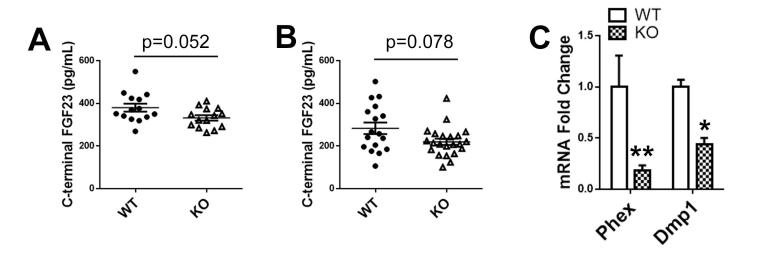
Supplementary Information		
A G protein-coupled, IP3/Protein Kinase C pathway controlling the synthesis of phosphaturic hormone FGF23		
Qing He et al.		

Supplementary Table S1. Sequences of primer pairs used in qRT-PCR.

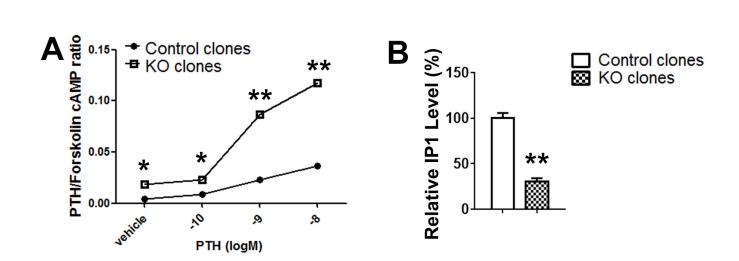
Gene	Forward	Reverse
β-Actin	5'-GATCTGGCACCACACCTTCT-3'	5'-GGGGTGTTGAAGGTCTCAAA-3'
Cyp27b1	5'-CAAATGGCTTTGTCCCAGAT-3'	5'-GGCTGTCTTCCGAATGGTTA-3'
Cyp24a1	5'-GTGCGGATTTCCTTTGTGAT-3'	5'-GGGATTCCGGGATAGATTGT-3'
IL6	5'-TACCACTTCACAAGTCGGAGGC-3'	5'-CTGCAAGTGCATCATCGTTGTTC-3'
XLαs	5'-CTCATCGACAAGCAACTGGA-3'	5'-CCCTCTCCGTTAAACCCATT-3'
FGFR1	5'-TGTTTGACCGGATCTACACACA-3'	5'-CTCCCACAAGAGCACTCCAA-3'
Phex	5'-GCATGATTAACCAGTATAGCAA-3'	5'-GGTCTATAGGAATTGCACCTTAC-3'
Dmp1	5'-CGCATCCCAATATGAAGACTG-3'	5'-GCTTGACTTTCTTCTGATGACTCA-3'
Gqα	5'-CCTTCCTATCTGCCTACACAAC-3'	5'-CCCTACATCGACCATTCTGAAA-3'
G11a	5'-ATCAAGACGCTGTGGAGTG-3'	5'-TCCACGTCCGTCAAGTAGTA-3'

Supplementary Figure Legends

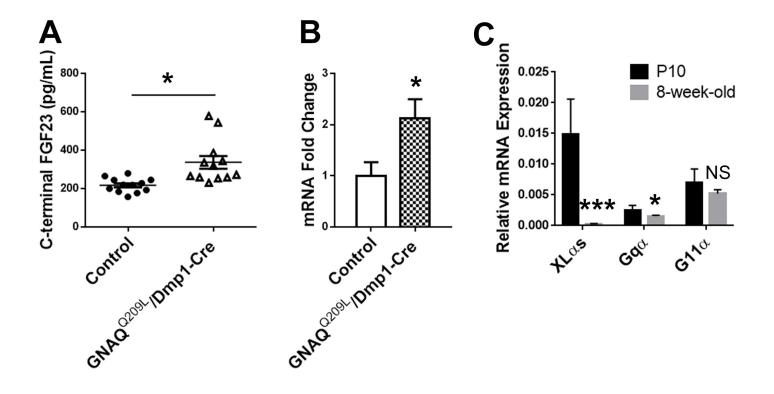
Supplementary Figure S1. Knockout of XLαs results in moderately reduced FGF23 levels at adult mice. C-terminal FGF23 levels at (A) 4-week-old, and (B) 2-month-old in WT and XLKO mice. (C) mRNA expression of Phex and Dmp1 in P10 XLKO and WT femurs (n=6 per group). *, p<0.05; **, p<0.01, calculated by unpaired two-tailed Student's t-test.

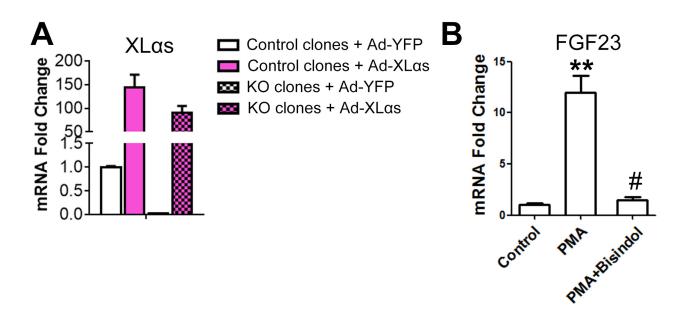

Supplementary Figure S2. Ablation of XLαs repressed IP₁ levels without diminishing cAMP levels. (A) cAMP levels in XLαs-deficient Ocy454 cells (KO clones) and control clonal cells stimulated with three different concentrations of PTH(1-34) or vehicle. PTH-induced cAMP levels were normalized to those induced by 10 μM Forskolin in XLαs-deficient Ocy454 cells and control clonal cells, respectively. (B) IP₁ concentrations were significantly diminished in XLKO clonal Ocy454 cells at baseline. *, p<0.05; **, p<0.01, vs. control clones, significance was defined by Student's t test.

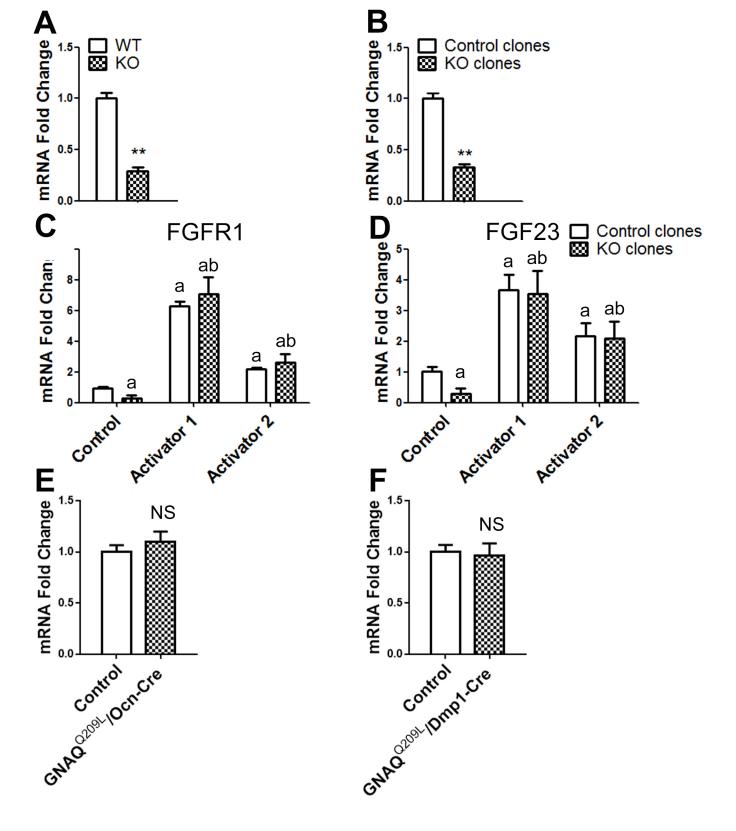
Supplementary Figure S3. Constitutively active Gaq/PKC signaling induces FGF23 production in adult mice. (A) Serum C-terminal FGF23, and (B) skeletal FGF23 mRNA (n=8 per group) in 2-month-old GNAQ^{Q209L}/Dmp1-Cre mice and control littermates. *, p<0.05 vs. control littermates. (C) Relative mRNA expression of XL α s, Gq α , and G11 α in P10 and 8-week-old femurs (n=5~6 per group). *, p<0.05; ***, p<0.001, calculated by unpaired two-tailed Student's t-test.

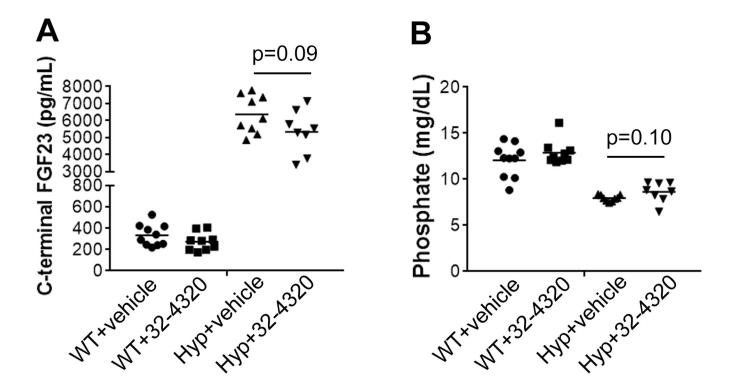

Supplementary Figure S4. (A) Adenovirus-mediated XLαs overexpression in Ocy454 cells. XLαs mRNA expression in control and XLKO Ocy454 cells transduced with with Ad-YFP or Ad-XLαs. (B) SaOS-2 cells were treated with PMA, together with Bisindol, and FGF23 mRNA expression was analyzed by qRT-PCR. Statistical differences were assessed with one-way ANOVA (Tukey's).

Supplementary Figure S5. FGFR1 mRNA expression in XLKO femurs and XLKO Ocy454 cells are reduced, while no change is observed in FGFR1 mRNA expression in femurs of GNAQ^{Q209L}/Ocn-Cre and GNAQ^{Q209L}/Dmp1-Cre mice. (A, B) FGFR1 mRNA levels in femurs from (A) P10 XLKO (KO) and WT mice, and (B) in XLKO and control Ocy454 cells. **, p<0.01. (C, D) Control and XLKO Ocy454 cell were stably transduced with control or FGFR1 activator sgRNA. mRNA levels of (C) FGFR1 and (D) FGF23 were assessed by qRT-PCR in these cells. Data represent means ± SEM of values obtained from control and XLKO clones. a, p<0.05 vs. control cells with control sgRNA; b, p<0.05 vs. XLKO cells with control gRNA. (E, F) FGFR1 mRNA expression in P10 (E) GNAQ^{Q209L}/Ocn-Cre and littermates, and (F) GNAQ^{Q209L}/Dmp1-Cre and control mice (n=8 per group). Statistical differences were assessed with Student's t test (A, B, E, and F), or one-way ANOVA (Tukey's) (C, D).


Supplementary Figure S6. Effects of short-term PKC inhibitor Ro32-0432 treatment in Hyp mice. (A) C-terminal FGF23 levels and (B) phosphate levels in WT and Hyp mice injected with vehicle or Ro32-0432 for twelve hours. Statistical analysis was calculated by Welch's t-test (two-tailed) followed by Bonferroni correction.


Supplementary Figure S1


Supplementary Figure S2



Supplementary Figure S3

Supplementary Figure S4

Supplementary Figure S6