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Analytical approximation to the model for latency reversal with an LRA  

The ordinary differential equations (ODEs) describing latency reversal with an LRA (see the main text for 

the description of the model) are 

𝑑𝐿
𝑑𝑡

= (𝜌 − 𝑑)𝐿 − 𝜂𝐿 − 𝛼𝐿 + 𝜔𝑅 

𝑑𝐴
𝑑𝑡

= (𝜌 − 𝛿)𝐴 + 𝛼𝐿 − 𝛾𝐴 

𝑑𝑅
𝑑𝑡

= (𝜌 − 𝑑)𝑅 + 𝛾𝐴 − 𝜔𝑅 

(S1) 

This is a linear system of ODEs and thus can be solved analytically. However, the solution to the system 
involves solving a characteristic equation with a 3rd order polynomial, and thus it is difficult to understand 
intuitively. To derive an approximation that is understandable, such that intuition can be drawn upon, we 
make the simplifying assumption that the induced cells (A) go to the uninduced state (L) directly without 
going through the refractory state. Then, the ODEs become 

𝑑𝐿
𝑑𝑡

= (𝜌 − 𝑑)𝐿 − 𝜂𝐿 − 𝛼𝐿 + 𝛾𝐴 

𝑑𝐴
𝑑𝑡

= (𝜌 − 𝛿)𝐴 + 𝛼𝐿 − 𝛾𝐴 

(S2) 

Solving the ODE system we find the solution for the total size of the reservoir (L(t)+A(t)) is 

𝐿(𝑡) + 𝐴(𝑡) = 𝐶2 3
1
2𝛼

(𝑑 + 𝜂 − 𝛼 − 𝛿 − 𝛾 − 𝐾)𝑒89:
2
;(<=>=?=@=A:B)CDE

+ 𝐶; 3
1
2𝛼

(𝑑 + 𝜂 − 𝛼 − 𝛿 − 𝛾 + 𝐾)𝑒89:
2
;(<=>=?=@=A=B)CDE 

where 𝐾 = F𝛼; + 2𝛼(𝛾 + 𝑑 + 𝜂 − 𝛿) + (𝑑 + 𝜂 − 𝛿 − 𝛾);, and C1 and C2 are constants that are 
determined by the initial conditions.  



 

To further simplify this expression, we assume that the natural death rate 𝜂and natural activation rate 𝛼 
are negligible and thus set 𝜂 = 0 and 𝛼 = 0. This is a good assumption because death or activation of 
latently infected cells occur infrequently and thus they do not contribute to the dynamics of the reservoir 
during the short time period of LRA exposure considered in this study. Note that, the value of the 
parameter 𝜌 used in this study is also small, and can be neglected in theory. However, since we are 
interested in how the reservoir size depends on changes in 𝜌 during therapeutic interventions, such as 
with a LRA or anti-proliferative drugs, we keep this parameter in the expression. The solution to the total 
reservoir size then becomes 

𝐿(𝑡) + 𝐴(𝑡) = 𝐶2 3
1
2𝛼

(−𝛼 − 𝛿 − 𝛾 − 𝐾)𝑒89:
2
;(<=>=?:B)CDE

+ 𝐶; 3
1
2𝛼

(−𝛼 − 𝛿 − 𝛾 + 𝐾)𝑒89:
2
;(<=>=?=B)CDE 

where K becomes 𝐾 = F(𝛼 + 𝛾 + 𝛿); − 4𝛼𝛿. 

 

Since 𝜌 − 2
;
(𝛼 + 𝛾 + 𝛿 − 𝐾) > 𝜌 − 2

;
(𝛼 + 𝛾 + 𝛿 + 𝐾), the long-term dynamics are governed by the 1st 

term in the Eqn. above (with the highest exponent on the exponential, and thus we drop the 2nd term, 
and get 

𝐿(𝑡) + 𝐴(𝑡) ≈ 𝐶2 3
1
2𝛼

(−𝛼 − 𝛿 − 𝛾 − 𝐾)𝑒89:
2
;(<=>=?:B)CDE 

Then the long-term reduction in the total reservoir size therefore can be expressed as 

𝐿(𝑡) + 𝐴(𝑡)
𝐿(0) + 𝐴(0)

≈ 𝑒89:
2
;L<=>=?:F(<=>=?)

M:N<?OCD  (S3) 

Let 𝛹 be the long-term exponential rate of reservoir decline, i.e. the negation of the exponent, so 

𝛹 = 2
;
L𝛼 + 𝛾 + 𝛿 − F(𝛼 + 𝛾 + 𝛿); − 4𝛼𝛿O − 𝜌.    (S4) 

  



 

Supplemental	Figure	1.	The	dependence	of	the	HIV	reservoir	reduction	(r.r.)	on	different	LRA	
pulsatile	 regimens	 and	 parameter	 combinations.	 The	 middle	 panel	 shows	 the	
dependence	 on	 the	 LRA	 regimens	 using	 baseline	 parameter	 values:	 a=1.8/day,	
d=0.5/day, g=1/day	and w=1/day.	Other	panels	show	the	dependence	when	one	of	the	baseline	
parameter	value	is	altered.	Note	that	the	baseline	value	of	d	here	is	chosen	to	be	0.5/day	to	
highlight	the	benefits	of	pulsatile	regimens;	when	d=0.05/day	(used	as	an	alternative	baseline	
in	the	main	figures),	the	reservoir	reduction	is	minimal.	Overall,	Model	simulations	suggest	
that	when	the	period	of	vulnerability	(1/g)	is	the	same	on	and	off	LRA,	one	LRA	dose	followed	
by	a	sufficiently	long	resting	period	before	another	LRA	dose	is	the	best	strategy,	although	
the	benefits	of	such	a		pulsatile	regimen	heavily	depends	on	parameter	values	as	indicated	in	
the	different	panels	(note	that	the	scales	of	the	color-axis	are	different	in	different	panels). 

 


