


Supplemental Figure 1. Fate mapping the conversion of CX3CR1+ cells into plaque macrophages 

in Ldlr-/- : Cx3cr1CreERT2-IRES-YFP/+Rosa26floxed-tdTomato/+ bone marrow chimeric mice during 

atherosclerosis progression. (A) Schematic of the experimental atherosclerosis protocol using the 

model in Ldlr-/- : Cx3cr1CreERT2-IRES-YFP/+Rosa26floxed-tdTomato/+ bone marrow chimeric mice. Bone marrow 

from Cx3cr1CreERT2-IRES-YFP/+Rosa26floxed-tdTomato/+ mice were transplanted into irradiated Ldlr-/- mice, 

which were allowed to recover for 4 weeks on chow diet and were subsequently fed Western diet for 18 

weeks. Mice were injected intra-peritoneal (i.p.) with tamoxifen (TAM) at week 14 and 15 after the 

switch to a Western diet to label CX3CR1+ derived cells. Mice were sacrificed 3 weeks later for 

analysis. (B) Representative confocal images of aortic roots stained for CD68 (green), EYFP (yellow), 

and TdTomato (red). Arrows point towards representative TdTomato+ cells with different phenotypes, 

including “slender and elongated”, “large and foamy” and “small” macrophages. Scale bar: 100um. 

Scale bar in zoomed in image: 50 um. 





Supplemental Figure 2. Combining single cell RNA sequencing with genetic fate mapping to track

and characterize cells derived from CX3CR1+ precursors during atherosclerosis progression and

regression in Cx3cr1CreERT2-IRES-YFP/+Rosa26floxed-tdTomato/+ mice. (A) Schematic of experimental

protocol for single cell RNA-seq analyses of fate mapped cells during atherosclerosis progression and

regression. Cx3cr1CreERT2-IRES-YFP/+Rosa26floxed-tdTomato/+ mice (8 weeks old) were injected with

AAVmPCSK9 and fed with Western Diet for 18 weeks. Cells derived from CX3CR1+ precursors were

then labeled by tamoxifen (TAM) treatment by gavage. Mice were then divided to 2 groups: 1) a

progression group, in which mice were continued on the Western diet for an additional 2 weeks, and 2) a

regression group, in which mice were switched to chow and injected intraperitoneally with a apoB

antisense oligonucleotide (ApoB-ASO; 50mg/kg; 2 doses/week; n=4 mice per group)) for 2 weeks to

lower plasma levels of atherogenic apoB-containing lipoproteins. The aortic arches were digested and

FACS sorted for CD11b+TdTomato+ cells that were then subjected to single-cell RNA sequencing on

the 10X genomics platform to profile 3,157 cells and 2,198 cells from progression and regression

groups, respectively. (B) Gating and sorting strategies of aortic CD11b+TdTomato+ cells after excluding

doublet, dead, and dumping gates from mice in Cx3cr1CreERT2-IRES-YFP/+Rosa26floxed-tdTomato/+ mice for

progression and regression group. (C) Absolute numbers of CD11b+TdTomato+ cells that were able to

be FACS sorted from aortic arches of Cx3cr1CreERT2-IRES-YFP/+Rosa26floxed-tdTomato/+ mice in progression

and regression groups (n=10 per group, 3 individual experiments). Statistical significance was calculated

using Student’s t test and data are presented as mean ± SEM.





Supplemental Figure 3. Gene ranking and expression features from indicated cell clusters. (A) t-

SNE plots of sorted CD11b+TdTomato+ cells colored based on expression of Csf1r, Cd14, Adgre1, and

Cd68 genes, with corresponding violin plots below showing the expression level of each gene in the

indicated cell clusters described in Figure 2. (B) t-SNE plots colored based on expression of most highly

upregulated genes for Cluster1, Cluster4, Cluster6 and Cluster9 (shades of red indicate higher gene

counts per cell).





Supplemental Figure 4. Gene expression features from indicated cell clusters. t-SNE plots colored

based on expression of most highly upregulated genes for the indicated cell Clusters (shades of red

indicate higher gene counts per cell).





Supplemental Figure 5. Comparing the transcriptional profile of the stem-like Cluster 7 with the

IMMGEN database. 138 genes that were expressed >1 read in 90% of cells in Cluster 7 were compared

to the gene expression of macrophages, monocytes, myeloid progenitors, stem cells and dendritic cells

as extracted from the IMMGEN database. Cells from Cluster 7 were randomly grouped into four

subgroups (shown in black) and median expression of each gene is shown. The heatmap illustrates the

clustering of similar cell types and genes based on normalized gene expression profiles.





Supplemental Figure 6. FACS analysis of marker genes from Clusters in plaque

macrophages derived from CX3CR1+ monocyte precursors in atherosclerosis progression. The

aortic arches from the progression group (n=3) were digested and FACS analyzed for

CD45+CD11b+TdTomato+ cells. (A) Representative gating strategies of aortic

CD45+CD11b+TdTomato+ cells after excluding doublet, dead, and dumping gates. (B) t-SNE analysis

of CD45+CD11b+TdTomato+ cells for expression of Sca-1 (Ly6a/e), (C) CD9, and (D) MHCII.
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Supplemental Figure 7. Top 10 gene ontology enrichment analysis in indicted cell Clusters. The top

100 differentially expressed genes from each cell cluster were used to do top 10 gene ontology

enrichment analysis in (A) Cluster 0; DNase1l3hi macrophages, (B) Cluster 1;

Folr2hi macrophages, (C) Cluster 2; Ebf1hiCd79ahi macrophages, (D) Cluster 3;

Retnlahi Ear2hi macrophages, (E) Cluster 4; Chemokinehi macrophages, (F) Cluster 5; IFN

signaturehi macrophages, (G) Cluster 6; NMES1hi macrophages, (H) Cluster 7; Stem-like

macrophages, (I) Cluster 8; HSPhi macrophages, (J) Cluster 9; Trem2hi macrophages, (K) Cluster 10;

Cd74hiMHCIIhi macrophages.





Supplemental Figure 8. Proposed model of monocyte fates in progressing and regressing

atherosclerotic plaques based on fate mapping and scRNA-seq results. Taking together previous

results by us and others led to a simplified view whereby Ly6Chi monocytes traffic to the plaques and

differentiate into either M1-like macrophages during progression or M2-like macrophages during

regression. Based on the higher resolution results presented in the present study, we find much greater

complexity in macrophage activation states during both atherosclerosis progression and regression (e.g.

Trem2hi, Chemokinehi, Folr2hi), while some populations are enriched in progression that are both M1-

like (IFN signaturehi) or M2-like (RetnlahiEar2hi). Other populations are enriched in regression that are

also M2-like (HSPhi, PD-L2hiCD301hi). Notably, we also find a population of stem-like cells that retain

CX3CR1 expression and have a proliferative signature that we speculate serve as a reservoir of self-

renewing cells that can convert into macrophages of the different phenotypes depending on the plaque

microenvironment.
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Methods 

Mice 

B6.Cx3cr1CreERT2-EYFP/+ mice were generously provided by D. Littman (Skirball 

Institute of Biomolecular Medicine, NYU Langone Health, New York, NY 10016). 

B6.Rosa26stop-tdTomato mice (JAX: 007914) and B6.129S7-LDLrtm1Her/J mice (JAX: 

002207) were from Jackson Laboratories (Bar Harbor, ME). B6.Cx3cr1CreERT2-EYFP/+ 

mice and B6.Rosa26stop-tdTomato mice were crossed to generate Cx3cr1CreERT2-

EYFP/+R26tdTomato/+ mice as previously described (1). 

 

Animals, AAV-mPCSK9, and ApoB-ASO treatment 

All animal procedures were approved by the NYU School of Medicine IACUC 

Committee. Eight week old Cx3cr1CreERT2-EYFP/+R26tdTomato/+  mice were injected 

intraperitoneally once with AAVmPCSK9 (AAV.8TBGmPCSK9D377Y, Penn 

Vector Core, using a plasmid originally provided by Dr. Daniel J. Rader) at 1012 viral 

particles/mouse and placed onto a Western diet (Dyets Inc., Bethlehem, USA, Dyet 

#101977) for 18 weeks. At this time point, mice were divided into two groups: 

continued on Western diet (progression group), switched to a chow diet and injected 

intraperitoneally twice per week with apolioprotein B (ApoB) anti-sense 
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oligocucleotide (ASO) 50mg/kg for two weeks (n = 4-10) to lower levels of 

atherogenic apoB-containing lipoproteins. 

 

Flow cytometry sorting or analysis 

CD11b+TdTomato+ macrophages were isolated using the BD FACS Aria IIu SORP 

from baseline and regression aortic arches that were removed from mice after 

perfusion of cold PBS and enzymatic digestion as described in Rahman et al., 2017 

(2). After live/dead cell staining with blue reactive dye (catalog#L23105, Invitrogen), 

cell surface markers were labeled with the following antibodies: CD11b Brilliant 

Violet 650 (Catalog#101259, Biolegend) or CD11b Buv395 (catalog#563553, BD 

BioScience), F4/80 PE/Cy7, PDL2 APC, CD301 PerCP/Cy5.5, IA/IE APC/Cy7, CD3 

Pacific Blue, CD19 Pacific Blue, CD49b Pacific Blue, Ly6G Brilliant Violet 421, 

Sca-1 Pacific Blue, CD14 PerCP/Cy5.5, CD9 PE/Cy7, F4/80 BV711, CD45 BV510 

(catalog, #123114, #107210, #145710, #107628, #100214, #115523, #108918, 

#122520, #123314, #124816, #123147, #103137, Biolegend), and Siglec-F Brilliant 

Violet 421 (catalog#562681, BD BioScience). During cell sorting, cellular debris was 

excluded with FSC and SSC gating and lymphocytes, eosinophils, and neutrophils 

were excluded with Pacific Blue and Brilliant Violet 421 positive gating. Sorted 

CD11b+TdTomato+ cells were processed to single-cell RNA sequencing as described 
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below. FACS analyses were also performed in ZE5 cell analyzer (BIO-RAD). 

Recorded FACS data were analyzed by Flowjo v10.4.2. 

 

Single-cell library construction and sequencing 

The sorted CD11b+TdTomato+ cellular suspensions were loaded on a 10x Genomics 

Chromium instrument to generate single-cell gel beads in emulsion (GEMs). 

Approximately 10,000 cells were loaded per channel. Single-cell RNA-Seq libraries 

were prepared using the following Single Cell 3’ Reagent Kits v2: Chromium™ 

Single Cell 3’ Library & Gel Bead Kit v2, Single Cell 3’ Chip Kit v2, and i7 

Multiplex Kit (catalog# PN-120237, PN-120236, # PN-120262, 10x Genomics) as 

described in https://www.ncbi.nlm.nih.gov/pubmed/28091601, and following the 

Single Cell 3’ Reagent Kits v2 User Guide (Manual Part # CG00052), Rev A. 

Libraries were run on an Illumina HiSeq 4000 as 2 × 150 paired-end reads, one full 

lane per sample, for approximately >90% sequencing saturation. 

 

Alignment, barcode assignment and UMI counting 

The Cell Ranger Single Cell Software Suite, version 1.3 was used to perform sample 

de-multiplexing, barcode ad UMI processing, and single-cell 3′ gene counting. A 

detailed description of the pipeline and specific instructions to run it can be found at:  
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https://support.10xgenomics.com/single-cell-gene-

expression/software/pipelines/latest/what-is-cell-ranger) 

 

Histology and immuno-fluorescence staining of aortic sections 

Aortic roots were removed, perfused with saline and embedded in OCT. Serial 

sections were cut and fixed in cold acetone for 10 min and endogenous biotin and 

streptavidin were blocked with Streptavidin/Biotin Blocking Kit (catalog#SP-2002, 

Vector Laboratories) and Super Block (catalog#AAA-125, ScyTek Laboratories). 

Sections were then incubated at 4℃ overnight with rat anti-mouse CD68 (AbD 

Serotec, catalog#MCA1957, 1:10), rabbit anti Ki67 (catalog#RM-9106-S1, Lab 

Vision; now TermoFisher; 1:100), and chicken anti-GFP (catalog#ab13970, Abcam; 

1:200) antibodies in normal antibody diluent (catalog#08980641, MP Biomedicals). 

Slides were washed in PBS and then incubated at room temperature for 30 mins with 

biotinylated rabbit-anti-rat IgG mouse-adsorbed secondary antibody (catlog#BA-

4001, Vector Laboratories) or UltraTek anti-rabbit biotinylated antibody 

(catalog#ABK125, ScyTek Laboratories; Ready to Use), followed by a 20 min room 

temperature incubation with Goat anti-chicken IgY Alexa Fluor 488 conjugated 

(catalog# ab150169, Abcam; 1:250) and Streptavedin Alexa Fluor 647 conjugated 

(catalog# S-21374, Abcam; 1:250) antibodies. After immunostaining, tissue sections 
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were wash in PBS and DAPI counter-staining and mounting with DAPI-Fluoromount-

G (catalog#0100-20, Southern Biotech). 

 

Imaging of aortic sections 

Bright field images were acquired by a Leica DM4000B microscope and Leica 

DC300Fx camerausing a 4x objective in both brightfield and fluorescence. ImagePro 

Plus 5.0 software (Media Cybernetics) was used to determine total root area, total 

plaque percentage per root. Immuno-fluorescence images were acquired by a Nikon 

Eclipse Ti epifluorescence microscope. Multiple images were taken using an x20 dry 

objective and tiled together. The imaging data were processed and analyzed using 

Imaris software version 9.0.1 (Bitplane; Oxford Instruments). 

 

Computational analysis 

t-distributed stochastic neighbor embedding (t-SNE) in Flowjo analysis 

Flowjo v10.4.2 software and plugin were installed per manufacturer’s instructions. 

Gated CD11b+TdTomato+ cells from aortic arches of progression and regression 

mice were concatenated into progression and regression groups. Then progression and 

regression groups were concatenated together and used to perform t-SNE analysis 

with Flowjo plugin.  
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Pre-processing Sequencing Data 

Using the Cellranger analysis pipeline (cellranger mkfastq and cellranger count) 

provided by 10X Genomics FASTQ files were generated and aligned, sequencing data 

were filtered, and finally, barcodes and UMIs were assigned to each data point in the 

raw sequencing output. Experiments were then aggregated using Cellranger 

(cellranger aggr) to compare progression and regression experimental groups with 

normalized sequencing-depth and expression data 

(https://support.10xgenomics.com/single-cell-gene-

expression/software/pipelines/latest/what-is-cell-ranger). Initial tSNE Clustering and 

exploration of differential gene expression were performed using the Loupe™ Cell 

Browser from 10X Genomics.  

Pre-processing was continued using the Scanpy library for Python 3 as in Wolf et 

al., 2018 (3). The methodology described therein is used throughout the majority of 

this analysis. To ensure quality of input data, genes expressed in in fewer than 3 cells 

were removed. The steps outlined in (3, 4) were then used in order to remove those 

cells with excessive mitochondrial gene expression and to normalize the per-cell gene 

expression values. Gene expression values were transformed by ln(1+x). In order to 

prepare the data for Clustering, Scanpy was used to sub-select a collection of genes 
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with highly variable expression. In order to more accurately calculate differential gene 

expression, the subsets of highly variable genes were regularized via regression on the 

mitochondrial gene expression.  

Dimensionality Reduction 

The JackStraw and elbow plot methodology from the Seurat R package (4-6) was 

used in order to evaluate the number of statistically significant principal components 

(PCs) required to accurately describe the variation in the single cell expression data. 

This analysis arrived at a liberal estimate of 32 PCs. PCA with was subsequently used 

in the Clustering and visualization processes in order to accomplish the requisite 

dimensionality reduction. 

Clustering, Visualization, and Feature Extraction 

Louvain community detection on the PCA reduced data was used in order to Cluster 

the single cell observations in an unsupervised manner. Visualization by the t-SNE 

and UMAP methodologies in the Scanpy package (3, 7-9) allowed for the assessment 

of the spatial distribution of the Louvain Clusters. The proportion of each Cluster 

occupied by progression vs. regression experimental group cells was calculated.  

Feature Selection and Heat Mapping 

Scanpy was harnessed in order to perform One vs Rest statistical testing with the 

overestimated-variance T-test, allowing for identification of genes that were 
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significantly overexpressed in each Louvain Cluster. A heatmap was then utilized in 

order to reveal heterogeneity of expression across the cells sampled, and to visualize 

the intensity of Cluster-associated gene expression. Each cell lies on the y-axis and 

the 5-10 genes ranked with the highest differential expression for each Louvain 

Cluster lie on the x-axis. The intensity of each cell in the heatmap represents the 

regularized ln(1+x) gene expression value.  

Immgen Analysis 

In order to gain insight into the cell types represented in our single-cell sample, a 

comparison of phenotype was performed against RNA microarray data from the 

Immgen database (10). Only RNA expression profiles for macrophages, monocytes, 

and dendritic cells were included. The Immgen microarray reads were first row-

normalized to mean 0 and standard deviation of 1. Then, both the Immgen and single 

cell data was column-normalized to have mean 0 and standard deviation of 1. The 

number of genes expressing > 1 reads in at least 90% of cells in the Cluster was first 

established to be 138. The 138 genes with the greatest differential expression (as 

determined previously) in Cluster7 were then taken and used in our visualization. Not 

all of the differentially expressed genes were found in the Immgen database; these 

were dropped (9/138). Duplicate gene expression values were found in the Immgen 

data, and the median expression levels for these genes were used. The single cells 
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were randomly grouped into four sub-groups and the median expression of each gene 

used for display. We heatmap the normalized expression of each Immgen cell-type 

alongside the 4 sub-groups randomly permuted and aggregated from Cluster 7. 

Hierarchical Clustering was then used to rearrange the heatmap rows (to Cluster 

similar cell types) and potentially also the columns (to show blocks of associated gene 

expression). 

Diffusion Pseudotime Analysis 

DPT analysis algorithms from the Scanpy package were employed in order to 

reconstruct the divergence of cell lineages based upon their proximity on a random-

walk (3). We hypothesized that our origin Cluster would contain monocytes with high 

expression of CX3CR1, so the population of cells with the highest average expression 

of this gene was determined and the cell among this population with the highest 

CX3CR1 expression was chosen to be the “root” cell as required by this algorithm. 

The data are again prepared by paring it down to 32 PCs using PCA and calculating 

the 30 nearest neighbors. A diffusion map is then generated, modeling the 

differentiation trajectory of each cell (3, 11). The diffusion pseudotime value, an 

estimation of how far in expression each cell is relative to the root cell, is 

subsequently calculated.  
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When designating a root cell with high CX3CR1 expression, the cells with the 

lowest pseudotime values localized to one extreme of the diffusion map trajectory. 

The lowest pseudotime values localize to the middle of the diffusion map when a low 

CX3CR1 cell is chosen. 

Proliferative Capacity Screening 

In order to determine which Louvain Cluster had the greatest capacity to proliferate, 

the expressions of various cell cycle genes were quantified. Using work by Whitfield 

et al., 2002 (12), genes associated with the G1/S checkpoint, the S phase, the G2 

phase, and the G2/M checkpoint were identified. The expression of these genes was 

then summed for each cell, and aggregated by Louvain Cluster in order to gain an idea 

of the proliferative potential of each sub-population. 

		
GO term analysis 

We selected top 100 differentially expressed genes per cluster, which had a Z-score > 

1.64 (one-tailed p=0.5), and then associated those gene names with GO tags. 

Differential GO analysis was used by Goatools package 

(see https://www.nature.com/articles/s41598-018-28948-z). 

  

Comparison of scRNA-seq Data with Previously Published Microarray Data 
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Transplant regression model. We analyzed the microarray two-color (spot-level) 

fluorescence intensity data from the Feig et al., 2012 (13) study using the R software 

package Limma (14). We selected for genes meeting a minimum intensity level by 

retaining only genes with a sample-mean log2 A-value of at least -5.0. We tested for 

differential expression with empirical Bayes variance estimation and a q-value cutoff 

of 0.01. We joined the gene-level log2(regression/progression) ratios from the Feig 

et al. microarray study with the gene-level pseudotime values from the scRNA-seq 

data from this study using official gene symbols, resulting in the joint pseudotime and 

log2(regression/progression) values for 53 genes shown in Fig. 5C.  

Reversa regression model. We merged gene expression log2(polyI:C/saline) values 

from the Ramsey et al. 2014 study (15) with gene-level log2(regression/progression) 

values from supervised analysis of the scRNA-seq data (Limma empirical Bayes test 

on voom-normalized log-expression data, FDR < 0.01) from the scRNA-seq study 

using official gene symbols, resulting in the joint values for the 27 genes shown in 

Fig. 4C.  

Comparison and Merge of Our scRNA-seq Dataset to a Published Study 

We analyzed a recently published single cell RNA-seq dataset from CD45+ cells from 

Ldlr-/- C57BL/6 aortas (GEO accession number GSM3215435) (Kim et al., 2018 

(16)). Using the filtered matrix of gene by cell expression values, we performed 
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further filtering using the R package Seurat, removing cells with the percentage of 

genes expressed from the mitochondria greater than 7.5% and more than 5,500 

expressed genes based on the overall distribution of the data, yielding data from 3,698 

cells. We performed an initial analysis of this dataset alone, also done in Seurat, by 

performing PCA and using the resulting PCs to find Louvain clusters and perform 

tSNE dimension reduction.  We also performed an analysis merging the Kim et al. 

data with the progression and regression data that we generated. Following the 

method outlined in Butler et al. (17), we performed canonical correlation analysis 

(CCA) and aligned the canonical correlation vectors (CCs) using the R package 

Seurat. Using the aligned CCs, Louvain clusters were found and tSNE dimension 

reduction was performed. In both the analysis of the Kim et al data alone and the 

merged analysis, we calculated the sum of expression from G1/S genes (Ccne1, E2f1, 

Cdc6, and Pcna), S genes (Rcf4, Dhfr, Rrm2, and Rad51), G2 genes (Cdk1, Top2a, 

Ccnf, and Ccna2), and G2/M genes (Aurka, Bub1, Ccnb1, Plk1, Plk2, Plk3, and Plk4). 

We also used the sum of expression of G1/S, S, G2, and G2/M genes as a measure of 

“stemness”.   
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