicity. Going a step further, the data pre-
sented here provide evidence of  parasite gene expression changes coinciding with dynamic fluctuations in 
the levels of  exogenous metabolites. Altogether, this work is consistent with recent reports indicating that 
parasites may have the ability to self-regulate their metabolism in response to environmental conditions, 
such as altered nutrient conditions (10, 12).

The observation of  altered energy metabolism pathways is also particularly interesting since lipids are 
an alternate source of  energy when carbohydrates are not available. While no significant differences in 
blood glucose were detected across TPs, parasite mitochondrial TCA cycle genes (glutamate dehydroge-
nase, citrate synthase–like protein, and 2 succinyl-CoA synthetases) were highly expressed in the chronic 
phase, suggesting a shift in the energy metabolism of  the parasite. Asexual-stage parasites in different infec-
tion phases (e.g., acute or chronic) may have distinct energy metabolism mechanisms, as has been demon-
strated previously for sexual and asexual stages of  P. falciparum (51).

The chronic phase was further characterized by increased expression of  2 terpenoid metabolism genes 
(2-C-methyl-D-erythritol 2 and 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase). This reflects increased 
activity of  the parasite’s methylerythritol phosphate (MEP) pathway that operates in the parasite’s apico-
plast organelle that does not exist in mammalian hosts (52). The MEP metabolic pathway results in the 
production of  terpenes, odorant molecules produced by plants and plastid-containing organisms such as 
Plasmodium, which can be potential attractants to the Anopheles vector (53). It is an intriguing possibility that 
parasites may upregulate the production of  terpenes to attract mosquito vectors to the host during chronic-
ity, and in doing so, enhance transmission.

In addition to transcriptional changes in metabolic gene pathways, variation in the expression of  vari-
ant antigen genes, such as the SICAvar and coir gene families (30, 54), was observed here across infection 
phases. SICAvar genes in P. coatneyi and Plasmodium knowlesi are related to the var gene family in P. falci-
parum (reviewed in ref. 31), while coir genes measured in P. coatneyi (and annotated as kir or vir-like) (30) 
are related to the pir gene family (32). Although the expression of  alternate variants of  these gene families 
has been traditionally thought to be triggered by host immunity, recent results have demonstrated that tran-
scriptional shifts in the pir gene family of  P. chabaudi were associated with the establishment of  chronicity 
in mice in the absence of  host antibodies. Future experiments would be warranted to investigate possible 
relationships between plasma metabolites and variant antigen gene expression.

Artemisinin derivatives have been shown to induce parasite transcriptional changes and a state of  dor-
mancy in P. falciparum and Plasmodium vinckei ring-stage parasites (34–36), and genes involved in parasite 
metabolism and replication may be affected following subRx treatment. Here, we observed reductions in 
the expression of  de novo fatty acid biosynthesis (stearoyl-CoA desaturase and long-chain fatty acid CoA 
ligase) (55, 56), NAD (e.g., NAD synthase), and nucleotide metabolism (e.g., ribonucleotide reductase) 
in the post-subRx phase, coinciding with the days following the single subRx treatment with artemether 
(Supplemental Figure 3). These changes did not, however, persist into the chronic phase, which started 15 
to 69 days after the treatment. Because artemether has a very short half-life (in the range of  hours), it is not 
anticipated that the drug treatment played a major role in the chronic-phase findings of  this study.

Altogether, the findings presented here are relevant to the development of  novel diagnostic and thera-
peutic interventions for malaria. Therapeutics targeting lipid and amino acid pathways are actively being 
pursued for multiple diseases (46, 57) and may be promising adjunctive therapies for treating acute malaria 
or altering chronic malaria transmissibility (58). As common metabolic perturbations exist between acute 
malaria and other acute diseases, repurposing of  existing therapeutics for acute malaria may become a 
cost-effective way to fast-track the approval of  adjunctive therapies. Still, preclinical testing will be required 
to explore the possible benefits of  such interventions, as the complexity of  host-parasite interactions makes 
the outcomes and possible unexpected adverse consequences difficult to predict (59). For example, iron 
supplementation administered in a clinical trial for malarial anemia resulted in increased mortality (59), 
and elevated plasma glutamine has been associated with both better outcomes in the context of  malarial 
anemia (60) and poor outcomes in the context of  cerebral malaria (61). LysoPC administration, which is 
currently under investigation as an adjunctive therapy for sepsis (62), may prove useful in malaria for both 
treating acute disease and reducing transmissibility (58). These data are also relevant to efforts to develop 
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new diagnostics that may help differentiate malaria from NMFIs. While changes in lysophospholipids, 
tryptophan/kynurenine metabolism, and arginine metabolism were common across malaria and NMFI, 
hemoglobin-breakdown products, sphingolipid fluctuations, carnitines, and polyamines appeared to be 
more malaria-specific. A personalized-medicine approach that includes metabolite-based diagnostic/prog-
nostic tests is one foreseeable and worthwhile path forward for more accurately identifying and differenti-
ating malaria from NMFI and for identifying specific severe malaria cases that may benefit from tailored 
adjunctive therapies. Further study in this direction is critical and timely given recent and ongoing advances 
in MS, metabolomics, and personalized medicine (13).

In summary, this study represents an initial attempt at integrating diverse data types from longitudinal 
infections of  P. coatneyi in macaques to provide a detailed picture of  the dynamics of  the host-parasite inter-
actions across acute and chronic phases of  the disease. This systems analysis of  clinical, metabolomic, and 
transcriptional data has revealed patterns that define malaria disease progression. Importantly, distinctive 
phase-specific metabolic profiles were identified in rhesus macaques that were comparable to those from 
cross-sectional analyses of  human P. falciparum cases and commonalities were observed between acute 
malaria and non-malarial disease. As the plasma metabolome of  Plasmodium-infected hosts is a complex 
mixture of  metabolites deriving from host, parasite, commensal microbiota, and exogenous sources, the 
source of  metabolic fluctuations cannot be immediately known from analyzing plasma metabolomics data 
alone. Additional complementary data sets are currently being analyzed from the macaque study to deter-
mine the role of  the host immune response in protection, pathogenesis, and disease progression.

Methods
Availability of  data. All data included in this manuscript have been deposited in public repositories. The 
clinical data from the rhesus macaque study are available for download on the PlasmoDB website (63) 
under the header called “Experiment 03” at http://plasmodb.org/plasmo/mahpic.jsp. Direct links are also 
provided at this website for access to functional genomics data through NCBI’s Gene Expression Omni-
bus (GEO GSE103259) (64), and metabolomics data through MetaboLights data set IDs MTBLS518, 
MTBLS691, and MTBLS664 (www.ebi.ac.uk/metabolights). Additional information about the work of  
the Malaria Host Pathogen Interaction Center (MaHPIC) can be found on www.systembiology.emory.edu 
and under the NCBI bioproject ID PRJNA368917.

Rhesus macaque longitudinal infection. The current study involved 4 male rhesus, approximately 4 years 
old, born and raised at the Yerkes National Primate Research Center (YNPRC). One additional rhesus 
from the Centers for Disease Control and Prevention (CDC) was used for Anopheles mosquito infections 
using standardized procedures (65) and An. dirus, An. gambiae, and An. stephensi from the CDC’s insectary. 
The P. coatneyi Hackeri strain (66) that has been propagated in intact rhesus macaques at the YNPRC orig-
inated from original cryopreserved stocks produced and maintained at the CDC (20, 21). Procedures used 
for inoculation, clinical monitoring, and subRx treatment of  rhesus macaques, as well as sample collection 
of  whole blood and BM samples, have been described previously (65).

In this study, infections were initiated with an estimated 100 freshly isolated P. coatneyi Hackeri strain (66) 
sporozoites and monitored for 100 days. Baseline sample collections occurred at TP 1 (day –5), and inoculation 
at day 0. Each macaque became parasitemic between days 15 and 16 (Figure 1A), with most iRBCs on blood 
smears being ring or young trophozoite stages, consistent with tissue sequestration of more matured asexual 
stages (66). By day 22 as parasitemia peaked, a single subRx of artemether was administered to reduce para-
sitemia, avoid clinical complications, and enable the study of chronicity (20). Further experimental description 
and clinical data sets can be accessed on the PlasmoDB public repository and in the supplemental methods.

Human subject cohort. The study population (Thai adult males and females, 18 years or older, and not 
pregnant) included 30 patients with symptomatic uncomplicated P. falciparum malaria based on WHO clas-
sifications (67), 30 cases with NMFI, and 30 healthy controls. Individuals with malaria were recruited at 
the Ministry of  Public Health (MOPH) Malaria Clinics in the Kanchanaburi and Tak provinces. Enrolled 
patients ranged from 18 to 66 years old with median and mean ages of  27 and 31 for the Kanchanaburi 
and Tak provinces, respectively. Patients classified as NMFI were recruited from the Fever Clinic of  the 
Hospital for Tropical Diseases at Mahidol University. These patients had a fever (≥37.8°C), no malaria 
parasites determined by thick smear microscopy or PCR, and no history of  taking antimalarial or antibiotic 
medications during the 2 weeks prior to their hospital visit. Healthy individuals were recruited as controls 
at the Hospital for Tropical Diseases. These individuals had no fever, no reported history of  malaria and 
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treatment, no parasites determined by thick smear and PCR, and were not on any medications at the time. 
These age-matched control participants ranged in age from 17 to 71 and 22 to 50 for NMFI and healthy 
individuals, respectively.

After signing an informed consent form, 1 ml of  blood was collected in a heparin vacutainer and placed 
on ice. Plasma was subsequently recovered by centrifugation, and was aliquoted into cryovials and frozen 
at –80°C. Aliquots were then shipped to Emory University on dry ice and only thawed when preparing to 
run on the mass spectrometer. Six of  the 30 P. falciparum malaria cases were excluded from this study due 
to preservation in a different anticoagulant (citrate). To control for any differences that are induced in the 
metabolome based on different anticoagulants, only those samples collected in heparin were analyzed in 
the present study. This included 30 healthy, 30 NMFI, and 24 P. falciparum malaria cases.

Human clinical and parasite measurements. Infected RBCs were quantified and parasite stage differenti-
ation was performed by microscopy on blood smears. The parasite species was confirmed by PCRs per-
formed on filter paper blood spots. P. falciparum gametocytes were quantified by PCR using the Pfs25 gene, 
as described previously (68). Pfs25 copy number was determined per 4 μl of  whole blood for all P. falciparum 
cases. Clinical measurements were collected at the time of  sample collection, including temperature, blood 
pressure, and heart rate. Additionally, hemoglobin (g/dl) and hematocrit values were determined using a 
CBC analyzer (SIEMENS ADVIA 120 Hematology system), and blood group was determined using the 
test-tube method, both serum and cell grouping. All slides were examined/rechecked with microscopy for 
RBC morphology and WBC differential.

Clinical phase categorization. Given the variability that can occur in counting microscopy smears and giv-
en that 1,000 parasites/μl is a somewhat arbitrary cutoff, we applied a secondary criterion to samples in the 
range of  800–1,200 parasites/μl for more appropriate clinical sample classification. For the rhesus macaque 
samples, BM cytology results were used to designate borderline TPs as either acute or chronic, based on the 
ratio of  myeloid to erythroid progenitors and myeloblast counts. One TP of  1,153 parasites/μl was includ-
ed in the chronic phase due to its borderline parasitemia and its clinical similarity by BM cytology to the 
chronic phase. For the Thai samples, one TP of  899 parasites/μl was categorized as acute due to its clinical 
similarity (temperature, heart rate, and gametocytemia) to the high-parasitemia cases.

Untargeted LC-MS analysis of  plasma samples. The extraction and LC-MS analysis procedures were per-
formed as described previously (69, 70). Briefly, 50 μl of  plasma was spiked with 2.5 μl of  stable-isotope-labeled 
internal standards and 100 μl of  acetonitrile to precipitate protein. The clean extract was collected after centri-
fuging the plasma mixture at 14,000 g for 10 minutes at 4°C. Of the total extract, 10 μl was injected in triplicate 
into LC-MS (Thermo Fisher Scientific Q Exactive HF high-field mass spectrometer) using an autosampler 
maintained at 4°C. Sample order was randomized prior to sample preparation and samples were prepared in 
sequential batches. The metabolites were chromatographically separated using 2 columns: C18 (Higgins C18 
column 100 × 2.1 mm for rhesus samples) with a 10-minute formic acid/acetonitrile gradient (26), and HIL-
IC columns (Thermo Fisher Scientific Accucore 50 × 2.1 mm for human samples) with a 5-minute formic/
acetonitrile gradient. Electrospray ionization was used in the positive-ion mode. Data quality was monitored 
by injecting 10 μl of  quality control samples (NIST SRM 1950 and internal standards) after every 20 samples 
throughout the run. Raw data were preprocessed using apLCMS (71) and xMSanalyzer (72) to extract reten-
tion time, m/z, and intensity information. Throughout the manuscript, an m/z feature refers to a unique com-
bination of m/z and retention time. The preprocessed data were further treated to correct for batch effects using 
ComBat (73). The metabolic features were annotated and identified using xMSannotator (18, 74) along with 
MS/MS information. Data are available on the MetaboLights database under accession numbers MTBLS664 
(human data) and MTBLS518 (rhesus macaque data). See supplemental methods for additional details.

Targeted LC-MS and FIA of  plasma samples. Sixteen rhesus (one representative TP from each of  the 4 
phases of  infection, for 4 animals) and 18 human samples (5 high parasitemic cases with negative gameto-
cytemia and under 500 transcripts of  Pfs25, 5 low parasitemic cases with positive gametocytemia and Pfs25 
transcript levels over 500, 4 NMFI cases, and 4 healthy cases) were quantified using the AbsoluteIDQ 
p180 kit (Biocrates Life Sciences AG). The kit can absolutely quantify 188 metabolites and lipids com-
prising several classes of  compound (amino acids, biogenic amines, hexoses, acylcarnitines, sphingolipids, 
and phospholipids). Sample extraction, LC-MS, and FIA were performed as described previously (29). 
Briefly, 10 μl of  plasma was spiked with 10 μl of  stable-isotope-labeled internal standards and derivatized 
with phenylisothiocyanate. The derivatized samples were extracted with 200 μl of  methanol in a 96-well 
plate and split into 2 plates and injected into LC-MS (SCIEX LC AC pump, SCIEX QTRAP5500 mass 
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spectrometer, AB SCIEX LLC) following the kit’s standard operating protocol (Biocrates p180 kit) for 
quantification of  metabolites and lipids. Due to lack of  sufficient sample volume for TP1 from RTi13 
in the targeted analysis, TPs for RTi13 were excluded from statistical analysis of  targeted data. Data are 
available on the MetaboLights database under accession numbers MTBLS691 and MTBLS664. See sup-
plemental methods for additional details.

Statistical analysis for untargeted LC-MS and targeted LC-MS/MS and FIA-MS/MS data. Untargeted LC-MS 
data were processed and analyzed as follows. After standard quality control procedures, the raw intensi-
ty values were median-summarized among the triplicates and log2 transformed. Only metabolite features 
(unique m/z and time) with 50% present calls across all samples and 80% present calls in at least one of  the 
phases were retained. Features were plotted in an unsupervised global principal component analysis (PCA) 
and hierarchical clustering, and statistical analyses such as paired ANOVA and LIMMA were used to iden-
tify statistically significant features. Analyses were performed using an in-house R package using R software, 
version 3.2.1 (The R Foundation for Statistical Computing). LIMMA was followed by multiple hypothesis 
correction using the Benjamini-Hochberg method. Significant features from each statistical test were subject-
ed to pathway analysis with mummichog (26) to identify enriched metabolic pathways and modules.

Targeted metabolite data were processed and analyzed as follows. One hundred eighty-eight metabolites 
were measured using the p180 kit (Biocrates). Of  these, 135 met quality control criteria (greater than 25% 
CV across pooled reference samples on the plate and less than 40% missing values across all samples from 
both studies). Statistical analyses were then performed to compare metabolite concentrations across clinical 
phases and identify metabolites that were significantly different across categories. Statistical analyses, includ-
ing t test, ANOVA, PCA, and HCA were performed using MetaboAnalyst 3.0 (www.metaboanalyst.ca) (75). 
All t tests were 2-tailed, and a P value of  less than 0.05 was considered significant.

Sample processing and data generation for high-throughput transcriptomics (RNA-Seq). Whole blood was col-
lected into Tempus tubes and RNA isolation was done using the Tempus Spin RNA Isolation Kit (Applied 
Biosystems) per manufacturer’s instructions and as described previously (76). RNA quality was assessed 
using Bioanalyzer and library preparation was done using TruSeq Stranded mRNA Sample Preparation 
(Illumina). Approximately 1 μg of  total RNA was used as input, and mRNA enrichment was done using 
poly-A beads. Spike-in RNAs of  known concentration were added for quality control. cDNA synthesis 
was conducted, leading to strand-specific libraries. Ligation of  aptamers was done to allow for multiplexed 
sequencing. Sequencing was performed on an Illumina HiSeq1000 at the Yerkes National Primate Genom-
ics Core, generating approximately 80 million paired-end 100–base pair reads per library. Data are available 
as raw.fastq files in the GEO database (GSE103259) and SRA database (SRP116593).

Raw.fastq files from the RNA-Seq experiments were aligned to both the P. coatneyi (30) and M. mulatta (77) 
reference genomes using the Spliced Transcripts Alignment to a Reference tool (STAR, version 2.4.1c) (78). The 
aligned features were further quantified and annotated with the High-Throughput Sequencing tool (HTSeq, 
version 0.6.1p1) (79) using only the P. coatneyi reference to select parasite-specific transcripts. Annotation was 
performed using reference genome sequences from the NCBI database (BioProject PRJNA315987) under acces-
sion numbers CP016239 to CP016252, as previously described (30).

Statistical methods for parasite transcriptomics data analysis. Only samples in which parasites were detected 
by microscopy and at least 100,000 total reads (corresponding to at least 90 parasite/μl) were analyzed, one 
sample for each phase per each animal was chosen (that with the highest number of  reads). As RZe13 did 
not have a sample in the chronic phase with greater than 100,000 parasite reads, that animal was removed 
from the analysis. All samples were library-size normalized together using DESeq2. Three paired analyses 
were performed to identify genes with significantly different expression during the acute versus post-subRx, 
the post-subRx versus chronic, and the acute versus chronic phases. Any gene with an FDR less than 0.05 
and a base mean normalized read count greater than 4 in one or more of  the paired analyses was consid-
ered significantly differentially expressed. Pathway analysis was done using the MetaCyc pathway enrich-
ment analysis module on PlasmoDB (63) with a cutoff  of  P less than 0.05 for significance. HCA heatmaps 
were generated using Pearson dissimilarity in Partek or heatmapper (80). The normalized parasite tran-
scriptional data table used in this study are available in the GEO database (GSE103259).

Study approval. All procedures performed on rhesus macaques were approved by Institutional Animal Care 
and Use Committees (IACUC) as required at Emory University or the CDC, and all interventions were done 
in compliance with Animal Welfare Act regulations. For human subjects, plasma samples were obtained under 
human subjects research protocols TMEC 11-033 (malaria-infected subjects) and TMEC 14-025 (NMFI and 

https://doi.org/10.1172/jci.insight.125156


1 8insight.jci.org   https://doi.org/10.1172/jci.insight.125156

R E S E A R C H  A R T I C L E

healthy subjects), approved by the Ethical Review Committee of the Faculty of Tropical Medicine, Mahidol 
University, Thailand. All samples were de-identified and studied at Emory University under the Institutional 
Review Board (IRB) protocol IRB00066220. The IRBs of each institution reviewed and approved all enroll-
ment and sample collection protocols, and the required written informed consent documentation provided to 
all participants prior to inclusion in the study.
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