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BACKGROUND. Commercial gene expression assays are guiding clinical decision making in patients 
with prostate cancer, particularly when considering active surveillance. Given heterogeneity and 
multifocality of primary prostate cancer, such assays should ideally be robust to the coexistence of 
unsampled higher grade disease elsewhere in the prostate in order to have clinical utility. Herein, we 
comprehensively evaluated transcriptomic profiles of primary multifocal prostate cancer to assess 
robustness to clinically relevant multifocality.

METHODS. We designed a comprehensive, multiplexed targeted RNA-sequencing assay capable 
of assessing multiple transcriptional classes and deriving commercially available prognostic 
signatures, including the Myriad Prolaris Cell Cycle Progression score, the Oncotype DX Genomic 
Prostate Score, and the GenomeDX Decipher Genomic Classifier. We applied this assay to a 
retrospective, multi-institutional cohort of 156 prostate cancer samples. Derived commercial 
biomarker scores for 120 informative primary prostate cancer samples from 44 cases were 
determined and compared.

RESULTS. Derived expression scores were positively correlated with tumor grade (rS = 0.53–0.73; 
all P < 0.001), both within the same case and across the entire cohort. In cases of extreme grade-
discordant multifocality (co-occurrence of grade group 1 [GG1] and ≥GG4 foci], gene expression 
scores were significantly lower in low- (GG1) versus high-grade (≥GG4) foci (all P < 0.001). No 
significant differences in expression scores, however, were observed between GG1 foci from 
prostates with and without coexisting higher grade cancer (all P > 0.05).

CONCLUSIONS. Multifocal, low-grade and high-grade prostate cancer foci exhibit distinct prognostic 
expression signatures. These findings demonstrate that prognostic RNA expression assays 
performed on low-grade prostate cancer biopsy tissue may not provide meaningful information on 
the presence of coexisting unsampled aggressive disease.
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Introduction
Widespread adoption of serum prostate-specific antigen (PSA) screening has led to the overdiagnosis and over-
treatment of low-grade (Gleason score 6; grade group 1 [GG1]) prostate cancer (1–3). To better balance the 
harms and benefits of PSA screening, a number of active surveillance strategies have been introduced for low-
grade favorable-risk prostate cancer. Active surveillance is composed of multimodal serial monitoring, with an 
increasing reliance on the utilization of a number of biopsy tissue-based prognostic gene expression tests per-
formed in commercial laboratories (e.g., Myriad Prolaris Cell Cycle Progression [CCP] score, Oncotype DX 
Genomic Prostate Score [GPS], and GenomeDX Decipher Genomic Classifier [GC]) to provide information 
on active surveillance suitability versus definitive therapy (4–7). Tissue-based prostate cancer biomarkers, an 
expenditure in aggregate estimated to be more than $250 million annually, have been aggressively marketed by 
industry and rapidly adopted by physicians. Additionally, these assays have been included in the 2018 National 
Comprehensive Cancer Network prostate cancer guidelines and received Centers for Medicare and Medicaid 
Services approval for use in risk stratification of prostate cancer. Of the estimated 180,000 men diagnosed 
with prostate cancer annually in the United States, approximately 70% with favorable-risk prostate cancer are 
thought to be potential candidates for these tests that cost up to $4,500 each (8, 9).

The histologic, spatial, and temporal genomic heterogeneity of  solid organ cancers continues to be an 
impediment for the development of  single biopsy–based prognostic biomarkers as well as the implementation 
of  precision medicine approaches that rely on tissue sampling (10, 11). While biopsy-based RNA expression 
signatures have shown clinical utility in several cancers, understanding the biology of  all clinically important 
foci, within a given organ, can be challenging when the multiplicity as well as the histologic and genomic 
diversity of  cancer foci is high. Prostate cancer is heterogeneous and is multifocal, with multiple, genomically 
independent tumors identified in up to 80% of men undergoing radical prostatectomy for clinically localized 
disease (12–15). Hence, there has been enormous interest in identifying prostate cancer prognostic biomarkers 
that are unaffected by tissue sampling bias. Critically, for maximum clinical utility, effective prognostic bio-
markers must be able to determine which men with low-grade cancer on diagnostic biopsy have (a) an under-
sampled high-grade component of  the same tumor focus and/or (b) an unsampled, spatially and genomically 
distinct high-grade tumor focus missed by the original biopsy.

To date, a comprehensive transcriptomic analysis of  grade discordant primary multifocal prostate cancer 
has not been reported. Notably, the advent and refinement of  technologies compatible with formalin-fixed, 
paraffin-embedded (FFPE) tissue samples, such as qRT-PCR, microarray-based expression profiling, NanoS-
tring, and RNA-based next-generation sequencing (NGS), has enabled the rapid clinical translation of  tran-
scriptomic biomarkers (16–19). Application of  these methodologies to low-grade prostate cancer, however, 
is particularly challenging due to the minute volume of  cancerous biopsy tissue often available for analysis 
(20). Importantly, of  the above described prognostic expression tests, one directly claims to be robust to both 
undersampling of  high-grade components of  the same tumor focus as well as the presence of  unsampled 
high-grade tumor foci elsewhere in the prostate (6). Although these assays have been analytically and clini-
cally validated to predict a variety of  clinically relevant endpoints, recent evidence supports transcriptional 
differences between multifocal low- and high-grade prostate cancer, challenging the potential robustness of  
these assays to tumor multifocality and genomic heterogeneity (21). In addition, it is important to note that 
CCP score, GPS, and GC have yet to be evaluated in a head-to-head manner.

Here, we developed a multiplex prostate cancer–specific RT-PCR–based RNA-sequencing (mxRNA-
seq) assay compatible with minute FFPE specimens in order to directly interrogate and compare com-
mercially available prognostic transcriptomic signatures and relevant individual candidate biomarkers in 
primary, clinically relevant multifocal prostate cancer.

Results
Cohort composition. Our cohort included 193 FFPE tissue specimens chosen to represent the complete spec-
trum of  prostate cancer progression (Supplemental Table 1; supplemental material available online with this 
article; https://doi.org/10.1172/jci.insight.123468DS1). The complete sample information, including tissue 
type (e.g., primary prostate cancer [n = 156]; hormonal therapy naive metastases [n = 18]; metastatic castra-
tion resistant prostate cancer [n = 7]; benign prostate tissue [n = 11]; and benign lymph node [n = 1]), spec-
imen type, prior treatment, and previous molecular characterization is provided in Supplemental Table 1.  
Prior to exclusion of  samples that did not pass stringent quality control (QC) metrics, as described in the 
Supplemental Methods, our FFPE tissue cohort included 156 primary prostate cancer samples from 50 
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cases, including 21 multifocal cases with at least 1 sample from a GG1 focus and at least 1 sample from a 
GG2–5 focus; 13 of  these multifocal cases had at least 1 sample from a GG1 focus and at least 1 sample from 
a ≥GG4 focus, representing the extremes of  GG difference in multifocality (Supplemental Table 1). For 
comparison, prior to exclusion of  samples not passing QC metrics, our cohort also included 9 GG1 samples 
(from 6 cases) from prostates with exclusively GG1 prostate cancer.

After exclusion of  samples that did not pass QC metrics, our informative cohort contained 120 primary 
prostate cancer samples from 44 cases. This cohort included 15 multifocal cases with at least 1 sample each 
from a GG1 focus and a higher grade (GG2–5) focus; 8 of  these multifocal cases had at least 1 sample each 
from a GG1 focus and a ≥GG4 focus, representing the extremes of  GG discordance in multifocal disease. 
For comparison, our cohort included 8 GG1 informative samples from 6 cases with organ-confined GG1 
prostate cancer.

mxRNAseq assay assessment and validation. The details of  our mxRNAseq assay assessment and valida-
tion are as described in the Supplemental Methods. Briefly, to detect and/or quantify multiple potentially 
relevant prostate cancer transcriptomic alterations, we designed a custom 306-amplicon mxRNAseq pan-
el (Supplemental Table 2) that targeted genes required to derive the 3 commercially available prognos-
tic signatures as well as diagnostic/subtyping relevant genes, transcriptional modules (e.g., AR signaling, 
activated T cell infiltrate, neuroendocrine gene expression), recurrent 5′ and 3′ gene fusion partners (e.g., 
ETS genes, BRAF and RAF1, and their common 5′ partners), lncRNAs (e.g., SChLAP1), expressed recur-
rent somatic mutations (e.g., hotspot residues in SPOP, BRAF and IDH1), and expressed relevant germline 
variants (e.g., HOXB13 G84E) (Figure 1A). Raw read counts for all amplicons in all samples are provided 
in Supplemental Table 2, and normalized reads from amplicons/samples passing QC are provided in Sup-
plemental Table 3.

Unsupervised hierarchical clustering of  target gene/transcript expression across the 156–informative 
sample compendium of  FFPE tissue and cell line samples meeting high-stringency QC parameters (see 
Supplemental Methods) is shown in Figure 1B. Multiple analyses support the validity of  our approach 
and observed expression profiles, as described in the Supplemental Methods and Supplemental Figures 
1 and 2. Importantly, single-coding genes and lncRNAs known to be dysregulated in prostate cancer 
displayed expected differential expression patterns, including PCA3, DLX1, and TMPRSS2:ERG, as bio-
markers of  prostate cancer versus benign prostate tissue (Figure 1C). Similarly, SChLAP1, a lncRNA 
consistently identified as one of  the most prognostic single transcripts across prostate cancer profiling 
studies (22, 23), was confirmed to be overexpressed in aggressive prostate cancer (Figure 1C). Further-
more, lncRNAs reported as prostate cancer specific (e.g., PRCAT122) (24) or prostate cancer specific 
but decreased in high-grade disease (e.g., PCAT-14 [also known as PRCAT104] (24, 25), showed expected 
tissue expression patterns (Figure 1C). Detection of  prostate cancer relevant gene fusions, expressed 
somatic mutations, and germline risk variant profiles, and androgen receptor (AR) full-length and AR 
splice variants by mxRNAseq are as described in the Supplemental Methods and Supplemental Figures 
3–5. Taken together, these findings support the ability of  our mxRNAseq assay to characterize a diverse 
set of  transcriptional events (essential coding genes and gene fusions, lncRNAs, somatic mutations, ger-
mline variants, and splice variants) important for prostate cancer molecular subtyping, multiclonality 
assessment, risk stratification, and potential treatment guidance.

Assessment of  single-gene and clinically available prognostic biomarkers. We designed our assay to interrogate 
both single-transcript prognostic biomarkers, such as SCHLAP1 and PRCAT104, as well as the target genes/
transcripts used to derive the commercially available CCP, GPS, and GC scores. Hence, as described in 
detail in the Supplemental Methods, we derived CCP (mxCCP), GPS (mxGPS), and GC (mxGC) scores, 
and as expected, mxCCP (rS = 0.50, P = 7.38 × 10–9), mxGPS (rS = 0.74, P = 2.2 × 10–16), and mxGC (rS = 
0.66, P = 2.58 × 10–16) scores significantly increased across prostate cancer GGs (Figure 2A) and showed 
expected expression patterns between benign prostate tissue and metastatic samples (Supplemental Figure 
6A). Supporting these derived scores, cell cycle/proliferation–related genes form one of  the most correlated 
transcriptional modules in our assay (Figure 1B and Supplemental Figure 2), regardless of  their inclusion 
in CCP (all target genes), GPS (TPX2), or GC (e.g., UBE2C and NUSAP1). Likewise, the individual com-
ponents of  the mxGPS score were evaluated and showed expected expression across GGs and in benign 
prostate tissue and metastatic samples (Supplemental Figure 6B). Finally, clustering of  GC target gene/
transcript expression from our mxRNAseq data resulted in clustered expression patterns across prostate 
cancer progression (Supplemental Figure 6C). Hence, despite the obvious limitations inherent in deriving 
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Figure 1. Targeted multiplexed RNA sequencing enables robust transcriptional profiling of prostate cancer. (A) Prostate cancer multiplexed 
RNA-sequencing (mxRNAseq) panel. To interrogate multiple classes of prostate cancer relevant transcriptional biomarkers, we designed a custom 
306-amplicon mxRNAseq assay targeting coding genes, lncRNAs, gene fusions (e.g., TMPRSS2:ERG [T2:ERG]), splice isoforms (e.g., AR variants), 
expressed somatic mutations (e.g., SPOP hotspot mutations), and expressed germline risk variants (e.g., HOXB13 p.G84E). Targets to derive com-
mercially available prognostic assays, including Prolaris Cell Cycle Progression (CCP) score, Oncotype Dx Genomic Prostate Score (GPS), and Decipher 
Genomic Classifier (GC) score were also included. (B) mxRNAseq confirms expected transcriptional deregulation across prostate cancer progression. 
Unsupervised, centroid linkage hierarchical clustering of log2-normalized expression for 223 informative amplicons from our cohort of FFPE samples 
representing the full spectrum of prostate cancer progression (n = 156) is shown. Samples are sorted from benign prostate tissue, ascending grade 
group (GG) of localized prostate cancer (GG1–5, equivalent to Gleason scores 6, 3+4 = 7, 4+3 = 7, 8, and >8), hormone therapy naive metastases (HN 
Met), castration-resistant prostate cancer (CRPC), and nonprostate cancer specimens included as assay controls (far right). Individual transcripts 
and modules (e.g., cell cycle/proliferation [Prolif.], stroma, etc.) are indicated to the right. (C) Transcriptional deregulation of individual prostate 
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prognostic signatures developed on other platforms (particularly for GC given the included target tran-
scripts and analytical approach), these results support the ability and internal validity of  our mxRNAseq 
assay to derive multiple commercially available, expression-based prognostic biomarkers.

Assessment of  prognostic biomarkers in the context of  tumor multifocality. For maximum clinical utility, prog-
nostic prostate cancer biomarkers used at biopsy should be robust to both undersampling of  high-grade 
cancer in the same tumor focus as well as to an unsampled spatially distinct high-grade focus (Figure 2B). 
Thus, we comprehensively assessed the robustness of  individual candidate prognostic transcripts and mxR-
NAseq-derived signatures to clinically relevant tumor multifocality using a multistep approach on prosta-
tectomy specimens.

First, we hypothesized that if  prognostic signatures in low-grade tumors could predict unsampled high-
grade tumor foci elsewhere in the prostate, such signatures should differ between GG1 foci from prostates 
with only organ-confined GG1 tumor foci (no metastatic potential) (26) and prostates with GG1 and con-
comitant higher-grade (GG2–5) foci. As shown in Figure 2C, no significant difference in mxCCP (2-sample 
unpaired t test; P = 0.27), mxGPS (P = 0.63), or mxGC scores (P = 0.93) was observed between GG1 sam-
ples from GG1-only prostates (n = 8 samples from 6 cases) and GG1 samples with coexisting multifocal 
GG2–5 foci (n = 21 samples from 15 cases). Likewise, PRCAT104 showed no significant difference between 
GG1 samples from GG1-only and GG1 with multifocal GG2–5 foci (P = 0.78; Supplemental Figure 7A), 
while SChLAP1 showed significantly lower expression in GG1 with multifocal GG2–5 foci versus GG1 
only (P = 0.006; Supplemental Figure 7A).

Next, limiting the cohort to grade-discordant multifocal cases only (n = 15 cases), we determined 
whether commercial prognostic signatures were equivalent in GG1 samples (n = 21) versus all coexisting 
GG2–5 samples (n = 34) from the same set of  cases, as would be expected if  such biomarkers were truly 
robust to multifocality. As shown in Figure 2D and Supplemental Figure 7C, in these patients, mxCCP 
(1-sided ANOVA for mxCCP score by GG, P = 0.002), mxGPS (P = 1.2 × 10–10), and mxGC scores (P = 
7.9 × 10–7), as well as SCHLAP1 expression (P = 4.9 × 10–4), were significantly different across GG, with sig-
nificant direct correlations observed between SChLAP1 (rS = 0.52, P = 4.87 × 10–5) and all prognostic scores 
(mxCCP [rS = 0.53, P = 3.11 × 10–5], mxGPS [rS = 0.73, P = 2.55 × 10–10], mxGC (rS = 0.64, P = 1.86 × 10–7]) 
with increasing GG. Likewise, PRCAT104 expression was significantly inversely correlated with GG (rS = 
–0.34, P = 0.011). Taken together, these results do not support equivalent prognostic expression profiles in 
low-grade foci and concomitant multifocal high-grade foci.

The most concerning false-negative potential for prognostic tests given multifocality is when only 
a GG1 focus is sampled by diagnostic biopsy, yet an unsampled, very aggressive prostate cancer focus 
(≥GG4) is present elsewhere in the prostate (Figure 2B). Hence, our cohort specifically included 8 informa-
tive cases with at least 1 sample from a GG1 focus and at least 1 sample from a ≥GG4 focus, to represent 
extremes of  histologic aggressiveness in multifocality (MF cases 1–8; Figure 3A and Figure 4A). In addi-
tion to appearing multifocal by histopathology, molecular subtyping by our mxRNAseq assay (gene fusion 
and SPOP mutation status) supports clear multiclonality between the GG1 and ≥GG4 foci in 6 of  8 cases 
(MF cases 1, 2, 4–6, and 8), as shown in the integrative heatmap in Figure 3A. For example, in MF cases 
4–6, samples from the GG1 tumor foci were T2:ERG-negative/SPOPwt, while samples from the GG4 foci 
(including samples from GG2 and GG3 morphology) were all T2:ERG-positive/SPOPwt. In the other 2 cas-
es (MF cases 3 and 7), although samples from both the GG1 and ≥GG4 foci were T2:ERG-positive/SPOPwt, 
unique T2:ERG fusion isoforms were expressed exclusively in the low- or high-grade foci, consistent with 
multiclonality, with MF 3 showing definitive multiclonality by global genomic profiling (see below).

Next, we assessed whether derived prognostic signatures and single-gene prognostic biomarkers were 
robust to extreme grade-discordant multifocality. Histology from MF case 1 (overall GG5, pT3a) is shown 
in Figure 3B. In this case, posterior capsule sections in the same block showed tumor with distinct morphol-
ogy from two separate foci. Two sampled areas of  GG4 morphology (samples PR-354 and PR-355) were 
taken from the larger GG5 index tumor focus, along with a sample from a distinct focus of  GG1 (PR-356). 
Of  note, the GG1 sample harbored a SPOP p.F133V mutation detected by both mxRNAseq and mxDNA-
seq, while the GG4 samples were SPOPwt, consistent with multiclonality despite the spatial proximity of  

cancer transcriptional biomarker. Log2-normalized expression for prostate cancer–specific markers (PCA3, DLX1, T2:ERG [isoform T1E4]), overex-
pressed in aggressive prostate cancer–specific markers (SCHLaP1 and PRCAT122) and underexpressed in aggressive prostate cancer–specific mark-
ers (PRCAT104), is shown across prostate cancer progression (same order/color legend as in B).
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the tumor foci. In this case of  extreme multifocality, we would expect that if  transcriptional biomarkers and 
signatures were robust to multifocality, the multifocal GG1 and GG4 samples should show similar profiles. 
However, as shown in Figure 3C, the GG1 and GG4 samples from this case display distinct derived prog-
nostic signatures and individual transcript biomarker expression more in keeping with their morphology, 
based on comparison to all other samples in our compendium.

Figure 2. Derivation and assessment of clinically available prognostic signatures. (A) mxRNAseq-derived CCP (mxCCP), Decipher Genomic Classifier (mxGC), 
and Oncotype Dx GPS (mxGPS) scores are plotted stratified by grade group (GG1–5) for 125 FFPE primary prostate cancer tissue samples. Derived scores signifi-
cantly increase with ascending GG (Spearman rank [rs] correlation, and 1-sided ANOVA P values are shown). (B) Due to both intratumoral grade heterogeneity 
as well as true multifocality, diagnostic prostate biopsy sampling of only low-grade prostate cancer (GG1, yellow) may reflect a lack of high-grade (HG) tumor 
component (top), undersampling of a high-grade (blue) component (GG2 or GG3 tumor focus, middle), or unsampling of a separate high-grade prostate cancer 
focus (bottom). As the most concerning scenario for a patient considering active surveillance (AS) is the latter, we tested the robustness of derived prognostic 
scores from GG1 to multifocality through several analyses. (C) Derived prognostic scores do not differ between GG1 prostate cancer when present in isolation or 
when other HG tumor foci are present. Derived prognostic mxCCP, mxGC, and mxGPS scores were plotted from samples of pT2 GG1 prostate cancer without HG 
foci (clinically indolent, light brown, n = 8 from 6 cases) versus scores from GG1 prostate cancer foci (n = 21 from 15 cases) where other HG foci were present. No 
significant differences between the 2 groups for any derived prognostic score were observed (2-sample, unpaired 2-sided t test P values are shown). (D) Derived 
prognostic scores differ between GG1 prostate cancer foci and concurrent HG foci. Derived prognostic scores were plotted for all samples from the 15 cases from 
C where samples were taken from both GG1 prostate cancer foci as well as other concurrent higher grade foci. Samples were stratified by the GG of the profiled 
component. Spearman rank (rs) correlation and 1-sided ANOVA P values for scores stratified by GG are shown, demonstrating significantly increased derived 
prognostic scores by GG of the profiled component (similar to findings from our entire cohort, including these samples as shown in Supplemental Figure 7C).
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MF case 3 (overall GG5, pT3a, N1), showed a GG5 index focus involving nearly the entire prostate 
(Figure 4B, cyan), with a minute GG1 focus (with HGPIN-like morphology) that was separate from the 
index focus on all levels (Figure 4B, focus 5, green). mxDNAseq demonstrated a TP53 p.C238Y somatic 
mutation and chr 9p deletion in all 4 samples from the index GG 5 focus (orange) and 2 samples from 
the lymph node metastasis (data not shown) but not in the GG1 focus (focus 5, green). By mxRNAseq, 
although the GG5 and GG1 samples expressed multiple T2:ERG gene fusions at similar levels, the GG1 

Figure 3. Derived prognostic signatures in the context of prostate cancer multifocality with extreme grade differences. (A) Our cohort included 8 infor-
mative multifocal cases (MF cases 1–8) with “extreme” grade differences (e.g., at least 1 low-grade [GG1] focus and at least 1 spatially independent high-
grade [≥GG4] focus), as shown in the diagram on top. An integrative heatmap summarizes mxRNAseq profiling data supporting multifocality of these 
cases below. Individual T2:ERG fusion isoform expression and SPOP mutation status are shown for the 35 samples from these cases (case and GG of each 
sample shown according to the legend). T2:ERG/SPOP status (and unique T2:ERG isoform expression) support multifocality in these cases as described in 
the text). (B) Histology and mxRNAseq support extreme multifocality in case MF1, which had a large pT3a GG5 index tumor focus (orange). The poste-
rior capsule section additionally contained a small, nearby but spatially distinct GG1 focus (green). Two samples were taken from the GG5 index focus 
(cyan 1 and 2), and 1 sample was taken from the GG1 focus (green, 3). Sample name, profiled morphologic GG, and SPOP mutation status is shown, along 
with high- and low-power histopathology of the indicated samples (original magnification, ×10 [top]; ×4 [bottom]). The morphology and SPOP p.F133V 
mutation only in the GG1 focus support clear multifocality. (C) Derived prognostic scores (mxCCP, mxGPS, mxGC), as well as expression levels of candidate 
prognostic long noncoding RNA (lncRNA) biomarkers (SCHLAP1 and PRCAT104) from MF 1 samples, are indicated as red points (stratified by profiled GG) 
overlying the distribution of all 125 localized prostate cancer samples from our cohort (see Figure 2A).
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Figure 4. Derived prognostic scores are not robust to multifocal prostate cancer with extreme grade differences. (A) Derived prognostic scores (mxCCP, 
mxGPS, mxGC) from all profiled multifocal cases (MF2–8; MF1 in Figure 3) with extreme grade differences (i.e., at least 1 sample each from GG1 and ≥GG4 
tumor foci). For each case, profiled samples are indicated by colored points overlying the overall cohort distribution, as in Figure 3C. (B) Histology and 
mxRNAseq support extreme multifocality in case MF3, which had a large pT3a GG5 index tumor focus (cyan) and a spatially distinct small GG1 focus 
(focus 5, green). Informative samples from the GG5 (orange) and GG1 (focus 5, green) foci are indicated (as well as a sampled area of normal prostate 
stroma in gray), with the chart showing sample name, profiled morphologic GG, and TP53 mutation/chromosome [chr] 9p deletion status, along with 
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focus uniquely expressed the T2:ERG.EF194202 isoform (Figure 3A). Collectively, these results demon-
strate that the low- and high-grade tumor foci in this case represent true multifocality at the extremes of  
aggressiveness, making this case ideal to assess the robustness of  transcriptomic biomarkers to multifocality.

Assessment of  the transcriptional profile of  other MF cases (see Supplemental Results and Supplemen-
tal Figures 8A and 9 for additional case descriptions) consistently demonstrated similar findings in nearly 
all cases (Figure 4C and Supplemental Figure 8B). Across the 8 extreme grade-discordant MF cases, we 
observed a significantly higher mxGPS score (P = 6.2 × 10–6), mxCCP score (P = 3.5 × 10–5), mxGC score (P 
= 0.0004), and SCHLAP1 expression (P = 4.2 × 10–5) in ≥GG4 versus GG1 samples (n = 12 and 15, respec-
tively; Figure 4C and Supplemental Figure 8B). Likewise, PRCAT104 was significantly lower in the ≥GG4 
versus GG1 samples (P = 0.008; Supplemental Figure 8B). Taken together, our data demonstrate that, in 
the context of  true multifocality, derived prognostic expression signatures and single-gene biomarkers are 
not robust across concomitant tumor foci with extremes of  histologic grade.

Discussion
We developed a targeted mxRNAseq assay to enable comprehensive profiling of  prostate cancer–specif-
ic transcriptomic events, including derived commercially available prognostic tests, across routine pros-
tate cancer FFPE specimens. Applying this assay to prostate cancer tissue samples — including cases of  
extreme grade discordant multifocality (distinct foci of  GG1 and ≥GG4) — we demonstrate that derived 
commercially available prognostic signatures and candidate single-transcript biomarkers obtained from a 
low-grade cancer focus do not predict the presence of  coexisting high-grade foci.

An important feature of  localized prostate cancer is the nearly ubiquitous nature of  multifocal disease, 
with most men having more than one genomically distinct tumor focus in the prostate at radical prostatecto-
my. Such multifocality has the potential to profoundly influence multiple aspects of  prostate cancer clinical 
management, particularly a recommendation to pursue active surveillance. A common question faced by 
physicians and patients alike when confronted with a new diagnosis of  apparent low-grade/low-risk prostate 
cancer is could there be more aggressive disease elsewhere in the prostate? To be sure, inter/intrafocal genom-
ic heterogeneity is not unique to prostate cancer; it has been reported in several other malignancies, including 
kidney cancer, lung cancer, and medulloblastoma, and has been shown to affect cancer outcomes (10, 27, 28). 
Notably, in a recent genomic characterization of  localized prostate cancer, multiple subclones of  cancer were 
found in 59% of patients(29). The authors reported that multiclonality was associated with a higher risk of  
relapse among cases of  localized prostate cancer, suggesting that biomarkers that can capture tumor hetero-
geneity should be developed for low-risk tumors in patients thought to be suitable for active surveillance (29).

Current tissue-based prognostic assays applicable to patients considering active surveillance after biop-
sy, such as Prolaris, Oncotype DX, and Decipher, were constructed on the premise that risk stratification 
can be significantly improved through molecular assessment of  the biopsy detected prostate cancer (4–7). 
In validation studies, these tests were shown to improve on the performance of  multivariate clinicopath-
ological models for predicting adverse surgical pathology as well as longer term oncologic outcomes (6, 
30–32). However, in many of  these studies, the initial development and validation was performed using 
prostatectomy tissue, enabling a priori capture of  the index/highest grade lesion (6, 30–32). Importantly, 
one test directly claims that its signature is capable of  capturing the biological profile of  all prostate cancer 
foci within a given prostate, even if  the biopsy missed the higher grade focus (6). Tests with such robustness 
to multifocality would be of  tremendous clinical value, especially when one considers the large numbers of  
men diagnosed with low-risk prostate cancer every year in the United States. Although these tests were not 
validated on low-grade cancers in the context of  multifocality, the 2018 National Comprehensive Cancer 
Network guidelines include Oncotype Dx, Decipher, and Prolaris as methods of  molecular risk stratifica-
tion for men with very-low- and low-risk disease on biopsy. Additionally, while these tests are not recom-
mended by the American Urological Association and the European Association of  Urology for use in this 
setting, Oncotype Dx and Prolaris have received positive coverage decisions from Centers for Medicare and 
Medicaid Services and many urologists may be using these tests in this manner.

histopathology of the indicated samples (original magnification, ×4). The morphology and distinct TP53 p.C238Y/9p deletion status support clear 
multifocality, in addition to the unique T2:ERG isoform expression seen only in the GG1 focus (Figure 3A). (C) Derived prognostic scores are not robust to 
multifocal prostate cancer with extreme grade differences. Derived prognostic scores from all GG1 samples versus ≥GG4 tumor foci from the 8 multifocal 
cases with extreme grade group differences shown in Figure 3, A and C, are plotted (2-sample, unpaired 2-sided t test P values are shown).
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Without accurate assessment, patients who initially have an unsampled higher grade focus may appear 
to “rapidly progress” on active surveillance when subsequent biopsy samples identify a preexisting high-
grade focus or unexpected aggressive pathology at radical prostatectomy in those who elect definitive man-
agement (33). Our study, which also included profiling of  coisolated DNA to inform on true multifocality, 
clearly demonstrates that the molecular profile of  a single cancer focus does not capture the multifocal 
genomic and transcriptomic landscape of  primary prostate cancer, particularly when the sampled focus is 
low grade. These findings are supported by smaller scale studies of  multifocal prostate cancer that found 
significant interfocal heterogeneity (21, 34). Notably, Wei et al. also observed discordant RNA expression 
profiles among distinct foci from 4 radical prostatectomy samples; however, this study did not use precise-
ly isolated FFPE samples and no correlation between GG and prognostic scores was determined (21). 
Likewise, Radtke et al. demonstrated that although GC scores were generally consistent between MRI/
ultrasound fusion-guided biopsies containing the highest grade prostate cancer and the index foci at pros-
tatectomy in a cohort of  7 patients, 1 patient showed discordant GC profiles in high- and low-grade biopsy 
cores (34). Additional large-scale studies are needed to examine the gene expression profiles associated 
with cancers identified by MRI-guided biopsy.

Our study has several limitations. First, we did not precisely assess for robustness to intrafocal tumor 
heterogeneity. Several tissue-based prognostic tests have directly assessed this, and orthogonal protein and 
genomic data support this concept (6, 35). Second, we did not use the actual commercially available tests 
(Oncotype Dx, Prolaris, or Decipher, including their direct analytical methods) or perform our assay in a 
CLIA-accredited laboratory environment. Specific to the challenges of  deriving scores on an orthogonal 
platform, we were only able to design amplicons for 18 of  the 22 included transcripts in the GC score, and 
we used the housekeeping genes of  GPS to normalize CCP scores. Nevertheless, numerous lines of  evi-
dence described in the Supplemental Methods support the validity of  our results and observed expression 
profiling. It is unlikely that the commercial assays would perform any differently in assessing multifocal 
disease, given that our results demonstrated clear differences in the overall gene expression profile of  low- 
and high-grade prostate cancer. Third, we utilized prostatectomy tissue samples for multifocality robustness 
assessment instead of  biopsy tissue samples as would be typically assessed by these commercially available 
assays. This approach was necessary to ensure profiling of  true multifocal disease. Studies are ongoing to 
perform a similar assessment on biopsy tissues (e.g., assessing concordance of  signatures from biopsies 
with small volume, GG1 prostate cancer on one side of  the prostate versus biopsies with ≥GG4 prostate 
cancer on the contralateral side).

Both tumor multifocality and heterogeneity represent significant challenges in the evaluation and man-
agement of  men with primary prostate cancer. In aggregate, our findings suggest that without clear valida-
tion in patients with extremes of  GG discordant multifocal disease, caution should be exercised when using 
expression-based genomic tests obtained from a single low-grade cancer focus to make treatment decisions. 
Development of  blood, urine, tissue, and imaging-based biomarkers that can overcome obstacles imposed 
by prostate cancer multifocality and heterogeneity are urgently needed to better inform initial management 
in the thousands of  men with apparent low-grade prostate cancer considering active surveillance each year.

Methods
Patients and specimens. We assembled a retrospective, multi-institution, nonconsecutive cohort of  193 
FFPE tissue specimens chosen to represent the complete spectrum of  prostate cancer progression (Sup-
plemental Table 1). Additionally, we included melanoma samples (n = 2) and FFPE prostate cancer cell 
line pellets (n = 3; 22RV1, LNCAP, and VCAP) as controls for specific amplicons. Relevant demograph-
ic, clinical, and pathologic data were extracted from each patient’s medical chart. All profiled prostate 
cancer samples were evaluated for multifocality, assigned a Gleason score and GG, and outlined for 
isolation by a board certified anatomic pathologist with experience in prostate and molecular pathology 
(36). We classified samples from regions of  Gleason score 4+3 cancer with tertiary pattern 5 as GG4 
given equivalently aggressive behavior (37).

mxRNAseq assay design. Relevant prostate cancer transcripts and prognostic signatures were identified 
from internal and external comprehensive expression and mutational profiling efforts, clinically available 
prognostic tests, and potentially useful biomarkers. Using the Ampliseq White Glove service, we designed a 
custom 306-amplicon multiplex Ampliseq RNA-sequencing (mxRNAseq) panel targeting multiple classes of  
relevant transcriptional alterations (Supplemental Table 2). Amplicons were included to assess 3 previously 
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assessed candidate housekeeping genes (19), all housekeeping (n = 5) and target genes (n = 12) from Onco-
type Dx GPS (6), and all target genes (n = 31) from Myriad’s Prolaris assay [CCP score] (4). We were able to 
design amplicons for 18 of  the 22 included transcripts in GenomeDX’s Decipher prostate cancer test (which 
generates a GC score, with 3 distinct amplicons each targeted against different regions of  the MYBPC1, 
ANO7, and UBE2C loci [for a total of  24 amplicons]) (7).

RNA and DNA NGS and bioinformatics methods. RNA and DNA isolation and NGS were performed as 
detailed in the Supplemental Methods and as previously described (18, 38, 39). Detailed bioinformatics meth-
ods, fusion isoform- and partner-level analyses, AR and AR splice variant analysis, and DNA variant calls and 
copy number analyses are as previously reported and described in the Supplemental Methods (18, 38, 40).

Derivation of  commercially available prognostic scores. For each sample, we derived CCP, GPS, and GC 
(mxCCP, mxGPS and mxGC scores, respectively) based on the normalized expression of  the specific target 
genes included in each respective assay as described in detail in the Supplemental Methods (5, 7, 20). Briefly, 
for mxCCP scores, we used the previously published formula for calculating CCP scores for nonreplicate 
experiments using GPS housekeeping genes (5). For mxGPS, scores were derived by adding log2-normalized 
gene expression values for each score module and adding the weighted modules as previously published (20). 
Given that the Decipher GC score was built using a random forest-based classifier and not all target tran-
script locations have been published, we calculated mxGC scores as previously reported (7) and as follows: 
(average of  the log2-normalized values of  overexpressed in prostate cancer progression target genes) – (aver-
age of  the log2-normalized values of  underexpressed in prostate cancer progression target genes).

Statistics. One-way ANOVA tests were used to compare differences in mean score among GG1–5 for 
derived prognostic scores (mxCCP, mxGPS, and mxGC) and normalized expression of  single candidate 
prognostic targets. Spearman rank-order correlations (rs) were determined for derived prognostic scores and 
normalized expression of  single candidate prognostic targets versus GG. Two-sample, unpaired, two-tailed 
t tests were performed to compare derived prognostic scores and single prognostic targets between groups 
of  samples. All statistical analyses were performed using R. P < 0.05 was considered statistically significant.

Study approval. The study was approved by the institutional review boards of the University of Michigan 
Medical School, Office of Research, University of Michigan Medical School. This is a retrospective assessment 
of archived specimen with minimal risks, thus informed consent was not required for the conduct of this study.
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