
Tubular injury triggers podocyte dysfunction by β -catenin-driven release of MMP7

Roderick J. Tan, Yingjian Li, Brittney M. Rush, Débora Malta Cerqueira, Dong Zhou, Haiyan Fu, Jacqueline Ho, Donna Beer Stolz, Youhua Liu

JCI Insight. 2019. <https://doi.org/10.1172/jci.insight.122399>.

Research In-Press Preview **Nephrology**

Graphical abstract

Find the latest version:

<https://jci.me/122399/pdf>

1 **Tubular injury triggers podocyte dysfunction by β -catenin-driven release of MMP-7**

2

3 Roderick J. Tan¹, Yingjian Li², Brittney M. Rush¹, Débora Malta Cerqueira³, Dong Zhou²,

4 Haiyan Fu⁴, Jacqueline Ho³, Donna Beer Stolz⁵, and Youhua Liu^{2,4}

5

6 ¹Renal-Electrolyte Division, Department of Medicine, ²Department of Pathology, ³Division of

7 Pediatric Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine,

8 Pittsburgh, PA; ⁴Division of Nephrology, Nanfang Hospital, Southern Medical University,

9 Guangzhou, China; ⁵Department of Cell Biology, University of Pittsburgh School of Medicine,

10 Pittsburgh, PA.

11

12 Running Title: Tubular MMP-7 Enhances Proteinuria

13

14 Abstract: 198

15 Word count: 6,176

16

17 To whom correspondence should be addressed:

18 Roderick Tan, M.D., Ph.D., Department of Medicine, Renal-Electrolyte Division, 828A Scaife

19 Hall, 3550 Terrace Street, Pittsburgh, PA 15261. Phone: (412) 624-4008. Fax: (412) 647-6222.

20 Email: TANRJ@upmc.edu; and Youhua Liu, Ph.D, Department of Pathology, University of

21 Pittsburgh, S-405 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15261. Phone:

22 (412) 648-8253. Fax: (412) 648-1916. E-mail: yhliu@pitt.edu

23

24 **ABSTRACT**

25 Proteinuric chronic kidney disease (CKD) remains a major health problem worldwide.
26 While the progression of primary glomerular disease to induce tubulointerstitial lesions is well
27 established, the effect of tubular injury to trigger glomerular damage is poorly understood. We
28 hypothesized that injured tubules secrete mediators that adversely affect glomerular health. To
29 test this, we utilized conditional knockout mice with tubule-specific ablation of β -catenin (Ksp- β -
30 cat-/-), and subjected them to chronic angiotensin II (Ang II) infusion or adriamycin. Compared
31 to control mice, Ksp- β -cat-/- mice were dramatically protected from proteinuria and glomerular
32 damage. Matrix metalloproteinase-7 (MMP-7), a downstream target of β -catenin, was upregulated
33 in treated control mice, but this induction was blunted in the Ksp- β -cat-/- littermates. Incubation
34 of isolated glomeruli with MMP-7 *ex vivo* led to nephrin depletion and impaired glomerular
35 permeability. Furthermore, MMP-7 specifically and directly degraded nephrin in cultured
36 glomeruli or cell-free systems, and this effect was dependent on its proteolytic activity. *In vivo*,
37 expression or infusion of exogenous MMP-7 caused proteinuria, and genetic ablation of MMP-7
38 protected mice from Ang II-induced proteinuria and glomerular injury. Collectively, these results
39 demonstrate that β -catenin-driven MMP-7 release from renal tubules promotes glomerular injury
40 via direct degradation of the key slit diaphragm protein nephrin.

41

42 **Keywords**

43 Chronic kidney disease, proteinuria, MMP-7, nephrin, podocyte, angiotensin

44

45 **INTRODUCTION**

46 Chronic kidney disease (CKD), or the permanent loss of renal function, is a growing health
47 concern. In the United States alone CKD affects more than 35 million individuals (1). In
48 particular, CKD characterized by abnormal urinary protein excretion (proteinuria) carries a high
49 risk of progression to end-stage renal disease (ESRD) (2). Unfortunately, treatment for proteinuric
50 CKD remains extremely limited. In this context, a better understanding of the underlying
51 pathologic mechanisms is essential for developing more effective therapies for CKD.

52 Regardless of the initial etiology, CKD progression to ESRD is characterized by
53 increasingly widespread lesions in different compartments of kidney parenchyma. While diseases
54 that primarily affect the glomerular compartment of the nephron (e.g. glomerulonephritis) are
55 known to lead eventually to tubular injury and interstitial fibrosis (3), whether and how tubular
56 injury affects the glomerular compartment are less well established and poorly understood. Studies
57 show that kidney tubules can affect glomerular biology via signals originating from the macula
58 densa, a specialized portion of the thick ascending limb of the loop of Henle (4). Considering the
59 close apposition of renal tubules to glomeruli, it is possible that tubules influence glomerular health
60 in other ways. Interestingly, in a model of acute kidney injury (AKI) that specifically targeted
61 renal tubules, Grgic et al. found that approximately 20% of the glomeruli developed sclerotic
62 lesions (5). This was accompanied by an increase in proteinuria and suggested a significant tubular
63 effect on glomerular health. However, the underlying mechanism by which tubular injury causes
64 glomerular damage remains elusive.

65 Wnt/β-catenin is a key signaling cascade that is critical for normal organogenesis. In this
66 pathway, extracellular Wnts bind to cell-surface Frizzled receptors, transducing a signal that
67 allows for the accumulation of cytoplasmic β-catenin, which then translocates to the nucleus and

68 regulates target genes (6). While highly active during development, Wnt/β-catenin signaling
69 becomes quiescent in adult kidneys and reactivated during kidney injury (7-10). Activation of this
70 signaling leads to a fibrotic response and promotes the progression of CKD via the upregulation
71 of profibrotic mediators such as fibronectin, the renin-angiotensin system, plasminogen activator
72 inhibitor-1 and matrix metalloproteinase-7 (MMP-7) (6, 11-13). Induction of MMP-7 by Wnt/β-
73 catenin is particularly interesting, because it is the most robust β-catenin downstream target, and
74 its expression primarily occurs in renal tubules (14-16). As a secreted protein that can be detected
75 in the urine, MMP-7 is an effective noninvasive urinary biomarker for activation of Wnt/β-catenin
76 after kidney injury (16, 17).

77 In the current study, we evaluated kidney injury after chronic infusion of angiotensin II
78 (Ang II) using conditional knockout mice with tubule-specific ablation of β-catenin (18).
79 Interestingly, although the genetic mutation was restricted to renal tubules, we found that these
80 mice had significant protection against glomerular injury and proteinuria, accompanied by a
81 reduced MMP-7 expression. These results were replicated in an adriamycin-induced proteinuria
82 model. We further demonstrate that MMP-7 could degrade the slit diaphragm protein nephrin and
83 impaired integrity of the glomerular filtration barrier. *In vivo* exposure of mice to elevated MMP-
84 7 levels was sufficient to cause proteinuria, and global ablation of MMP-7 protected mice from
85 Ang II-induced glomerular injury. Our findings illustrate that tubular injury promotes glomerular
86 damage by β-catenin-driven release of MMP-7.

87

88

89

90 **RESULTS**

91 **Mice with tubule-specific ablation of β -catenin are protected from Ang II-induced**
92 **albuminuria and glomerular injury**

93 Tubule-specific β -catenin knockout mice (Ksp- β -cat $^{-/-}$), in which the β -catenin gene was
94 specifically disrupted in renal tubular epithelia by mating the β -catenin-floxed mice and Ksp-
95 cadherin promoter-driven Cre recombinase transgenic mice, were described and characterized
96 previously (18). We exposed these mice to 1.5 mg/kg/day Ang II via osmotic minipumps, which
97 causes significant glomerular injury and albuminuria (19-22). In contrast to age-, sex-matched, β -
98 catenin-floxed littermates (Ksp- β -cat $^{+/+}$), Ksp- β -cat $^{-/-}$ mice were significantly protected from
99 albuminuria at 14, 21 and 28 days after chronic Ang II infusion (Figure 1A). Gel electrophoresis
100 of mouse urine samples confirmed that the majority of the protein in the urine was in fact albumin
101 (Figure 1B). Immunohistochemical staining for megalin and cubulin did not reveal any qualitative
102 differences between Ang II-treated Ksp- β -cat $^{+/+}$ and Ksp- β -cat $^{-/-}$ mice (Figure 1C), suggesting it
103 was unlikely that a defect in tubular reabsorption of albumin was the cause for the increase in
104 urinary albumin excretion.

105 We then investigated differences in glomerular injury between Ksp- β -cat $^{+/+}$ and Ksp- β -
106 cat $^{-/-}$ mice. At baseline there were no histologic differences between kidneys of naïve Ksp- β -
107 cat $^{+/+}$ mice and Ksp- β -cat $^{-/-}$ littermates (data not shown). However, kidneys from Ang II-treated
108 Ksp- β -cat $^{+/+}$ mice demonstrated increased glomerular injury, with focal areas of collapse and
109 significant proteinuria in Bowman's space. In contrast, treated Ksp- β -cat $^{-/-}$ mice were protected
110 from injury (Figure 1D). We further assessed expression of nephrin and Wilms tumor 1 (WT1).
111 Nephrin is a key component of the glomerular slit diaphragm and plays an important role in
112 preventing urinary albumin excretion (23). WT1 is a transcription factor important for

113 maintenance of normal podocyte differentiation (24). Control glomeruli at basal conditions
114 demonstrated uninterrupted linear nephrin staining and abundant WT1⁺ nuclei. Significant
115 disruptions in nephrin distribution and fewer WT1⁺ nuclei were observed in Ang II-treated Ksp-
116 β -cat^{+/+} mice. The Ksp- β -cat^{-/-} mice were partially protected from these Ang II effects (Figure
117 1, D-F). Immunoblotting analyses of kidney lysates confirmed the reduction of WT1 in Ksp- β -
118 cat^{+/+} mice compared to Ksp- β -cat^{-/-} littermates (Figure 1G).

119 Glomerular changes were also demonstrated on an ultrastructural level. Using
120 transmission electron microscopy (TEM), we noted significant podocyte foot process effacement
121 in the Ksp- β -cat^{+/+} mice compared to untreated controls (Figure 2, A and B). The Ksp- β -cat^{-/-}
122 mice were largely protected from foot process effacement (Figure 2C). Similar changes were
123 noted on scanning electron microscopy (SEM) (Figure 2, D-F). These data demonstrate that Ksp-
124 β -cat^{-/-} mice are protected from podocyte injury, in spite of the fact that the genetic deletion is
125 limited to the renal tubules.

126

127 **Tubule-specific ablation of β -catenin protects mice from renal fibrosis induced by Ang II
128 infusion**

129 We compared the late fibrotic response to Ang II between Ksp- β -cat^{+/+} and Ksp- β -cat^{-/-}
130 mice. We found that Ksp- β -cat^{+/+} mice possessed significantly more fibrosis than Ksp- β -cat^{-/-}
131 mice at time of sacrifice (Figure 3A). Fibronectin protein levels tended to be higher in the Ksp- β -
132 cat^{+/+} mice as well (Figure 3, B and C). Finally, serum creatinine levels were only increased when
133 comparing Ang II-treated Ksp- β -cat^{+/+} mice to untreated controls. The Ksp- β -cat^{-/-} mice
134 creatinine values were not significantly different from either of the other groups (Figure 3D). This

135 indicates that not only are Ksp- β -cat-/- mice protected from glomerular injury, they are protected
136 from chronic interstitial fibrosis and loss of renal function at late stages of disease.

137

138 **Tubule-specific ablation of β -catenin inhibits renal MMP-7 expression**

139 To determine the mechanism for why Ksp- β -cat-/- mice suffer less podocyte injury after
140 Ang II exposure, we examined the levels of MMP-7, a secreted, low molecular weight
141 metalloprotease that is a known direct target of β -catenin signaling (14). MMP-7 is not detectable
142 by immunoblotting in normal kidneys (14). After Ang II treatment, MMP-7 levels were increased
143 in Ksp- β -cat+/, but not Ksp- β -cat-/-, kidneys (Figure 4, A and B). *MMP-7* gene expression
144 showed a threefold higher mean in Ksp- β -cat+/* and Ksp- β -cat-/- mice, although this did not reach
145 significance (Figure 4C, $P=0.092$, $n=5$). MMP-7 protein was localized to renal tubules using
146 immunohistochemistry and again showed greater expression in Ksp- β -cat+/* compared to Ksp- β -
147 cat-/- mice or untreated controls (Figure 4D). Based on these results, we hypothesized that MMP-
148 7 plays a role in glomerular injury after chronic Ang II infusion.

149

150 **Tubule-specific ablation of β -catenin protects against adriamycin-induced proteinuria and**
151 **MMP-7 upregulation**

152 In addition to the Ang II model above, we assessed wild type and Ksp- β -cat-/- mice after
153 exposure to adriamycin, a well-known inducer of proteinuria. We found that Ksp- β -cat-/- mice
154 had significantly less urinary albumin excretion than Ksp- β -cat+/* mice (Figure 5, A and B).
155 Nephrin levels were decreased in KSP- β -cat+/* mice compared to KSP- β -cat-/- mice (Figure 5C).
156 Further, Ksp- β -cat-/- mice expressed less MMP-7 by immunoblot and immunofluorescence

157 (Figure 5, D and E). This demonstrates that the effect of tubular β -catenin on MMP-7 expression
158 and urinary albumin excretion is generalizable among proteinuric CKD states.

159

160 **MMP-7 increases glomerular permeability *ex vivo* and depletes nephrin in glomerular**
161 **cultures**

162 To provide direct evidence for MMP-7 in mediating glomerular injury, we used an *ex vivo*
163 glomerular culture model system. To this end, glomeruli were isolated from normal rat kidneys
164 by a sieving method, and then exposed to recombinant MMP-7 protein (50 nM). As shown in
165 Figure 6A, MMP-7 treatment clearly increased glomerular permeability *ex vivo*, leading to an
166 increased release of albumin from glomerular capillary to surrounding media, in a glomerular
167 permeability assay. This suggests that MMP-7 can impair the integrity of the glomerular filtration
168 barrier. Electron microscopy confirmed that podocyte foot processes became effaced upon
169 addition of MMP-7 to the culture medium (Figure 6B).

170 We further examined the effect of MMP-7 on the key slit diaphragm protein, nephrin, in
171 cultured glomeruli *ex vivo*. As shown in Figure 6C, MMP-7 treatment rapidly decreased nephrin
172 protein in cultured glomeruli, as nephrin abundance decreased after incubation with MMP-7 for
173 30 minutes. The action of MMP-7 on glomerular nephrin depletion was dose-dependent (Figure
174 6D). We found that nephrin depletion was dependent on the proteolytic activity of MMP-7, as use
175 of an MMP-7 inhibitor (MMP Inhibitor II) blocked the effect (Figure 6E). Another MMP inhibitor
176 that has no specific activity against MMP-7, GM6001, had no effect on nephrin depletion. These
177 results indicate that MMP-7 can increase glomerular permeability and impair glomerular filtration
178 integrity by degrading and depleting nephrin.

179

180 **MMP-7 degrades nephrin via proteolytic cleavage**

181 To determine the specificity of the MMP-7 effects on nephrin, isolated rat glomeruli were
182 exposed to different MMPs including MMP-7, MMP-2 and MMP-9. As shown in Figure 7A,
183 while MMP-7 caused nephrin depletion, both MMP-2 and MMP-9 did not, suggesting the
184 specificity of MMP-7 action. We found that only MMP-7, but not the other MMPs, could also
185 deplete podocin, another key component of the slit diaphragm (Figure 7B). Finally, all MMPs
186 tested including MMP-2, MMP-7 and MMP-9 did not affect other plasma membrane proteins in
187 podocytes such as integrin α 3 and integrin β 1, suggesting that MMP-7 had a specific effect on slit
188 diaphragm proteins (Figure 7C).

189 To further examine the effects of MMP-7 on nephrin depletion, we utilized human
190 embryonic kidney cells (HEK-293) transfected with nephrin expression vector and then incubated
191 with recombinant MMP-7 (50 nM). Nephrin was depleted from HEK-293 cells in a time- and
192 dose-dependent manner (Figure 8, A and B). Degradation also occurred when nephrin was
193 immunoprecipitated from cell lysates and subsequently exposed to MMP-7, and this was blocked
194 effectively by MMP inhibitor II (Figure 8C), demonstrating that MMP-7 is able to degrade nephrin
195 protein in a cell-free system. To better confirm nephrin degradation by MMP-7, we incubated a
196 truncated form of purified recombinant mouse nephrin protein with MMP-7 (Figure 8D). This
197 truncated form of MMP-7 is 150 kDa in size and contains the majority of the extracellular domains
198 of nephrin (corresponding to Gln37~Thr1049), but lacks the transmembrane segment and
199 cytoplasmic tail (Figure 8E). After incubation with MMP-7, smaller proteolytic fragments of
200 nephrin were detectable in SDS-PAGE (Figure 8D, arrows), which was accompanied by the
201 reduction of 150 kDa truncated nephrin. These experiments indicate that MMP-7 is capable of

202 directly cleaving the nephrin protein, which would lead to slit diaphragm disruption, podocyte
203 injury, and proteinuria.

204

205 **Exposure to exogenous MMP-7 *in vivo* induces proteinuria**

206 To provide direct evidence for MMP-7 in mediating podocyte injury *in vivo*, we examined
207 the effect of MMP-7 overexpression on the integrity of the glomerular filtration barrier in healthy
208 animals. To this end, an MMP-7 expression vector (pCMV-MMP-7) or empty vector (pcDNA3)
209 were injected into normal wild-type mice using a hydrodynamic-based gene transfer approach via
210 tail vein, which leads to transient expression of the transgene (25). We found that plasmid delivery
211 led to upregulation of MMP-7 mRNA in both the liver and the kidney, although the hepatic
212 expression was much higher (Supplemental Figure 1, A and B). MMP-7 protein could be detected
213 at high levels circulating in the serum (Supplemental Figure 1C). With a molecular weight of
214 29kD we expect that it is freely filtered at the glomerulus to gain access to the slit diaphragm. As
215 shown in Figure 9A, MMP-7 expression led to a significant increase in albuminuria. In a similar
216 fashion, injection of recombinant MMP-7 protein (1 mg/kg) in mice also resulted in an increase in
217 albuminuria, compared to vehicle controls (Figure 9B). These data suggest that elevated MMP-7
218 is sufficient to induce podocyte injury and impair glomerular filtration.

219

220 **MMP-7 deficiency protects mice against proteinuria after Ang II infusion**

221 To confirm the role of MMP-7 in mediating podocyte injury after Ang II infusion, we
222 chronically infused Ang II *via* osmotic minipumps to wild-type (MMP-7^{+/+}) and MMP-7 null
223 mice (MMP-7^{-/-}) to assess their response to proteinuric injury. As shown in Figure 10A, mice
224 with global ablation of MMP-7 were significantly protected from albuminuria, compared to wild-

225 type controls. These results were further confirmed by gel electrophoresis (Figure 10B).
226 Glomerular nephrin staining was significantly disrupted in wild-type kidneys compared to the
227 MMP-7-/- mice (Figure 10C). MMP-7-/- mice were also protected from WT1 depletion by both
228 immunostaining (Figure 10, C and D) and immunoblotting (Figure 10, E and F). Collectively,
229 these data demonstrate that MMP-7 contributes to glomerular/podocyte injury and proteinuria after
230 Ang II infusion.

231
232

233 **DISCUSSION**

234 Treatments for CKD remain extremely limited in scope and efficacy. Since 1993,
235 angiotensin receptor blockers and angiotensin converting enzyme inhibitors have been the
236 cornerstone of proteinuric CKD treatment, but these agents are only partially effective in reducing
237 proteinuria, and often with significant unwanted side effects (26). This problem calls for better
238 understanding of the exact cellular events leading to progressive CKD with proteinuria. Although
239 it is intuitive to speculate that tubular injury would eventually influence glomerular integrity and
240 health, the underlying mechanism connecting these two events was poorly understood.

241 The results presented in this study demonstrate that tubule-derived MMP-7 could have a
242 profound effect on podocyte biology and glomerular filtration integrity. In mice with tubule-
243 specific ablation of β -catenin, glomerular integrity is largely preserved after chronic infusion of
244 Ang II. These effects are associated with reduced tubular expression of MMP-7, a robust and
245 direct target of Wnt/ β -catenin (14). MMP-7 directly degrades the key slit diaphragm protein
246 nephrin, as well as podocin, and leads to impairment of glomerular filtration. Therefore, our
247 studies provide evidence for the notion that MMP-7 mediates tubulo-glomerular communication
248 in diseased kidneys. Previous studies have shown that there is a complex crosstalk between renal
249 tubular cells and interstitial fibroblasts leading to the development of fibrosis (27-29). It has also
250 been appreciated that primary glomerular injuries can lead to tubular injury, which is evidenced
251 by the development of tubular atrophy and interstitial fibrosis in a variety of primary glomerular
252 disorders (3). We now propose that the opposite can occur, in which tubule-derived mediators
253 lead to an enhancement of glomerular injury. Tubular-to-glomerular crosstalk should not be
254 surprising, considering the close apposition of renal tubules to glomeruli and the major role of the
255 macula densa in regulating glomerular hemodynamics via nitric oxide and adenosine (30).

256 However, our results are unique in that a tubule-derived *protease* causes glomerular injury by
257 direct degradation of the key slit diaphragm proteins in podocytes.

258 The means by which a soluble protease reaches the glomerulus requires further study, but
259 could theoretically occur through several pathways including diffusion from nearby tubules.
260 Further, it is well known that tubular injury can lead to tubular apoptosis, loss of barrier integrity
261 and the potential back-leak of substances through injured tubules, which could affect glomeruli
262 (31-34). Finally, it is possible that MMP-7 gains access to the systemic circulation. At 29 kDa,
263 we would expect that some amount of MMP-7 could be freely filtered at the glomerulus to gain
264 access to the slit diaphragm. These potential mechanisms require further exploration.

265 MMP-7 is a matrix metalloprotease that is highly upregulated in renal tubules during
266 kidney injury. MMP-7 is increased in experimental unilateral ureteral obstruction, acute kidney
267 injury, polycystic kidney disease, and adriamycin nephropathy, as well as in human kidney
268 biopsies obtained from various CKD patients and in human urine after injury (14, 15, 35). It is a
269 known target for β -catenin and its promoter contains two binding sites for the β -catenin
270 transcription co-factor T cell factor (TCF). MMP-7 is associated with and stimulated by canonical
271 Wnt signaling or β -catenin and can be blocked by Wnt or β -catenin inhibition (14). Our studies
272 using Ang II infusion (Figure 4) and adriamycin (Figure 5) demonstrate that tubule-specific β -
273 catenin knockout mice have reduced MMP-7 expression after injury, in agreement with prior
274 studies using other experimental kidney injuries (36). The induction of MMP-7 in a wide variety
275 of CKD models is consistent with the notion that glomerular injury and proteinuria are an
276 inevitable consequence of perhaps all CKD, regardless of the initial etiologies.

277 Besides matrix proteins, the substrates of MMP-7 include several extracellular, non-matrix
278 proteins, such as E-cadherin, Fas ligand, defensins, and other MMPs (14, 36, 37). For the first

279 time, we now demonstrate that nephrin is a specific and direct substrate of MMP-7. This
280 conclusion is supported by several lines of evidence. First, MMP-7 can degrade nephrin in
281 cultured glomeruli, cultured cells and cell-free system, which is dependent on its proteolytic
282 activity. Second, the action of MMP-7 on nephrin degradation is rapid, starting as early as 5
283 minutes after incubation (Figure 6). Third, the action of MMP-7 on nephrin is direct, cleaving
284 purified recombinant nephrin protein in a cell-free system (Figure 8). Finally, the action of MMP-
285 7 is specific, as other MMPs such as MMP-2 and MMP-9 are unable to degrade nephrin in the
286 same conditions. Notably, MMP-7 also decreases levels of podocin in cultured glomeruli (Figure
287 7), suggesting it cleaves podocin as well, although it has no effect on other podocyte membrane
288 proteins including integrin $\alpha 3$ and integrin $\beta 1$. However, we cannot exclude the possibility that
289 decrease of podocin in cultured glomeruli after MMP-7 incubation could be a result of nephrin
290 loss, because nephrin/podocin often form complexes and stabilize each other. Regardless of the
291 mechanism involved, the loss of key slit diaphragm proteins such as nephrin and podocin would
292 be sufficient, by themselves, to increase glomerular permeability and impair glomerular filtration
293 (38). Consistent with this view, exogenous MMP-7 is sufficient to induce proteinuria in mice
294 (Figure 9). Although the effects of injected MMP-7 are transient in mouse model, we would
295 anticipate that, in CKD settings, MMP-7 is produced chronically and continuously and therefore
296 would lead to detrimental effects on the integrity of glomerular filtration (15).

297 MMP-7 null mice are also protected against proteinuric kidney disease (Figure 10). We
298 must acknowledge that mice with global deficiency of MMP-7 cannot definitively prove the
299 involvement of tubular MMP-7 in glomerular disease, and tubular-specific MMP-7 null mice
300 unfortunately do not exist. Nevertheless, the work with MMP-7 null mice provide further support
301 of the importance of this protease in proteinuria.

302 It should be pointed out that Ksp- β -cat-/- mice are also protected from the Ang II-induced
303 development of interstitial fibrosis (Figure 3). This is not surprising, as earlier studies have shown
304 that β -catenin-driven MMP-7 is a pathogenic mediator of kidney fibrosis by degrading E-cadherin,
305 which leads to β -catenin liberation and activation, forming a vicious cycle (16). Furthermore, this
306 reduction of fibrosis in Ksp- β -cat-/- mice after Ang II infusion could be a result of the diminished
307 glomerular injury and proteinuria, because proteinuria, *per se*, aggravates tubulointerstitial lesions
308 as described previously (39, 40). In addition, the activation of tubular β -catenin after Ang II
309 infusion could have a number of MMP-7-independent effects that promote interstitial fibrosis,
310 including effects on the expression of the renin-angiotensin system, Snail1, and fibronectin (6, 7,
311 41). Therefore, tubular β -catenin signaling during AngII exposure could, through multiple
312 pathways, lead to progressive interstitial fibrosis that is characteristic of all forms of CKD.

313 Overall, these studies uncover a novel mechanism to account for how tubular injury
314 triggers glomerular damage during CKD progression. We show that kidney injuries after Ang II
315 infusion or adriamycin exposure lead to tubular β -catenin activation, which in turn upregulates
316 soluble MMP-7 expression in renal tubules. Such tubule-derived MMP-7 causes deleterious
317 glomerular changes including the cleavage of nephrin and result in glomerular filtration
318 impairment and higher urinary protein excretion. This would lead to further tubular β -catenin
319 activation and MMP-7 expression in a positive feedback loop that ultimately contributes to
320 progressive renal failure and fibrosis. Therapies directed against β -catenin and MMP-7 could be
321 useful in the treatment of CKD.

322 **METHODS**

323 **Animals and treatment protocol**

324 Tubule-specific β -catenin knockout mice (Ksp- β -cat $^{-/-}$) were generated as previously
325 described and are on the C57BL/6 background strain (18). Ksp- β -cat $^{+/+}$ controls were β -catenin-
326 floxed, Cre-negative littermates. Mice were 8-10 weeks at initiation of the experiments, and age
327 and sex were equally distributed in both groups. MMP-7 $^{-/-}$ (null) mice and wild type C57BL/6J
328 mice were obtained from The Jackson Laboratory (Stock 005111 and 000664; Bar Harbor, ME).

329 To sensitize mice to the Ang II model, a unilateral nephrectomy was performed on day -7.
330 On day 0, an osmotic minipump (Alzet, Cupertino CA) was implanted subcutaneously. The
331 minipump delivered 1.5 mg/kg/day of Ang II (Bachem, Torrance CA) as previously described
332 (19). Urine was collected weekly until sacrifice, at which time the kidneys, serum, and final urine
333 sample were collected. Adriamycin injury was induced with a single intravenous dose of 22
334 mg/kg in non-nephrectomized mice. This high dose of adriamycin is necessary to induce injury
335 in the resistant C57BL/6 strain and was titrated empirically prior to our experiment (42, 43).

336

337 **Histology**

338 For histologic assessment, kidneys were fixed in 10% buffered formalin, embedded in
339 paraffin, and cut at 3 μ m thick sections for analysis. Masson's trichrome staining was performed
340 with a kit from Thermo Fisher Scientific (Waltham, MA).

341

342 **Renal function measurements**

343 Serum creatinine was determined with an assay kit (catalog #C7548, Pointe Scientific, Canton
344 MI) using an enzymatic method that is superior to Jaffe assays and compares favorably with HPLC

345 methods (44). Urinary albumin excretion (albuminuria) was detected by use of a mouse albumin
346 ELISA kit (Bethyl Laboratories, Worthington, TX). Urinary albumin was normalized to the urine
347 creatinine which was determined using the same creatinine kit noted above. Urine samples were
348 loaded by equivalent urinary creatinine levels into polyacrylamide gels and subjected to
349 electrophoresis prior to staining with Coomassie blue.

350

351 **Immunofluorescence**

352 Frozen kidney samples were embedded at sacrifice in OCT medium (Scigen Scientific,
353 Gardena, CA) and sections cut on a microtome at 3 μ m thickness. Sections were then fixed in 4%
354 paraformaldehyde, followed by permeabilization in 0.2% Triton in PBS. Sections were blocked
355 with normal serum then incubated overnight in primary antibody for nephrin (#2OR-NP002;
356 Fitzgerald Industries, Acton MA) and WT1 (#sc-192; Santa Cruz Biotechnology, Santa Cruz, CA).
357 FITC- and Cy3-conjugated secondary antibodies (Jackson ImmunoResearch Laboratories, West
358 Grove, PA) were used for detection. Sections were visualized on a Leica SP5 CW-STED confocal
359 microscope.

360 To determine the percentage of glomeruli with disrupted nephrin, at least 20 glomeruli for
361 each animal were evaluated. Any breaks in the normal linear nephrin staining were counted as
362 positive for disruption. For WT1-positive cells, at least 20 glomeruli were evaluated for each
363 animal. The number of WT1-positive cells per glomerulus were counted and averaged per animal,
364 and these numbers were averaged for a group mean.

365

366 **Immunohistochemistry**

367 Three micron paraffin embedded sections were deparaffinized and rehydrated through graded
368 ethanol (100%, 95% and 70%) to distilled water and subjected to antigen retrieval with 10 mM
369 sodium citrate (pH 6.0) buffer for 30 minutes. Sections were then incubated with 3% H₂O₂ to
370 block endogenous peroxidase activity, permeabilized in PBS-Tween (PBS-T) and blocked in 3%
371 bovine serum albumin (BSA) before incubating overnight with anti-cubulin (sc-25470), anti-
372 megalin (sc-20609, both from Santa Cruz Biotechnology), and anti-MMP-7 antibodies
373 (#GTX11716, Genetex, Irvine CA). Immunohistochemical staining was performed according to
374 the established protocol as described previously (19).

375

376 **Immunoblotting**

377 Kidneys were homogenized in RIPA buffer containing a protease inhibitor cocktail (#78442,
378 Thermo Fisher) and concentration determined with BCA protein assay (Thermo Fisher). Gel
379 electrophoresis was performed on reduced, denatured samples. After blotting onto PVDF
380 membranes (GE Healthcare Lifesciences, Pittsburgh PA) and blocking with 5% milk, membranes
381 were incubated with primary antibodies. HRP-conjugated secondary antibodies and Supersignal
382 West Pico substrate (Thermo Fisher) were used for detection. Densitometry was performed using
383 Image J software (NIH, Bethesda, MD). The following primary antibodies were used: MMP-7
384 (#GTX11716, Genetex), fibronectin (#F3648, Millipore Sigma), actin (#MAB1501, Millipore
385 Sigma), WT1 (#sc-192, Santa Cruz Biotechnology), integrin- α 3 and integrin β 1 (#611044 and
386 610468, BD Biosciences, San Jose CA).

387

388 **Quantitative, real-time reverse transcriptase PCR (qRT-PCR)**

389 RNA was isolated from kidney tissue homogenates using TRIzol reagent (Thermo Fisher). A
390 reverse transcriptase reaction was performed to obtain cDNA, and this was utilized in a qRT-PCR
391 reaction using SYBR green in a CFX Connect instrument (BioRad, Hercules CA). The primer
392 sequences to detect mouse *MMP-7* are 5'-TAGGC GGAGATGCTCACTTT-3' (FWD), and 5'-
393 TTCTGAATGCCTGCAATGTC-3' (REV), while human *MMP-7* (for detection of plasmid
394 derived *MMP-7*) was detected with 5'- TTGATGGGCCAGGAAACACG-3' (FWD) and 5'-
395 CTACCATCCGTCCAGCGTTC-3' (REV). Melt curves were utilized to ensure the specificity of
396 the PCR product. Data were analyzed using the $2^{-\Delta\Delta C_t}$ method (45).

397

398 **MMP-7 ELISA**

399 An ELISA for human total *MMP-7* was performed on serum samples from mice injected with
400 human *MMP-7* plasmid following instructions from the manufacturer (R&D Systems, cat#
401 DMP700, Minneapolis, MN).

402

403 ***Ex vivo* glomerular cultures**

404 To obtain primary rat glomeruli for culture, adult male Sprague Dawley rats (Envigo,
405 Indianapolis, IN) were anesthetized and their kidneys were removed. Each kidney was carefully
406 minced and passed through three sequentially smaller sieves to remove renal tubules and allow
407 glomeruli to pass through per previously described protocol (46). The flow-through was
408 centrifuged to pellet the glomeruli, and this was resuspended in RPMI-1640 with 10% FBS and
409 100U/ml penicillin/streptomycin. *MMP-2*, *MMP-7*, and *MMP-9* (R&D Systems, Minneapolis
410 MN) and GM6001 and MMP Inhibitor II (both from EMD Millipore, Billerica MA) were added
411 as described.

412 To determine albumin permeability, we performed experiments as previously described (47).
413 Briefly, *ex vivo* glomeruli were incubated in media containing 5% bovine serum albumin (BSA,
414 Sigma Aldrich, St. Louis MO). Recombinant MMP-7 was then added and incubated for 30
415 minutes. Glomeruli were then washed and incubated in low BSA media and samples collected at
416 30 minutes and 1 hour. The BSA content of this media was determined by ELISA (Bethyl
417 Laboratories).

418

419 **MMP-7 plasmid**

420 An active mutant human MMP-7 clone with a substitution of valine to glycine at amino acid
421 92 was kindly provided by Dr. Carole L. Wilson (Medical University of South Carolina,
422 Charleston, SC). The full-length coding sequence of MMP-7 cDNA was amplified by using a
423 standard RT-PCR protocol. The PCR product was cloned into the mammalian expression vector
424 p3XFlag-CMV (Sigma Aldrich) and confirmed by DNA sequencing at the University of Pittsburgh
425 Biomedical Research Support Facilities. Plasmid was injected into mice via tail vein at a dose of
426 2 mg/kg plasmid in a 2 mL volume delivered within a 10-second time period, as adapted from
427 prior published protocols (25).

428

429 **Transmission Electron Microscopy (TEM)**

430 TEM and scanning electron microscopy (SEM) were performed as previously described (48).
431 Portions of mouse kidneys were immersion-fixed with 2.5% glutaraldehyde in PBS for more than
432 24 hours. Several 1 mm³ cubes were obtained, washed 3x in PBS then post-fixed in aqueous 1%
433 OsO₄, 1% K₃Fe(CN)₆ for 1 hour. Following 3 PBS washes, the pellet was dehydrated through a
434 graded series of 30-100% ethanol, 100% propylene oxide then infiltrated in 1:1 mixture of

435 propylene oxide:Polybed 812 epoxy resin (Polysciences, Warrington, PA) for 1 hr. After several
436 changes of 100% resin over 24 hours, the pellet was embedded in molds, cured at 37°C overnight,
437 followed by additional hardening at 65°C for two more days. Ultrathin (60 nm) sections were cut
438 on a Leica EM UC7 ultramicrotome, collected on 200 mesh copper grids, stained with 4% uranyl
439 acetate for 10 minutes, followed by 1% lead citrate for 7 min using the Leica EM AC20 automatic
440 stainer. Sections were imaged using a JEOL JEM 1011 transmission electron microscope
441 (Peabody, MA) at 80 kV fitted with a side mount AMT 2k digital camera (Advanced Microscopy
442 Techniques, Danvers, MA).

443

444 **Scanning Electron Microscopy (SEM)**

445 Kidney tissue was processed as for TEM above, but 1 mm thick longitudinal slices were used
446 instead of cubes. Tissue was processed up to the final 100% ethanol, and then chemically dried
447 using hexamethyldisilazane. Dried slices were mounted onto aluminum stubs, grounded with
448 silver paint and then sputter coated with 3.5 nm gold/palladium (Auto 108, Cressington, Watford,
449 UK). Samples were viewed in a JEOL JSM-6330F scanning electron microscope (Peabody, MA)
450 at 3 kV.

451

452 **Statistics**

453 Data are presented as mean \pm SEM. A student's t-test (two-tailed) was used for comparisons
454 between two groups, while a one-way ANOVA was utilized for more than two groups. $P < 0.05$
455 was the threshold used for significance. Statistical tests were run on GraphPad Prism (San Diego,
456 CA).

457

458 **Animal study approval**

459 All studies using animals were performed to the ethical and scientific standards recommended
460 by the Guide for the Care and Use of Laboratory Animals of the NIH. The animal protocol was
461 approved by the Institutional Animal Care and Use Committee at the University of Pittsburgh.

462

463 **AUTHOR CONTRIBUTIONS**

464 RJT, YLi, BMR, DMC, DZ, JH, DBS, and YLiu designed the experiments. RJT, YLi, BMR,
465 DMC, and DZ performed the experiments. RJT, YLi, BMR, DMC, DZ, DBS, and YLiu analyzed
466 the results. RJT and YLiu wrote the manuscript. All authors reviewed the final version of the
467 manuscript.

468

469 **ACKNOWLEDGMENTS**

470 This work was supported by funding from NIH grants R01DK064005 and R01DK106049 (to
471 YLiu), R01DK103776 (JH), P30DK079307 (Pittsburgh Center for Kidney Research), and
472 National Science Foundation of China grant 81521003. RJT was supported by NIH
473 T32DK061296, an American Heart Association Award 13FTF160990086, an American Society
474 of Nephrology Carl W. Gottschalk Research Scholarship Grant, a University of Pittsburgh Medical
475 Center Competitive Medical Research Fund, and a University of Pittsburgh Physicians Academic
476 Foundation Award. DMC was supported by a Nephrotic Syndrome Study Network Career
477 Development Fellowship. DZ is supported by NIH K01DK116816.

478 **FIGURE LEGENDS**

479 **Figure 1. Tubule-specific β -catenin knockout mice are protected from glomerular injury.**

480 The β -cat-floxed mice ($Ksp\text{-}\beta\text{-cat}^{+/+}$) and tubule-specific β -catenin knockouts ($Ksp\text{-}\beta\text{-cat}^{-/-}$) were
481 subjected to continuous angiotensin II (Ang II) infusions (1.5 mg/kg/day, osmotic minipump). (A)
482 Urinary albumin excretion was measured in the $Ksp\text{-}\beta\text{-cat}^{+/+}$ and $Ksp\text{-}\beta\text{-cat}^{-/-}$ mice (n=6) at 14,
483 21, and 28 days after Ang II infusion. * $P < 0.05$ compared to $Ksp\text{-}\beta\text{-cat}^{+/+}$ at same timepoint,
484 one-way ANOVA. (B) Gel electrophoresis of urine samples shows the composition of the protein
485 excreted in the urine. Albumin is indicated. Urine from an untreated control mouse (Ctrl, lane 1)
486 was included for reference. (C) Levels of megalin and cubulin are not different between $Ksp\text{-}\beta\text{-}$
487 cat $^{+/+}$ and $Ksp\text{-}\beta\text{-cat}^{-/-}$ mice after Ang II infusion. (D) Evaluation of glomerular histology reveals
488 increased glomerular damage in the $Ksp\text{-}\beta\text{-cat}^{+/+}$ compared to $Ksp\text{-}\beta\text{-cat}^{-/-}$ mice. Note the high
489 levels of protein in Bowman's space in the $Ksp\text{-}\beta\text{-cat}^{+/+}$ (asterisk), accompanied by significant
490 glomerulosclerosis (arrow). In the $Ksp\text{-}\beta\text{-cat}^{-/-}$ mice overall glomerular injury including
491 glomerulosclerosis was minimal. A control (Ctrl, untreated mouse) glomerulus is provided for
492 reference. Immunofluorescence revealed significant disruption in nephrin and fewer WT1-
493 positive podocytes in the $Ksp\text{-}\beta\text{-cat}^{+/+}$ compared $Ksp\text{-}\beta\text{-cat}^{-/-}$ mice. (E) Quantitation of number
494 of glomeruli with abnormal nephrin staining and (F) WT1-positive nuclei per glomeruli (n=5, * P
495 < 0.05, one way ANOVA). (G) Immunoblot for WT1 showing depleted levels in the $Ksp\text{-}\beta\text{-cat}^{+/+}$
496 mice, compared to $Ksp\text{-}\beta\text{-cat}^{-/-}$ mice. * $P < 0.05$, t-test.

497

498 **Figure 2. Podocyte foot process integrity is preserved in $Ksp\text{-}\beta\text{-cat}^{-/-}$ mice after Ang II**
499 **infusion.** Mice were treated as in Figure 1. (A-C) Transmission electron microscopy (TEM)
500 showing extensive foot process effacement (arrows) in Ang II-treated $Ksp\text{-}\beta\text{-cat}^{+/+}$ mice

501 compared to Ksp- β -cat-/- mice. Bar equals 500 nm. (D-F) Scanning electron microscopy (SEM)
502 revealed significant effacement in the control mice compared to untreated control and Ang II-
503 treated Ksp- β -cat-/- mice. Bar equals 5 μ m.

504

505 **Figure 3. Ablation of β -catenin in renal tubules reduces interstitial fibrosis induced by Ang
506 II infusion.** (A) Masson's trichrome staining showing increased fibrosis in Ksp- β -cat $^{+/+}$ mice
507 after Ang II infusion (asterisk), compared to Ksp- β -cat-/- mice. (B) Western blots show a trend
508 towards increased levels of fibronectin in the control mice, compared to Ksp- β -cat-/- mice (n=4).
509 $P = 0.06$, t-test. (C) Measurement of serum creatinine shows that the only significant difference
510 is observed between untreated control mice (Ctrl) and Ksp- β -cat $^{+/+}$ mice, suggesting moderation
511 of injury in the Ksp- β -cat-/- mice (n=5). * $P < 0.05$, one-way ANOVA.

512

513 **Figure 4. Renal expression of MMP-7 is reduced in Ksp- β -cat-/- mice after Ang II infusion.**
514 (A, B) Western blot analyses for MMP-7 reveal significant reduction in the Ksp- β -cat-/- mice after
515 Ang II infusion, compared to Ksp- β -cat $^{+/+}$ mice (n=4). Western blot (A) and quantitation after
516 densitometry (B) are shown. * $P < 0.05$, t-test. (C) qRT-PCR shows a trend to higher expression
517 of MMP-7 mRNA in the Ksp- β -cat $^{+/+}$ mice as well (n=5, t-test). $P = 0.092$ two tailed, 0.046 one
518 tailed. (D) Immunohistochemical staining for MMP-7 shows negligible staining in control mice,
519 with dramatic upregulation in Ang II-treated Ksp- β -cat $^{+/+}$ mice (arrows). A reduced MMP-7
520 staining was noticed in Ksp- β -cat-/- mice. Bar equals 50 μ M.

521

522 **Figure 5. KSP- β -cat-/- mice are protected from adriamycin-induced kidney injury and
523 proteinuria.** (A) Urine albumin excretion 3 weeks after injection of adriamycin (22mg/kg) in

524 KSP- β -cat $^{+/+}$ compared to KSP- β -cat $^{-/-}$ mice (* P < 0.05, t-test). (B) Gel electrophoresis of urine
525 samples showing reduction in albumin excretion in KSP- β -cat $^{-/-}$ mice. (C) Immunofluorescence
526 showing greater nephrin disruption in KSP- β -cat $^{-/-}$ mice. (D) Western blot demonstrating reduced
527 kidney expression of MMP-7 in KSP- β -cat $^{-/-}$ mice. (D) Immunofluorescence for MMP-7 reveals
528 strong upregulation in tubules from KSP- β -cat $^{+/+}$ mice only.

529

530 **Figure 6. Recombinant MMP-7 decreases nephrin in a time- and dose-dependent manner in**
531 ***ex vivo* glomeruli.** (A) MMP-7 treatment (50 nM, 30 min) causes a significant time-dependent
532 release of albumin from isolated rat glomeruli. *P < 0.05, repeated measures one way ANOVA.
533 (B) TEM of isolated glomeruli shows flattening and fusion of foot processes in MMP-7-treated
534 glomeruli compared to vehicle controls (arrows). In separate experiments, glomeruli were
535 incubated with either the same concentration of MMP-7 (50 nM) for various periods of time (C)
536 or with increasing amounts of MMP-7 for 60 minutes (D). Glomerular lysates were
537 immunoblotted with antibodies against nephrin and actin. (E) Nephrin depletion by MMP-7 is
538 dependent on its proteolytic activity. Rat glomeruli were pretreated with GM6001 (25 μ M) or
539 MMP inhibitor II (20 μ M) for 30 minutes before incubation with MMP-7 (25 nM or 50 nM) for
540 60 minutes.

541

542 **Figure 7. MMP-7 reduces nephrin and podocin levels in isolated glomeruli.** (A) Rat glomeruli
543 were incubated separately with MMP-2 (1 μ g/ml, or 13.88 nM), MMP-7 (50 nM) and MMP-9 (1
544 μ g/ml, or 10.9nM) and total protein immunoblotted for nephrin. Only MMP-7 was capable of
545 reducing nephrin levels. (B) MMP-7 also reduces podocin protein in isolated glomeruli *ex vivo*.
546 Glomerular lysates were immunoblotted with antibodies against podocin and actin. (C) MMP-7

547 does not affect other membrane proteins in podocytes such as integrin- α 3 and integrin- β 1. Western
548 blot analyses of glomerular lysates reveal no effect on integrin- α 3 and - β 1 proteins after incubation
549 with any of the three MMPs.

550

551 **Figure 8. MMP-7 mediates nephrin degradation *in vitro*.** (A, B) HEK-293 cells were
552 transfected with nephrin expression vector for 48 hours, followed by incubation with MMP-7 (50
553 nM) for various periods of time (A) or with increasing amounts of MMP-7 for 60 minutes (B). (C)
554 Nephrin from overexpressing cells was immunoprecipitated with anti-nephrin antibody, followed
555 by various treatments as indicated. MMP-7 caused nephrin depletion, which was inhibited by
556 MMP inhibitor II. (D, E) Representative SDS-PAGE shows that MMP-7 degrades recombinant
557 mouse nephrin protein. Purified mouse nephrin protein (2 μ g) was incubated with 50 nM MMP-
558 7 for 60 minutes. Truncated form of mouse nephrin corresponding to Gln37 to Thr1049 (~150
559 kDa in size) is used (E). Arrows in Panel (D) indicate the degradation fragments of nephrin.

560

561 **Figure 9. Delivery of MMP-7 gene or recombinant MMP-7 protein induces albuminuria *in***

562 *vivo*. (A) Mice were injected intravenously with pcDNA3 or pCMV-MMP-7 vector (2 mg/kg),
563 respectively. Urinary albumin concentration was assayed 24 h after injection. $^*P < 0.05$ ($n=7$, t-
564 test). (B) After injection with recombinant MMP-7 (1 mg/kg) for 3 hours, urinary albumin
565 excretion was increased in the MMP-7-treated group, compared with vehicle controls. $^*P < 0.05$
566 ($n=6$, t-test).

567

568 **Figure 10. Mice with global ablation of MMP-7 are protected from Ang II-induced**
569 **glomerular injury.** Wild type (WT) and MMP-7-/- (KO) mice were treated with continuous

570 infusions of Ang II (1.5 mg/kg/day). (A) Albuminuria is significantly reduced in the KO compared
571 to WT mice. (B) Gel electrophoresis of urine samples demonstrate a reduced albumin excretion
572 in MMP-7-/- mice, compared to MMP-7+/+ counterparts. (C) Immunofluorescence staining
573 shows extensive nephrin disruption and a decrease in numbers of healthy WT1-positive podocytes
574 in MMP-7+/+ mice. MMP-7 KO mice retained linear nephrin staining and numbers of WT1-
575 positive nuclei. (D) Quantitation of WT1-positive nuclei per glomerulus (n=5-6, t-test). (E, F)
576 Western blot analyses show an increased preservation of WT1 expression in MMP-7-/- mice after
577 Ang II infusion, compared to MMP-7+/+ controls. Western blot (E) and quantitation (F) are
578 shown. * $P < 0.05$ (n=4-5, t-test).

579

580 **Supplemental Figure 1. MMP-7 expression after plasmid injection.** MMP-7 plasmid was
581 injected via tail vein in wild type mice. After 18 hours, mice were euthanized and liver, kidney,
582 and serum obtained. mRNA levels of MMP-7 were measured in the (A) liver and (B) kidney and
583 circulating serum protein levels were assessed with an ELISA. (* $P < 0.05$, t-test).

584 **REFERENCES**

585 1. Centers for Disease Control and Prevention. Chronic Kidney Disease Surveillance System - United
586 States. <http://www.cdc.gov/ckd>.

587 2. Abbate M, Zoja C, and Remuzzi G. How does proteinuria cause progressive renal damage? *J Am
588 Soc Nephrol*. 2006;17(11):2974-84.

589 3. Kriz W, and LeHir M. Pathways to nephron loss starting from glomerular diseases-insights from
590 animal models. *Kidney Int*. 2005;67(2):404-19.

591 4. Carlstrom M, Wilcox CS, and Arendshorst WJ. Renal autoregulation in health and disease. *Physiol
592 Rev*. 2015;95(2):405-511.

593 5. Grgic I, Campanholle G, Bijol V, Wang C, Sabbisetti VS, Ichimura T, et al. Targeted proximal
594 tubule injury triggers interstitial fibrosis and glomerulosclerosis. *Kidney Int*. 2012;82(2):172-83.

595 6. Tan RJ, Zhou D, Zhou L, and Liu Y. Wnt/beta-catenin signaling and kidney fibrosis. *Kidney Int
596 Suppl (2011)*. 2014;4(1):84-90.

597 7. DiRocco DP, Kobayashi A, Taketo MM, McMahon AP, and Humphreys BD. Wnt4/beta-catenin
598 signaling in medullary kidney myofibroblasts. *J Am Soc Nephrol*. 2013;24(9):1399-412.

599 8. Kawakami T, Ren S, and Duffield JS. Wnt signalling in kidney diseases: dual roles in renal injury
600 and repair. *J Pathol*. 2013;229(2):221-31.

601 9. Lin SL, Li B, Rao S, Yeo EJ, Hudson TE, Nowlin BT, et al. Macrophage Wnt7b is critical for
602 kidney repair and regeneration. *Proc Natl Acad Sci U S A*. 2010;107(9):4194-9.

603 10. Edeling M, Ragi G, Huang S, Pavenstadt H, and Susztak K. Developmental signalling pathways in
604 renal fibrosis: the roles of Notch, Wnt and Hedgehog. *Nat Rev Nephrol*. 2016;12(7):426-39.

605 11. Maarouf OH, Aravamudhan A, Rangarajan D, Kusaba T, Zhang V, Welborn J, et al. Paracrine
606 Wnt1 Drives Interstitial Fibrosis without Inflammation by Tubulointerstitial Cross-Talk. *J Am Soc
607 Nephrol*. 2015.

608 12. Xiao L, Zhou D, Tan RJ, Fu H, Zhou L, Hou FF, et al. Sustained Activation of Wnt/beta-Catenin
609 Signaling Drives AKI to CKD Progression. *J Am Soc Nephrol*. 2015.

610 13. Zhou L, Li Y, Hao S, Zhou D, Tan RJ, Nie J, et al. Multiple genes of the renin-angiotensin system
611 are novel targets of Wnt/beta-catenin signaling. *J Am Soc Nephrol*. 2015;26(1):107-20.

612 14. He W, Tan RJ, Li Y, Wang D, Nie J, Hou FF, et al. Matrix metalloproteinase-7 as a surrogate
613 marker predicts renal Wnt/beta-catenin activity in CKD. *J Am Soc Nephrol*. 2012;23:294-304.

614 15. Surendran K, Simon TC, Liapis H, and McGuire JK. Matrilysin (MMP-7) expression in renal
615 tubular damage: association with Wnt4. *Kidney Int*. 2004;65(6):2212-22.

616 16. Zhou D, Tian Y, Sun L, Zhou L, Xiao L, Tan RJ, et al. Matrix Metalloproteinase-7 Is a Urinary
617 Biomarker and Pathogenic Mediator of Kidney Fibrosis. *J Am Soc Nephrol*. 2017;28(2):598-611.

618 17. Yang X, Chen C, Teng S, Fu X, Zha Y, Liu H, et al. Urinary Matrix Metalloproteinase-7 Predicts
619 Severe AKI and Poor Outcomes after Cardiac Surgery. *J Am Soc Nephrol*. 2017;28(11):3373-82.

620 18. Zhou D, Li Y, Lin L, Zhou L, Igarashi P, and Liu Y. Tubule-specific ablation of endogenous beta-
621 catenin aggravates acute kidney injury in mice. *Kidney Int*. 2012;82(5):537-47.

622 19. Tan RJ, Zhou D, Xiao L, Zhou L, Li Y, Bastacky SI, et al. Extracellular Superoxide Dismutase
623 Protects against Proteinuric Kidney Disease. *J Am Soc Nephrol*. 2015;26(10):2447-59.

624 20. Zhou Y, Yu J, Liu J, Cao R, Su W, Li S, et al. Induction of cytochrome P450 4A14 contributes to
625 angiotensin II-induced renal fibrosis in mice. *Biochim Biophys Acta Mol Basis Dis*.
626 2018;1864(3):860-70.

627 21. Eckel J, Lavin PJ, Finch EA, Mukerji N, Burch J, Gbadegesin R, et al. TRPC6 enhances angiotensin
628 II-induced albuminuria. *J Am Soc Nephrol*. 2011;22(3):526-35.

629 22. Cechova S, Dong F, Chan F, Kelley MJ, Ruiz P, and Le TH. MYH9 E1841K Mutation Augments
630 Proteinuria and Podocyte Injury and Migration. *J Am Soc Nephrol*. 2018;29(1):155-67.

631 23. Kandasamy Y, Smith R, Lumbers ER, and Rudd D. Nephrin - a biomarker of early glomerular
632 injury. *Biomark Res*. 2014;2:21.

633 24. Zhou L, Li Y, He W, Zhou D, Tan RJ, Nie J, et al. Mutual Antagonism of Wilms' Tumor 1 and
634 beta-Catenin Dictates Podocyte Health and Disease. *J Am Soc Nephrol*. 2014.

635 25. Liu F, Song Y, and Liu D. Hydrodynamics-based transfection in animals by systemic
636 administration of plasmid DNA. *Gene Ther.* 1999;6(7):1258-66.

637 26. Johnson SA, and Spurney RF. Twenty years after ACEIs and ARBs: emerging treatment strategies
638 for diabetic nephropathy. *Am J Physiol Renal Physiol.* 2015;309(10):F807-20.

639 27. Fabian SL, Penchev RR, St-Jacques B, Rao AN, Sipila P, West KA, et al. Hedgehog-Gli pathway
640 activation during kidney fibrosis. *Am J Pathol.* 2012;180(4):1441-53.

641 28. Gewin L, Zent R, and Pozzi A. Progression of chronic kidney disease: too much cellular talk causes
642 damage. *Kidney Int.* 2017;91(3):552-60.

643 29. Qi R, and Yang C. Renal tubular epithelial cells: the neglected mediator of tubulointerstitial fibrosis
644 after injury. *Cell Death Dis.* 2018;9(11):1126.

645 30. Komlosi P, Bell PD, and Zhang ZR. Tubuloglomerular feedback mechanisms in nephron segments
646 beyond the macula densa. *Curr Opin Nephrol Hypertens.* 2009;18(1):57-62.

647 31. Xiong C, Zang X, Zhou X, Liu L, Masucci MV, Tang J, et al. Pharmacological inhibition of Src
648 kinase protects against acute kidney injury in a murine model of renal ischemia/reperfusion.
649 *Oncotarget.* 2017;8(19):31238-53.

650 32. Wang S, Pan Q, Xu C, Li JJ, Tang HX, Zou T, et al. Massive Proteinuria-Induced Injury of Tubular
651 Epithelial Cells in Nephrotic Syndrome is Not Exacerbated by Furosemide. *Cell Physiol Biochem.*
652 2018;45(4):1700-6.

653 33. Morais C, Westhuyzen J, Metharom P, and Healy H. High molecular weight plasma proteins induce
654 apoptosis and Fas/FasL expression in human proximal tubular cells. *Nephrol Dial Transplant.*
655 2005;20(1):50-8.

656 34. Gao L, Liu MM, Zang HM, Ma QY, Yang Q, Jiang L, et al. Restoration of E-cadherin by PPBICA
657 protects against cisplatin-induced acute kidney injury by attenuating inflammation and
658 programmed cell death. *Lab Invest.* 2018;98(7):911-23.

659 35. Liang J, Lin G, Tian J, Chen J, Liang R, Chen Z, et al. Measurement of urinary matrix
660 metalloproteinase-7 for early diagnosis of acute kidney injury based on an ultrasensitive

661 immunomagnetic microparticle-based time-resolved fluoroimmunoassay. *Clin Chim Acta*.
662 2019;490:55-62.

663 36. Zhou D, Tan RJ, Zhou L, Li Y, and Liu Y. Kidney tubular beta-catenin signaling controls interstitial
664 fibroblast fate via epithelial-mesenchymal communication. *Sci Rep*. 2013;3:1878.

665 37. Tan RJ, and Liu Y. Matrix metalloproteinases in kidney homeostasis and diseases. *Am J Physiol
666 Renal Physiol*. 2012;302(11):F1351-61.

667 38. Grahammer F, Schell C, and Huber TB. The podocyte slit diaphragm--from a thin grey line to a
668 complex signalling hub. *Nat Rev Nephrol*. 2013;9(10):587-98.

669 39. Erkan E. Proteinuria and progression of glomerular diseases. *Pediatr Nephrol*. 2013;28(7):1049-
670 58.

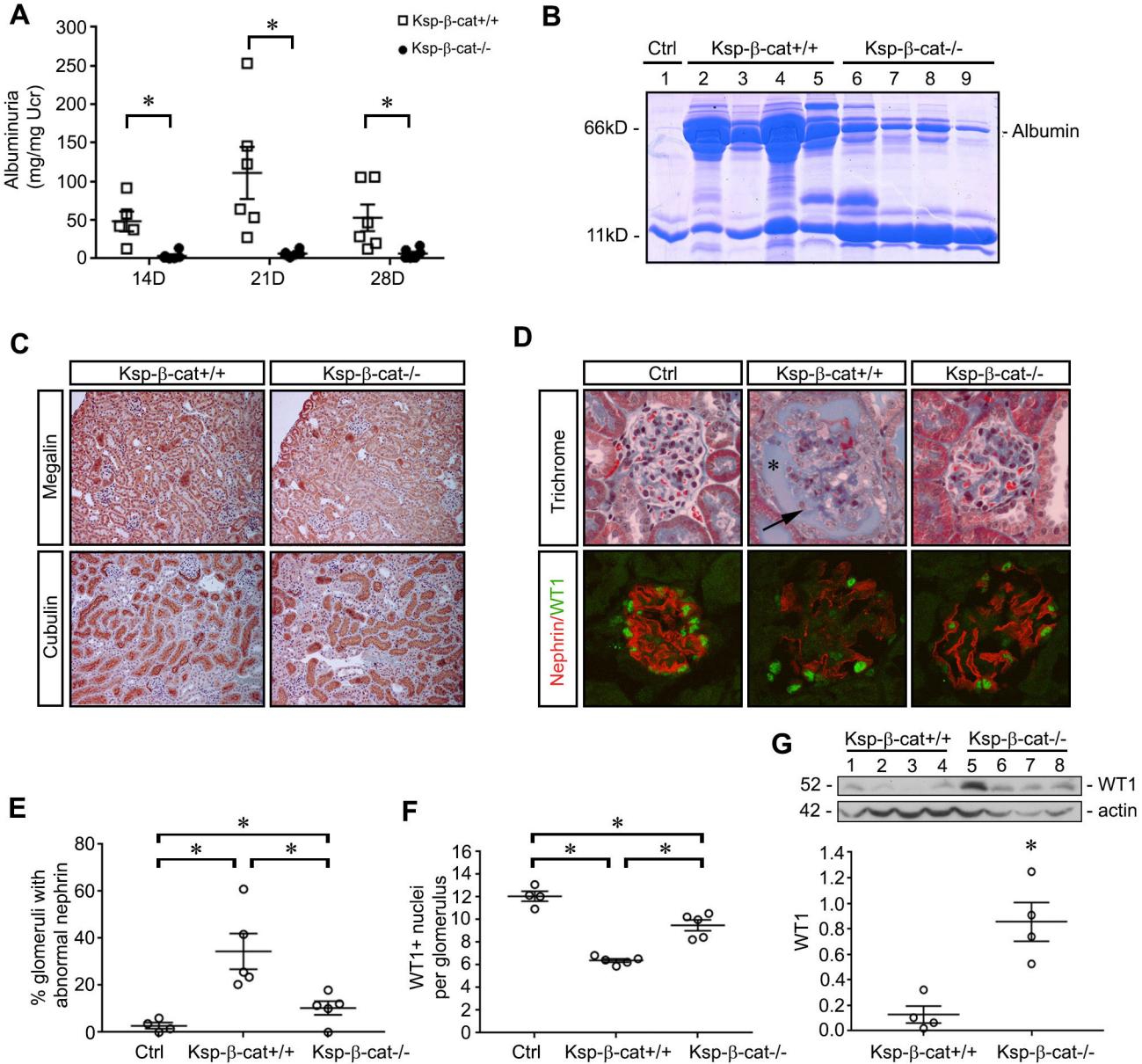
671 40. Gorriz JL, and Martinez-Castelao A. Proteinuria: detection and role in native renal disease
672 progression. *Transplant Rev (Orlando)*. 2012;26(1):3-13.

673 41. Hao S, He W, Li Y, Ding H, Hou Y, Nie J, et al. Targeted inhibition of beta-catenin/CBP signaling
674 ameliorates renal interstitial fibrosis. *J Am Soc Nephrol*. 2011;22(9):1642-53.

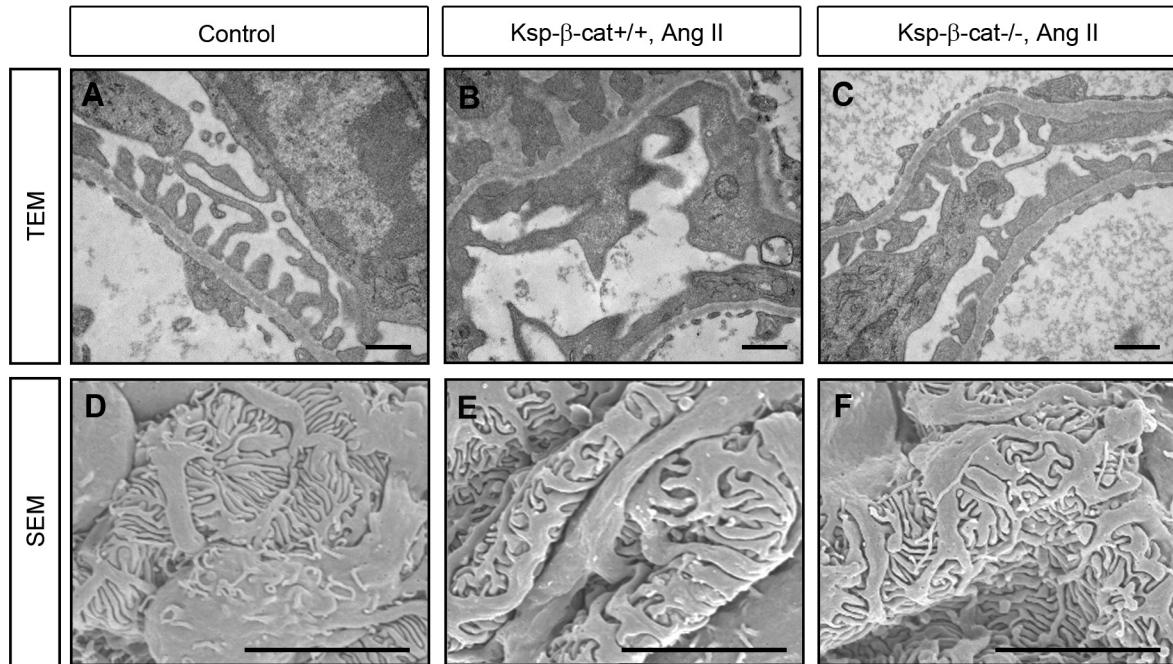
675 42. Jeansson M, Bjorck K, Tenstad O, and Haraldsson B. Adriamycin alters glomerular endothelium
676 to induce proteinuria. *J Am Soc Nephrol*. 2009;20(1):114-22.

677 43. Lee VW, and Harris DC. Adriamycin nephropathy: a model of focal segmental glomerulosclerosis.
678 *Nephrology (Carlton)*. 2011;16(1):30-8.

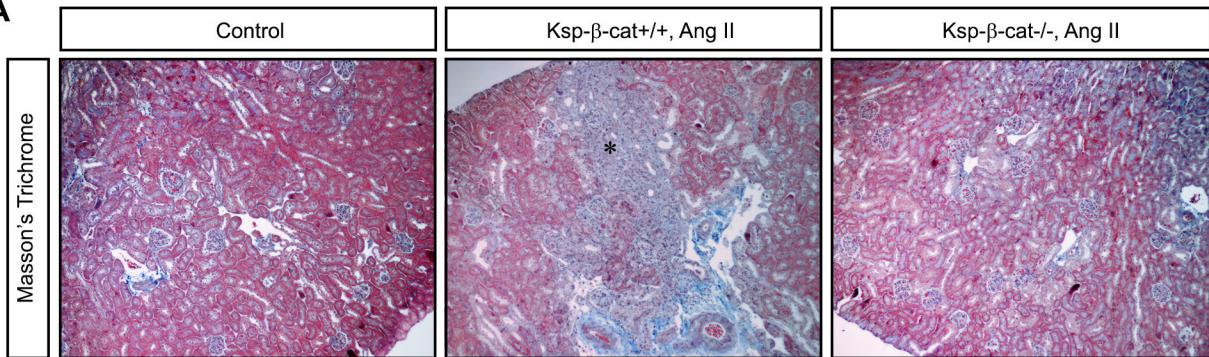
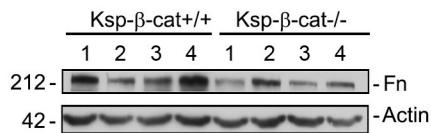
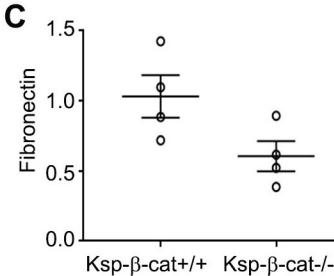
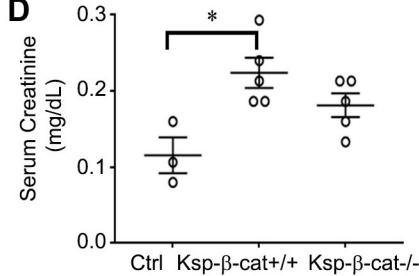
679 44. Keppler A, Gretz N, Schmidt R, Kloetzer HM, Groene HJ, Lelongt B, et al. Plasma creatinine
680 determination in mice and rats: an enzymatic method compares favorably with a high-performance
681 liquid chromatography assay. *Kidney Int*. 2007;71(1):74-8.

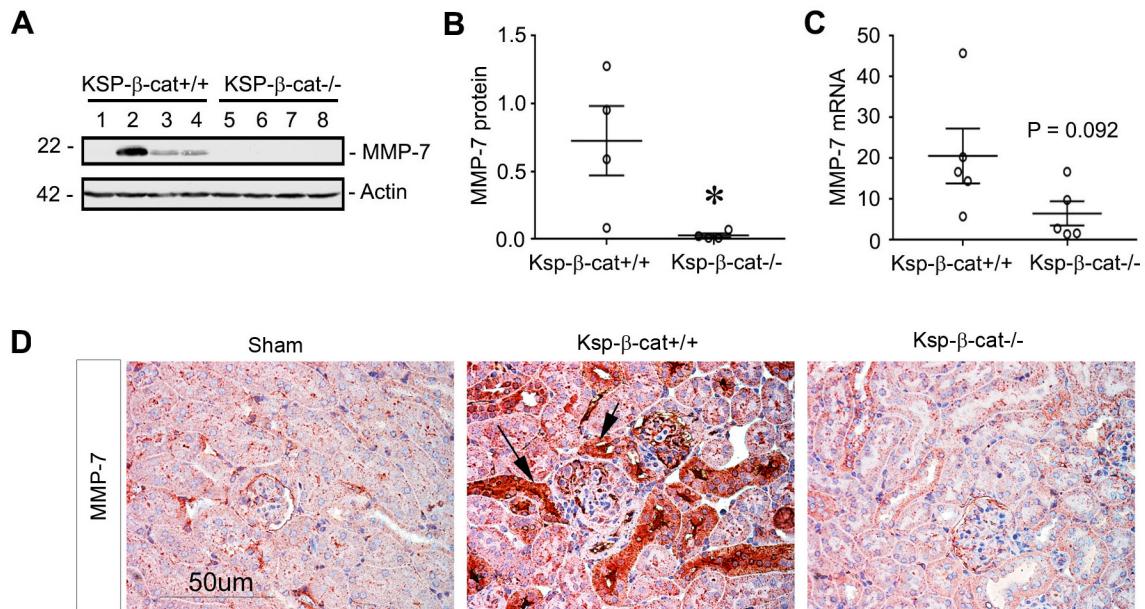

682 45. Schmittgen TD, and Livak KJ. Analyzing real-time PCR data by the comparative C(T) method.
683 *Nat Protoc*. 2008;3(6):1101-8.

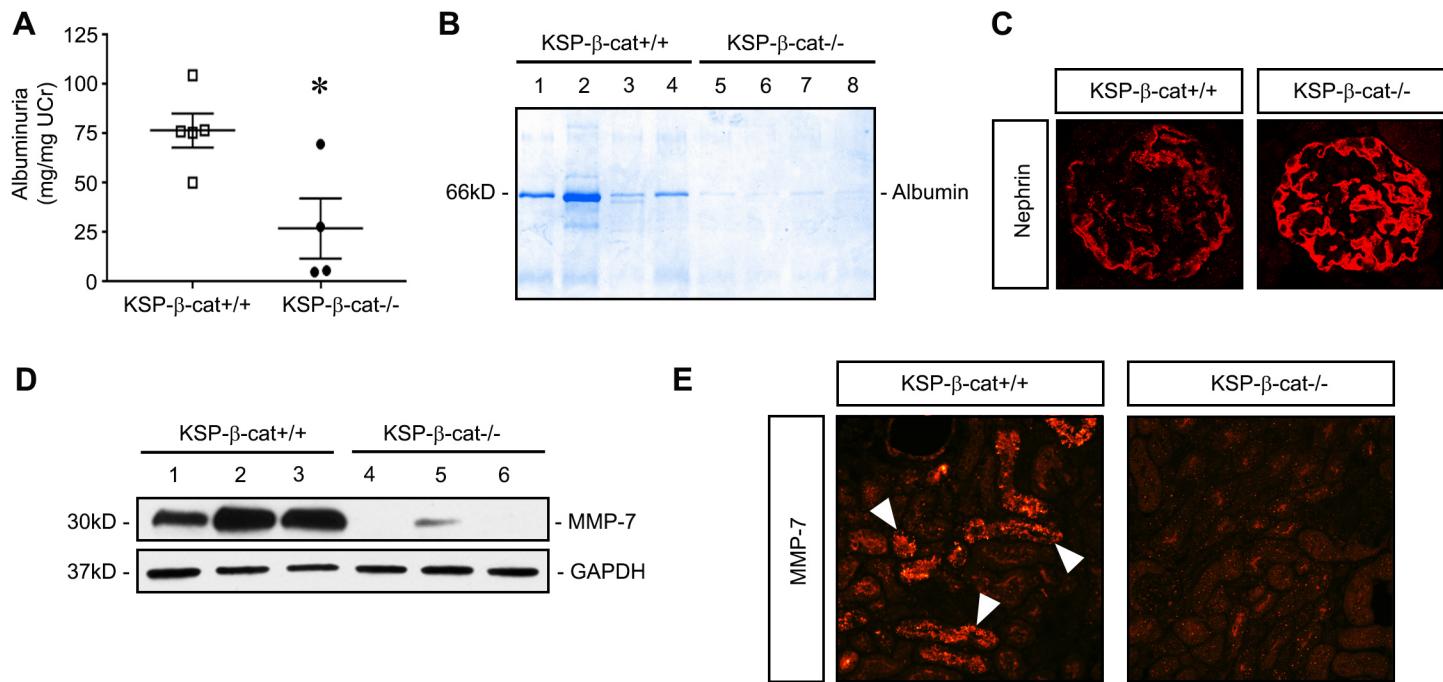
684 46. Rush BM, Small SA, Stolz DB, and Tan RJ. An Efficient Sieving Method to Isolate Intact
685 Glomeruli from Adult Rat Kidney. *J Vis Exp*. 2018(141).


686 47. Vassiliadis J, Bracken C, Matthews D, O'Brien S, Schiavi S, and Wawersik S. Calcium mediates
687 glomerular filtration through calcineurin and mTORC2/Akt signaling. *J Am Soc Nephrol*.
688 2011;22(8):1453-61.

689 48. Wack KE, Ross MA, Zegarra V, Sysko LR, Watkins SC, and Stolz DB. Sinusoidal ultrastructure
690 evaluated during the revascularization of regenerating rat liver. *Hepatology*. 2001;33(2):363-78.





691


Figure 1. Tubule-specific β -catenin knockout mice are protected from glomerular injury. The β -cat-floxed mice (Ksp- β -cat^{+/+}) and tubule-specific β -catenin knockouts (Ksp- β -cat^{-/-}) were subjected to continuous angiotensin II (Ang II) infusions (1.5 mg/kg/day, osmotic minipump). (A) Urinary albumin excretion was measured in the Ksp- β -cat^{+/+} and Ksp- β -cat^{-/-} mice (n=6) at 14, 21, and 28 days after Ang II infusion. *P < 0.05 compared to Ksp- β -cat^{+/+} at same timepoint, one-way ANOVA. (B) Gel electrophoresis of urine samples shows the composition of the protein excreted in the urine. Albumin is indicated. Urine from an untreated control mouse (Ctrl, lane 1) was included for reference. (C) Levels of megalin and cubulin are not different between Ksp- β -cat^{+/+} and Ksp- β -cat^{-/-} mice after Ang II infusion. (D) Evaluation of glomerular histology reveals increased glomerular damage in the Ksp- β -cat^{+/+} compared to Ksp- β -cat^{-/-} mice. Note the high levels of protein in Bowman's space in the Ksp- β -cat^{+/+} (asterisk), accompanied by significant glomerulosclerosis (arrow). In the Ksp- β -cat^{-/-} mice overall glomerular injury including glomerulosclerosis was minimal. A control (Ctrl, untreated mouse) glomerulus is provided for reference. Immunofluorescence revealed significant disruption in nephrin and fewer WT1-positive podocytes in the Ksp- β -cat^{+/+} compared Ksp- β -cat^{-/-} mice. (E) Quantitation of number of glomeruli with abnormal nephrin staining and (F) WT1-positive nuclei per glomerulus (n=5, *P < 0.05, one way ANOVA). (G) Immunoblot for WT1 showing depleted levels in the Ksp- β -cat^{+/+} mice, compared to Ksp- β -cat^{-/-} mice. *P < 0.05, t-test.


Figure 2. Podocyte foot process integrity is preserved in Ksp- β -cat $^{-/-}$ mice after Ang II infusion.
 Mice were treated as in Figure 1. (A-C) Transmission electron microscopy (TEM) showing extensive foot process effacement (arrows) in Ang II-treated Ksp- β -cat $^{+/+}$ mice compared to Ksp- β -cat $^{-/-}$ mice. Bar equals 500 nm. (D-F) Scanning electron microscopy (SEM) revealed significant effacement in the control mice compared to untreated control and Ang II-treated Ksp- β -cat $^{-/-}$ mice. Bar equals 5 μ m.

A**B****C****D**

Figure 3. Ablation of β -catenin in renal tubules reduces interstitial fibrosis induced by Ang II infusion. (A) Masson's trichrome staining showing increased fibrosis in Ksp- β -cat^{+/+} mice after Ang II infusion (asterisk), compared to Ksp- β -cat^{-/-} mice. (B) Western blots show a trend towards increased levels of fibronectin in the control mice, compared to Ksp- β -cat^{-/-} mice (n=4). P = 0.06, t-test. (C) Measurement of serum creatinine shows that the only significant difference is observed between untreated control mice (Ctrl) and Ksp- β -cat^{+/+} mice, suggesting moderation of injury in the Ksp- β -cat^{-/-} mice (n=5). * P < 0.05, one-way ANOVA.

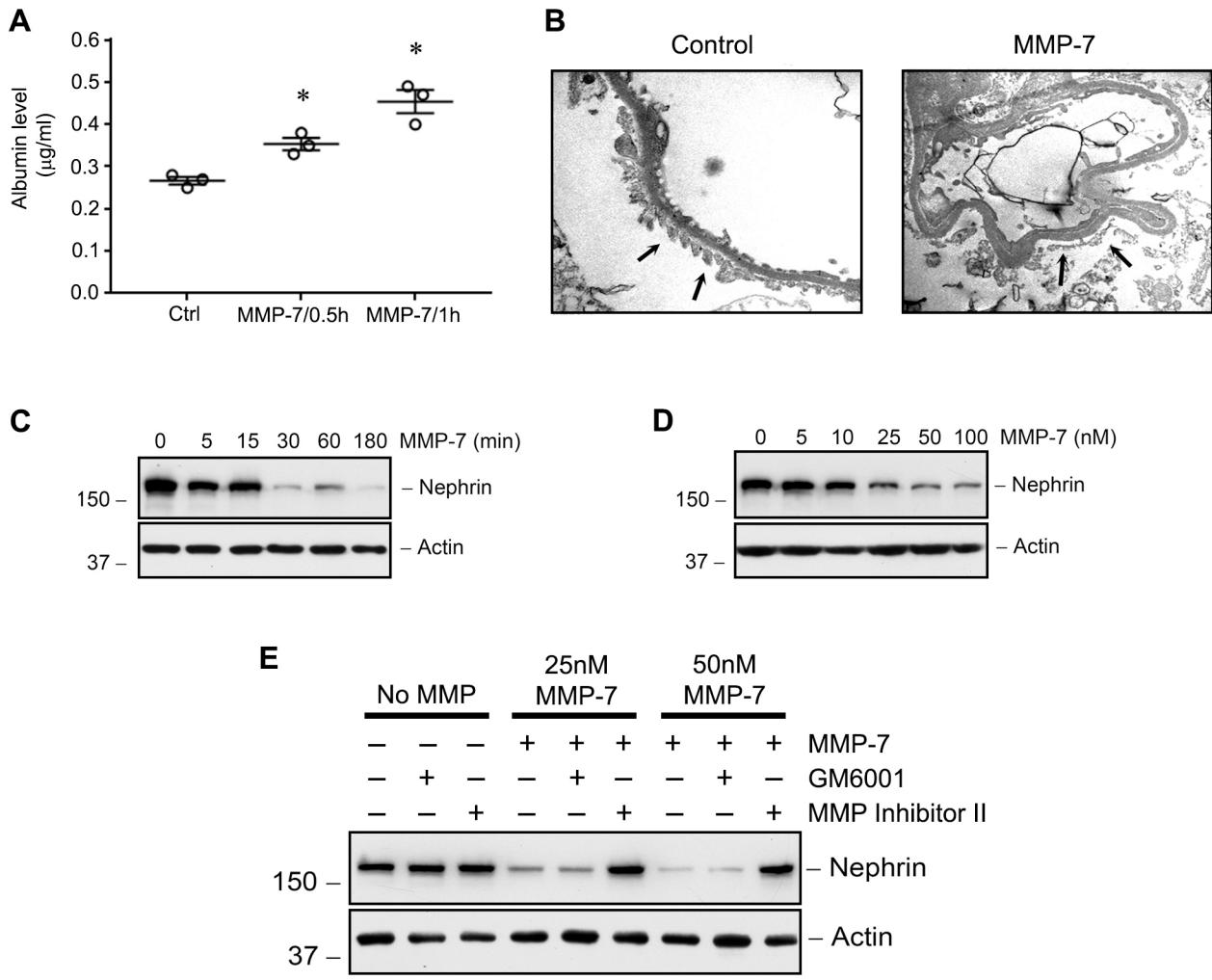


Figure 4. Renal expression of MMP-7 is reduced in Ksp- β -cat^{-/-} mice after Ang II infusion.
 (A, B) Western blot analyses for MMP-7 reveal significant reduction in the Ksp- β -cat^{-/-} mice after Ang II infusion, compared to Ksp- β -cat^{+/+} mice (n=4). Western blot (A) and quantitation after densitometry (B) are shown. *P < 0.05, t-test. (C) qRT-PCR shows a trend to higher expression of MMP-7 mRNA in the Ksp- β -cat^{+/+} mice as well (n=5, t-test). P = 0.092 two tailed, 0.046 one tailed. (D) Immunohistochemical staining for MMP-7 shows negligible staining in control mice, with dramatic upregulation in Ang II-treated Ksp- β -cat^{+/+} mice (arrows). A reduced MMP-7 staining was noticed in Ksp- β -cat^{-/-} mice. Bar equals 50 μ M.

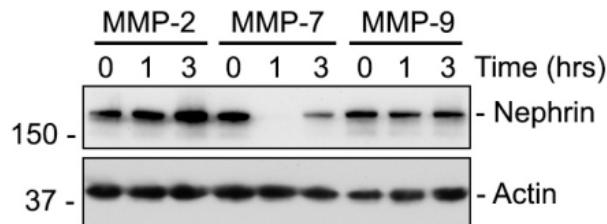
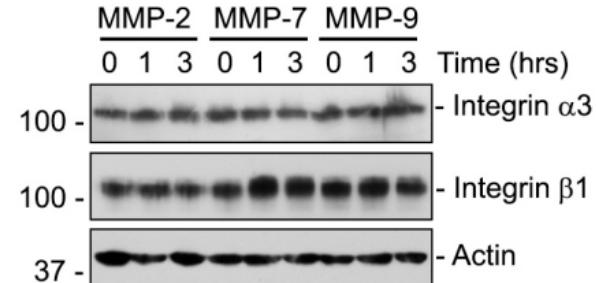
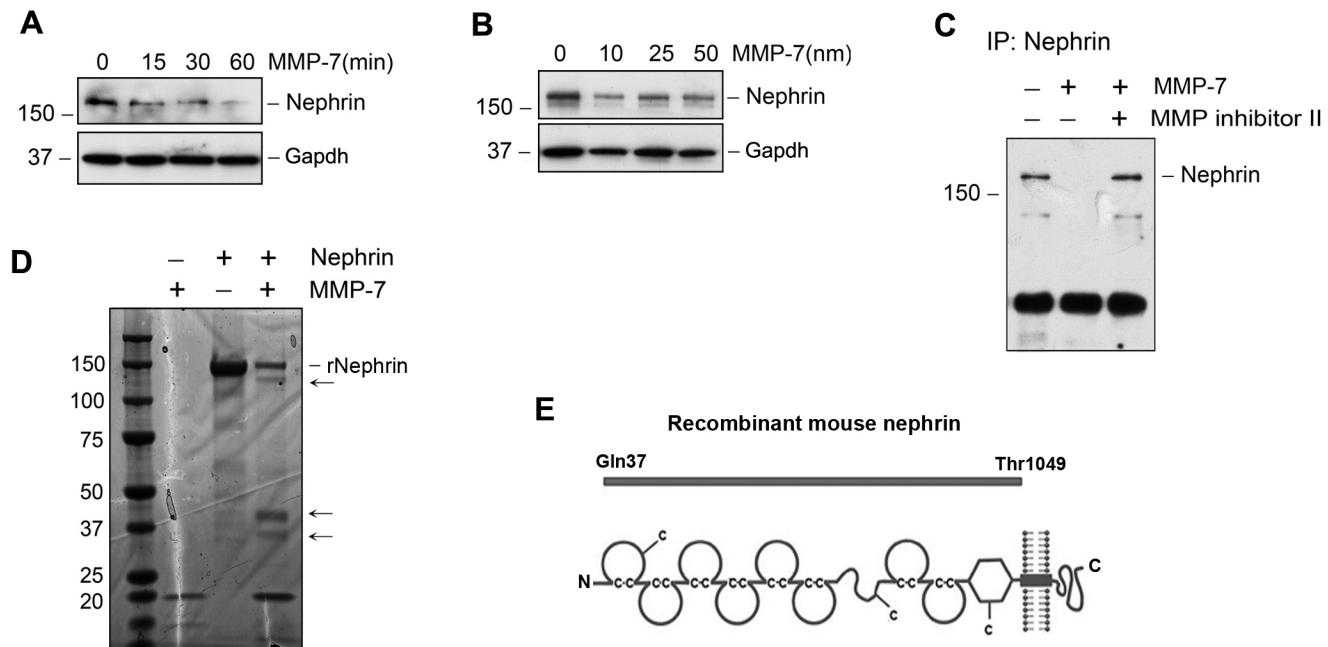
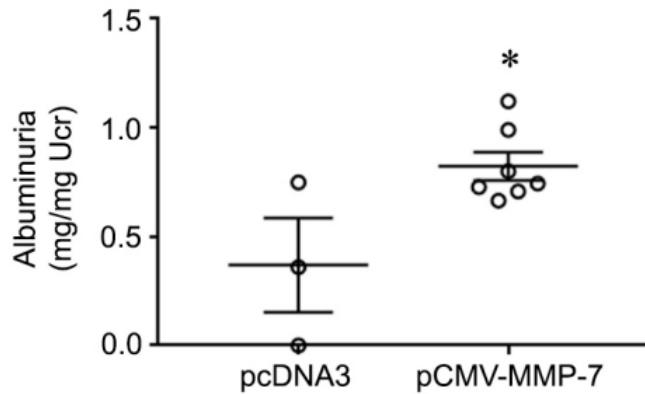
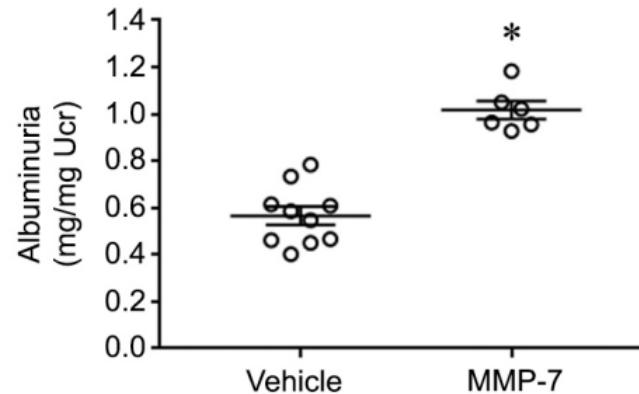



Figure 5. KSP-β-cat-/- mice are protected from adriamycin-induced kidney injury and proteinuria.


(A) Urine albumin excretion 3 weeks after injection of adriamycin (22mg/kg) in KSP-β-cat^{+/+} compared to KSP-β-cat^{-/-} mice (* P < 0.05, t-test). (B) Gel electrophoresis of urine samples showing reduction in albumin excretion in KSP-β-cat^{-/-} mice. (C) Immunofluorescence showing greater nephrin disruption in KSP-β-cat^{+/+} mice. (D) Immunoblot demonstrating reduced kidney expression of MMP-7 in KSP-β-cat^{-/-} mice. (E) Immunofluorescence for MMP-7 reveals strong upregulation in tubules from KSP-β-cat^{+/+} mice only.



Figure 6. Recombinant MMP-7 decreases nephrin in a time- and dose-dependent manner in ex vivo glomeruli. (A) MMP-7 treatment (50 nM, 30 min) causes a significant time-dependent release of albumin from isolated rat glomeruli. *P < 0.05, repeated measures one way ANOVA. (B) TEM of isolated glomeruli shows flattening and fusion of foot processes in MMP-7-treated glomeruli compared to vehicle controls (arrows). In separate experiments, glomeruli were incubated with either the same concentration of MMP-7 (50 nM) for various periods of time (C) or with increasing amounts of MMP-7 for 60 minutes (D). Glomerular lysates were immunoblotted with antibodies against nephrin and actin. (E) Nephrin depletion by MMP-7 is dependent on its proteolytic activity. Rat glomeruli were pretreated with GM6001 (25 µM) or MMP inhibitor II (20 µM) for 30 minutes before incubation with MMP-7 (25 nM or 50 nM) for 60 minutes.

A**B****C**

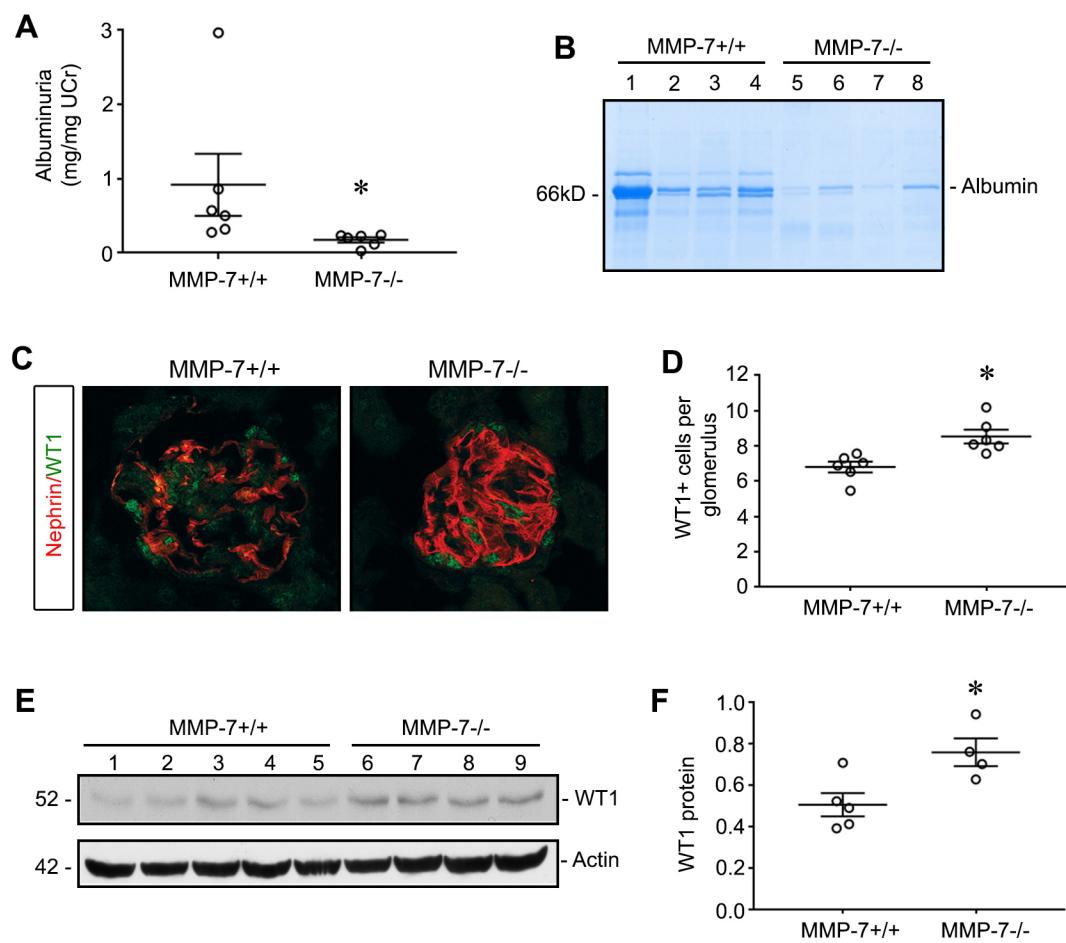

Figure 7. MMP-7 reduces nephrin and podocin levels in isolated glomeruli. (A) Rat glomeruli were incubated separately with MMP-2 (1 μ g/ml, or 13.88 nM), MMP-7 (50 nM) and MMP-9 (1 μ g/ml, or 10.9nM) and total protein immunoblotted for nephrin. Only MMP-7 was capable of reducing nephrin levels. (B) MMP-7 also reduces podocin protein in isolated glomeruli ex vivo. Glomerular lysates were immunoblotted with antibodies against podocin and actin. (C) MMP-7 does not affect other membrane proteins in podocytes such as integrin- α 3 and integrin- β 1. Western blot analyses of glomerular lysates reveal no effect on integrin- α 3 and - β 1 proteins after incubation with any of the three MMPs.

Figure 8. MMP-7 mediates nephrin degradation in vitro. (A, B) HEK-293 cells were transfected with nephrin expression vector for 48 hours, followed by incubation with MMP-7 (50 nM) for various periods of time (A) or with increasing amounts of MMP-7 for 60 minutes (B). (C) Nephrin from overexpressing cells was immunoprecipitated with anti-nephrin antibody, followed by various treatments as indicated. MMP-7 caused nephrin depletion, which was inhibited by MMP inhibitor II. (D, E) Representative SDS-PAGE shows that MMP-7 degrades recombinant mouse nephrin protein. Purified mouse nephrin protein (2 μ g) was incubated with 50 nM MMP-7 for 60 minutes. Truncated form of mouse nephrin corresponding to Gln37 to Thr1049 (~150 kDa in size) is used (E). Arrows in Panel (D) indicate the degradation fragments of nephrin.

A**B**

Figure 9. Delivery of MMP-7 gene or recombinant MMP-7 protein induces albuminuria in vivo. (A) Mice were injected intravenously with pcDNA3 or pCMV-MMP-7 vector (2 mg/kg), respectively. Urinary albumin concentration was assayed 24 h after injection. *P < 0.05 (n=7, t-test). (B) After injection with recombinant MMP-7 (1 mg/kg) for 3 hours, urinary albumin excretion was increased in the MMP-7-treated group, compared with vehicle controls. * P < 0.05 (n=6, t-test).

Figure 10. Mice with global ablation of MMP-7 are protected from Ang II-induced glomerular injury. Wild type (WT) and MMP-7^{-/-} (KO) mice were treated with continuous infusions of Ang II (1.5 mg/kg/day). (A) Albuminuria is significantly reduced in the KO compared to WT mice. (B) Gel electrophoresis of urine samples demonstrate a reduced albumin excretion in MMP-7^{-/-} mice, compared to MMP-7^{+/+} counterparts. (C) Immunofluorescence staining shows extensive nephrin disruption and a decrease in numbers of healthy WT1-positive podocytes in MMP-7^{+/+} mice. MMP-7 KO mice retained linear nephrin staining and numbers of WT1-positive nuclei. (D) Quantitation of WT1-positive nuclei per glomerulus (n=5-6, t-test). (E, F) Western blot analyses show an increased preservation of WT1 expression in MMP-7^{-/-} mice after Ang II infusion, compared to MMP-7^{+/+} controls. Western blot (E) and quantitation (F) are shown. *P < 0.05 (n=4-5, t-test).