Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Endothelial senescence is induced by phosphorylation and nuclear export of telomeric repeat binding factor 2–interacting protein
Sivareddy Kotla, … , Nhat-Tu Le, Jun-ichi Abe
Sivareddy Kotla, … , Nhat-Tu Le, Jun-ichi Abe
Published May 2, 2019
Citation Information: JCI Insight. 2019;4(9):e124867. https://doi.org/10.1172/jci.insight.124867.
View: Text | PDF
Research Article Cardiology Vascular biology

Endothelial senescence is induced by phosphorylation and nuclear export of telomeric repeat binding factor 2–interacting protein

  • Text
  • PDF
Abstract

The interplay among signaling events for endothelial cell (EC) senescence, apoptosis, and activation and how these pathological conditions promote atherosclerosis in the area exposed to disturbed flow (d-flow) in concert remain unclear. The aim of this study was to determine whether telomeric repeat-binding factor 2–interacting protein (TERF2IP), a member of the shelterin complex at the telomere, can regulate EC senescence, apoptosis, and activation simultaneously, and if so, by what molecular mechanisms. We found that d-flow induced p90RSK and TERF2IP interaction in a p90RSK kinase activity–dependent manner. An in vitro kinase assay revealed that p90RSK directly phosphorylated TERF2IP at the serine 205 (S205) residue, and d-flow increased TERF2IP S205 phosphorylation as well as EC senescence, apoptosis, and activation by activating p90RSK. TERF2IP phosphorylation was crucial for nuclear export of the TERF2IP-TRF2 complex, which led to EC activation by cytosolic TERF2IP-mediated NF-κB activation and also to senescence and apoptosis of ECs by depleting TRF2 from the nucleus. Lastly, using EC-specific TERF2IP-knockout (TERF2IP-KO) mice, we found that the depletion of TERF2IP inhibited d-flow–induced EC senescence, apoptosis, and activation, as well as atherosclerotic plaque formation. These findings demonstrate that TERF2IP is an important molecular switch that simultaneously accelerates EC senescence, apoptosis, and activation by S205 phosphorylation.

Authors

Sivareddy Kotla, Hang Thi Vu, Kyung Ae Ko, Yin Wang, Masaki Imanishi, Kyung-Sun Heo, Yuka Fujii, Tamlyn N. Thomas, Young Jin Gi, Hira Mazhar, Jesus Paez-Mayorga, Ji-Hyun Shin, Yunting Tao, Carolyn J. Giancursio, Jan L.M. Medina, Jack Taunton, Aldos J. Lusis, John P. Cooke, Keigi Fujiwara, Nhat-Tu Le, Jun-ichi Abe

×

Figure 6

TERF2IP expression and S205 phosphorylation increase in the d-flow area in vivo.

Options: View larger image (or click on image) Download as PowerPoint
TERF2IP expression and S205 phosphorylation increase in the d-flow area ...
(A and C) En face preparations of the aortic arch of 7-week-old WT C57BL/6 mice were triple-stained with anti–vascular endothelial cadherin (as an EC marker), anti-TERF2IP (A), anti–p-TERF2IP S205 (C), and DAPI. Scale bars: 20 μm. Representative images from 3 independent experiments are shown. (B and D) The histograms show the increased mean intensity of anti-TERF2IP (B) and anti–p-TERF2IP S205 (D) staining in the d-flow area. Data are presented as mean ± SD **P < 0.01 by unpaired 2-tailed t test.

Copyright © 2022 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts