Sex differences in IL-17 contribute to chronicity in male versus female urinary tract infection

Anna Zychlinsky Scharff^{1,2,‡}, Matthieu Rousseau^{1,2,‡}, Livia Lacerda Mariano^{1,2}, Tracy Canton^{1,2}, Camila Rosat Consiglio^{1,2}, Matthew L Albert^{1,2,†}, Magnus Fontes^{3,4,5,†}, Darragh Duffy^{1,2}, Molly A Ingersoll^{1,2,*}

¹Unit of Dendritic Cell Immunobiology, Department of Immunology, Institut Pasteur, 75015

Paris, France

²INSERM U1223, 75015 Paris, France

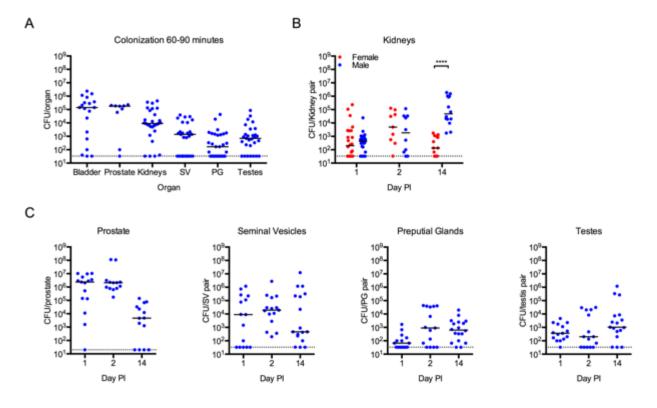
³International Group for Data Analysis, Institut Pasteur, 75015 Paris, France

⁴The Centre for Mathematical Sciences, Lund University, 221 00 Lund, Sweden

⁵The Center for Genomic Medicine at Rigshospitalet & Persimune, Copenhagen, Denmark

†Current address: Department of Cancer Immunology, Genentech Inc, South San Francisco,

California, U.S.A


‡ These authors contributed equally

*Corresponding author: Molly A. Ingersoll <u>molly.ingersoll@pasteur.fr</u> Institut Pasteur 25 Rue du Dr Roux 75015 Paris, France +33 1 45 68 80 71

Conflict of interest: The authors have declared that no conflict of interest exists.

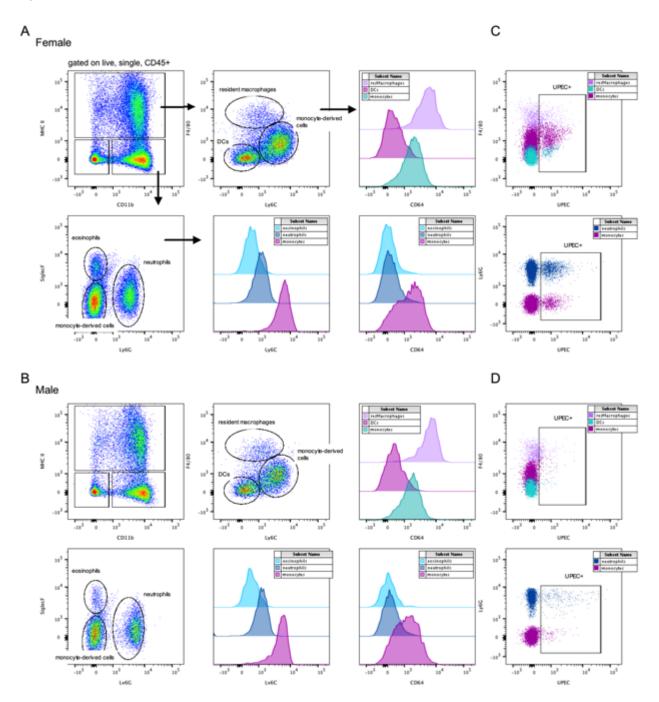

Supplementary Materials:

Figure S1.

Figure S1. Male mice are colonized by uropathogenic *E. coli* **following intravesical instillation** *via* **the urethra.** (**A**) Male C57BL/6J mice were infected with 10⁷ colony forming units (CFU) of UPEC strain UTI89-RFP-kan^R and CFU/organ was determined 60-90 minutes post-infection (PI). (**B**) Female and male mice were infected with 10⁷ CFU of UPEC strain UTI89-GFP-amp^R or UTI89-RFP-kan^R and CFU/kidney pair was determined at the indicated times PI. (**C**) Graphs depict CFU/organ in male mice infected with 10⁷ CFU of UPEC at the indicated times PI. Data are pooled from 2-4 experiments, n=4-10 mice/group in each experiment. Each dot represents one mouse. Dotted lines depict the limit of detection for the assay, 20 or 33 CFU/organ.

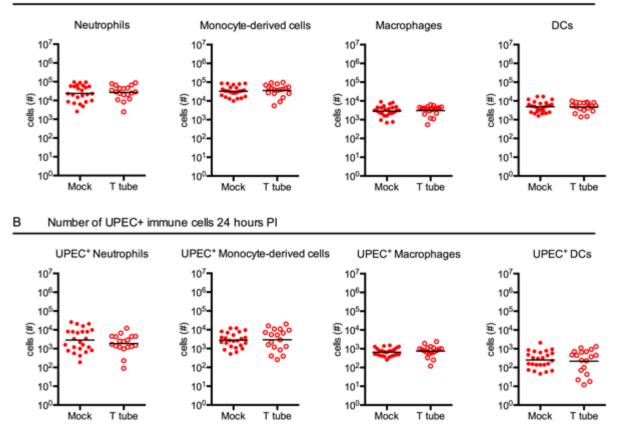


Figure S2. Gating strategy to identify immune cells and UPEC⁺ immune cells. Plots demonstrate the gating strategies used for analyses shown in **Figures 3** and **4**. Representative plots for (**A**) female and (**B**) male mice are shown. Following infection with 10⁷ CFU UPEC strain UTI89-RFP-kan^R, bladders were digested and immunostained as described in the Methods and (32). Each sample, consisting of a single

bladder, was acquired on a BDFortessa SORP. To identify infiltrating immune cells, samples were gated on CD45⁺ cells, excluding doublets. Resident macrophages (resMacrophages) were identified as MHC II⁺ CD11b⁺ F4/80⁺ CD64⁺ Ly6C⁻ Ly6G⁻, dendritic cells (DCs) were MHC II⁺ CD11b^{+/-} CD103^{+/-} CD11c⁺ F4/80⁻ CD64⁻ Ly6C^{+/-} Ly6G⁻, monocyte-derived cells (monocytes) were CD11b⁺ Ly6G⁻ Ly6C⁺ MHC II⁻ or MHC II⁺ F4/80^{int} CD64^{int}, neutrophils were identified as CD11b⁺ Ly6G⁺ MHC II⁻ F4/80⁻ CD64⁻, eosinophils were CD11b⁺ SiglecF⁺ Ly6G⁻ MHC II⁻ F4/80^{int} CD64⁻. (C-D) UPEC⁺ immune cells were identified by population as specified above and then all RFP⁺ cells were gated in (C) female mice or (D) male mice.

Figure S3.

A Number of immune cells 24 hours PI

Figure S3. Testosterone treatment in female mice does not alter immune cell infiltration or bacterial phagocytosis. (**A-B**) Female C57BL/6J mice were implanted with empty tubing (Mock) or slow release tubing containing testosterone (T tube) and allowed to recover 1 week before infection with 10⁷ CFU UPEC. Graphs show the absolute number of (**A**) infiltrating immune cells and (**B**) UPEC⁺ immune cells at 24 hours PI. Data are pooled from 4 experiments, n=4-5 mice/group in each experiment, each dot is one mouse, lines are medians. Mann-Whitney test, no statistically significant differences found.

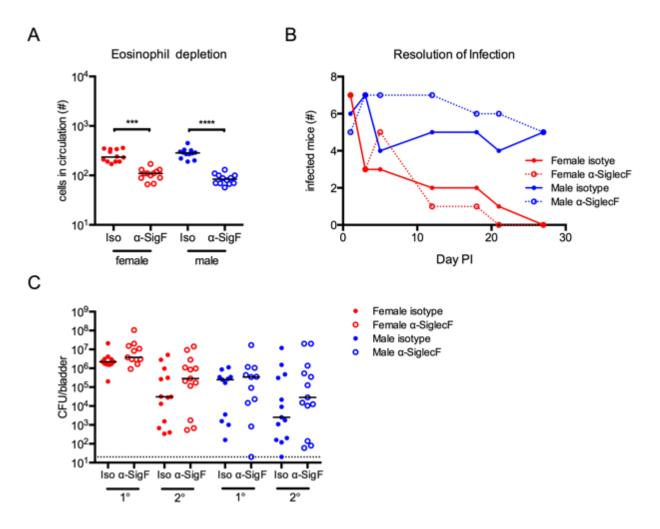


Figure S4. Eosinophils do not mediate resolution of UTI. (A-B) Female and male C57BL/6J mice were treated with α -SiglecF (α -SigF) antibody or isotype (Iso) control and infected with 10⁷ CFU UPEC. Graphs depict the (A) number of eosinophils in circulation per μ L blood in control and treated mice on the day of infection, (B) number of infected mice determined by urine sampling over time, (C) CFU at 24 hours post primary (1°) or challenge (2°) infection in the bladder. In A and C, data are pooled from 2 experiments, n=6-7 mice/group in each experiment, each dot is one mouse, lines are medians. Data in B are representative of 3 independent experiments, n=6 mice/group/experiment. *** p<0.001, **** p<0.0001 Kruskal-Wallis test comparing isotype to α -SiglecF-treated mice within a single sex, with Dunn's post-test to correct for multiple comparisons.

Figure S5.

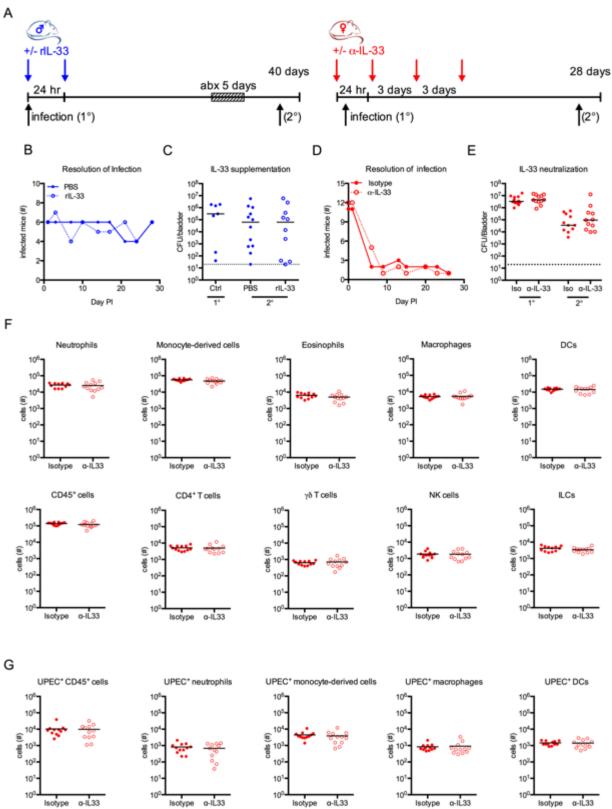


Figure S5. Addition or neutralization of IL-33 does not change the course of infection in male or female mice, respectively. (A) Experimental design in which male mice (blue) were supplemented with recombinant IL-33 (rIL-33) or female mice (red) were treated with α -IL-33 neutralizing antibody. All mice were infected with 10⁷ CFU UPEC and bacteriuria was assessed over time. (**B-G**) Graphs show (**B**) the number of infected male mice over time and (**C**) CFU at 24 hours post primary (1°) or challenge (2°) infection in the bladder, in PBS or rIL-33 treated male mice; (**D**) the number of infected female mice over time and (**E**) CFU at 24 hours post primary (1°) or challenge (2°) infection in the bladder, in isotype or α -IL-33 treated female mice; and the absolute number of the (**F**) indicated immune cell populations and (**G**) UPEC⁺ immune cell populations in bladders 24 hours PI in isotype or α -IL-33 treated female mice. Data in **B** and **D** are representative experiments of 2 independent experiments, n=6 mice/group/experiment. In **C**, **E-G**, data are pooled from 2 experiments, n=4-6 mice/group in each experiment, each dot is one mouse, lines are medians. Mann-Whitney test, no statistically significant differences found.

Figure S6.

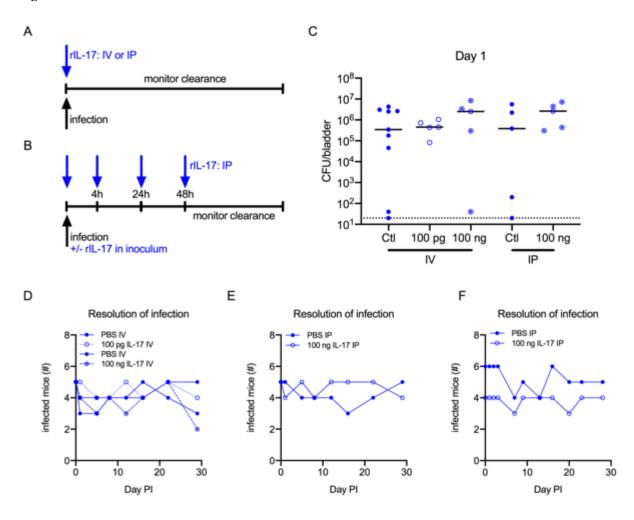


Figure S6. Recombinant IL-17 does not change the course of infection in male mice. (A-B) Experimental design in which male mice were supplemented with recombinant IL-17 (A) one time or (B) four times during infection. All mice were infected with 10^7 CFU UPEC and bacteriuria was assessed over time. (C) Graph shows CFU at 24 hours PI in the bladder, in male mice treated with PBS or rIL-17-one time. (D-F) Graphs show the number of infected male mice over time following (D) single intraveneous, (E) single intraperitoneal, or (F) multiple intraperitoneal injections of IL-17. Each graph (C-F) depicts an independent experiment, n=4-6 mice/group/experiment. In C, each dot is one mouse, lines are medians, Ctl IV shows the control groups for 100 pg and 100 ng pooled together. Mann-Whitney test, no statistically significant differences.

Table S1. Differentially expressed genes in *E. coli* **stimulated donor blood**. Differentially expressed genes (DEG) following whole blood stimulation of 300 healthy female and 300 healthy male donors aged 20-49 years. Table shows p-values and q-values as determined by T-test and FDR T-test respectively, and fold change differences (values >1 reflect higher expression in females), between female and male whole blood stimulated with heat killed *E. coli*.

Molecule	Clone	Vendor
CD45	30-F11	BD Bioscience
CD64	X54-5/7.1	BD Bioscience
CD103	M290	BD Bioscience
CD11b	M1/70	BD Bioscience
CD11c	N418	eBioscience
F4/80	CI:A3-1	AbD Serotec
Ly6C and Ly6G (Gr-1 antibody)	RB6-8C5	BD Bioscience
Ly6G	1A8	BD Bioscience
Ly6C	AL-21	BD Bioscience
MHC-II (I-A/I-E)	M5 or 114.15.2	eBioscience
SiglecF	E50-2440	BD Bioscience
CD3	145-2C11	BD Bioscience
CD4	RM4-5, GK1.5	BD Bioscience
CD25	PC61	BD Bioscience
CD90.2	53.2.1	ebioscience
IL-4Rα (CD124)	mIL4R-M1	BD Bioscience
ΤCR γ/δ	GL-3	Biolegend
NK1.1	PK136	BD Bioscience