1	Supplemental Information
2	
3	
4	Molecular mechanisms of immunocytokine IL-33-mediated stromal interactions
5	in cancer metastasis
6	
7	
8	Patrik Andersson, Yunlong Yang, Kayoko Hosaka, Yin Zhang, Carina Fischer, Harald
9	Braun, Shuzhen Liu, Guohua Yu, Shihai Liu, Rudi Beyaert, Mayland Chang, Qi Li, and
10	Yihai Cao
11	
12	
13	
14	
15	Supplemental Figures and Tables
16	

Figure S4. Ablation of tumor macrophages by clodronate.

- (A) Immunohistochemical staining and quantification of Iba1⁺ (red) macrophages in PBS- or clodronate-treated Panc02 tumors. Tumor cells are GFP⁺ (n = 8 random fields per group, scale bar = 100 μ m).
- Mean \pm s.e.m., ***p < 0.001. Student's *t*-test.

Figure S5. Production of MMP9 in fibrosarcoma.

- 4 (A)qPCR quantification of *Mmp9* mRNA expression levels in vector or IL-335 overexpressing fibrosarcoma tumors (n = 6 samples per group).
 6 Mean ± s.e.m., ***p<0.001. Student's *t*-test.

Figure S6. Impact of IL-33-ST2 signaling on collagen IV and fibronectin contents in tumors.

- 5 (A)Immunohistochemical staining and quantification of collagen IV⁺ (green) and 6 CD31⁺ (red) structures in vehicle- or sST2-treated Panc02 tumors. Quantification of the percentage of collagen $IV^+/CD31^+$ signals per field (n = 7 8 8 random fields per group, scale bar = $100 \mu m$). 9 (B) Immunohistochemical staining and quantification of fibronectin⁺ (green) and 10 CD31⁺ (red) structures in vehicle- or sST2-treated Panc02 tumors. 11 Quantification of the percentage of fibronectin⁺/CD31⁺ signals per field (n = 8random fields per group, scale bar = 100 μ m). Mean \pm s.e.m., ns, not 12
- 13 significant. Student's *t*-test.
- 14

- 2 3 4 5

Mean \pm s.e.m.

Antibody	Catalog no.	Company
Beta actin	3700	Cell Signaling
ERK	4695	Cell Signaling
Phospho-ERK	9101	Cell Signaling
ΙκΒα	4812	Cell Signaling
Phospho-IkBa	2859	Cell Signaling
p38	9212	Cell Signaling
Phospho-p38	4631	Cell Signaling
NF-κB	6956	Cell Signaling
Donkey anti-Mouse (800CW)	926-32212	LI-COR
Donkey anti-Rabbit (680RD)	926-68073	LI-COR

1 Table S1. List of antibodies for immunoblotting

Table 2. List of primers

Target	Forward (5' - 3')	Reverse (5' - 3')
mGaphd	CCAGCAAGGACACTGAGCAA	GGGATGGAAATTGTGAGGGA
m <i>Mmp1a</i>	ACTACAACTGACAACCCAAGAAAG	AAGTGTCTCTTAGCTGGGCAC
mMmp2	TTTCTATGGCTGCCCCAAGG	GTCAAGGTCACCTGTCTGGG
mMmp8	GTCCCAAGTGGACACACACT	GGTTGAAAGGCATGGGCAAG
m <i>Mmp9</i>	GTCCAGACCAAGGGTACAGC	ATACAGCGGGTACATGAGCG
m <i>Mmp12</i>	CTGTGACTGTACCAAGCCAT	CTCCTGTGCTTAAGGAGGCT
m <i>Mmp13</i>	AGAAGTGTGACCCAGCCCTA	GGTCACGGGATGGATGTTCA
m <i>Cd206</i>	TGGGCAACATCGAGCAGAAT	TGCAGGGTTGACATGAGACC
mPdl2	TTGTCTCCTTCTGTCTCCCAAC	TCAAAATCGCACTCCAGGCT
mCcr3	TCTACCGGCCCTCACATACC	TTCAATCCAGAGAGCACCTCC
mArg1	GAACTCTGATCGTAGCTGCCT	GAATCCCGAGGCAGAAGTCC
m <i>Cd163</i>	CACGGCACTCTTGGTTTGTG	CTCTGAATGACCCCCGAGGA
mF13a1	GTCCCGCCCAATAACTCCAA	CCCTCTGCGGACAATCAACT
m <i>Timp1</i>	GATCGGGGGCTCCTAGAGACA	GCTGGTATAAGGTGGTCTCGT
mTimp2	CATGCTGGGGTTTCTAGCCA	GCATGACGGGAGTAAGGGAG
m <i>Timp3</i>	CCCTTGCATCTTTCCCCTGT	GGCCTCACCTCAAGTCTGTC
m <i>Timp4</i>	CTCTTGTCCTGCAAGTCCCC	CCTGGAGGGAAAATGCTTGT
mNfkb1	ATGTAGTTGCCACGCACAGA	TGTAAAATGCATAAAACGGG
		GAAA
mNfkb2	GCAGCACTAACTTTCTGCCC	GATAGGGGCCATCAGCTGTC