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Systemic lupus erythematosus (SLE) is a complex autoimmune disease that follows an unpredictable disease course and
affects multiple organs and tissues. We performed an integrated, multicohort analysis of 7,471 transcriptomic profiles from
40 independent studies to identify robust gene expression changes associated with SLE. We identified a 93-gene
signature (SLE MetaSignature) that is differentially expressed in the blood of patients with SLE compared with healthy
volunteers; distinguishes SLE from other autoimmune, inflammatory, and infectious diseases; and persists across diverse
tissues and cell types. The SLE MetaSignature correlated significantly with disease activity and other clinical measures of
inflammation. We prospectively validated the SLE MetaSignature in an independent cohort of pediatric patients with SLE
using a microfluidic quantitative PCR (qPCR) array. We found that 14 of the 93 genes in the SLE MetaSignature were
independent of IFN-induced and neutrophil-related transcriptional profiles that have previously been associated with SLE.
Pathway analysis revealed dysregulation associated with nucleic acid biosynthesis and immunometabolism in SLE. We
further refined a neutropoiesis signature and identified underappreciated transcripts related to immune cells and oxidative
stress. In our multicohort, transcriptomic analysis has uncovered underappreciated genes and pathways associated with
SLE pathogenesis, with the potential to advance clinical diagnosis, biomarker development, and targeted therapeutics for
SLE.
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Systemic lupus erythematosus (SLE) is a complex autoimmune disease that follows an
unpredictable disease course and affects multiple organs and tissues. We performed an integrated,
multicohort analysis of 7,471 transcriptomic profiles from 40 independent studies to identify
robust gene expression changes associated with SLE. We identified a 93-gene signature (SLE
MetaSignature) that is differentially expressed in the blood of patients with SLE compared with
healthy volunteers; distinguishes SLE from other autoimmune, inflammatory, and infectious
diseases; and persists across diverse tissues and cell types. The SLE MetaSignature correlated
significantly with disease activity and other clinical measures of inflammation. We prospectively
validated the SLE MetaSignature in an independent cohort of pediatric patients with SLE using

a microfluidic quantitative PCR (qPCR) array. We found that 14 of the 93 genes in the SLE
MetaSignature were independent of IFN-induced and neutrophil-related transcriptional profiles
that have previously been associated with SLE. Pathway analysis revealed dysregulation associated
with nucleic acid biosynthesis and immunometabolism in SLE. We further refined a neutropoiesis
signature and identified underappreciated transcripts related to immune cells and oxidative stress.
In our multicohort, transcriptomic analysis has uncovered underappreciated genes and pathways
associated with SLE pathogenesis, with the potential to advance clinical diagnosis, biomarker
development, and targeted therapeutics for SLE.

Introduction
Systemic lupus erythematosus (SLE) is a complex, heterogeneous, chronic autoimmune disease that can
affect multiple organs and tissues, including the skin, kidneys, joints, lungs, blood, and CNS. SLE follows an
unpredictable disease course, punctuated by periods of flare and remission (1). High-titer, class-switched anti-
bodies that bind to nuclear antigens, including dsSDNA, ribonucleoprotein (RNP), Smith, SSA (Ro), and SSB
(La), are used in the diagnosis and monitoring of SLE and are thought to be pathogenic. The heterogeneity
of SLE makes it challenging for clinicians to manage. Identification of robust molecular changes associated
with SLE, despite the patient heterogeneity, will likely improve our understanding and management of SLE.
A number of gene expression studies have shed light on the molecular pathogenesis of SLE. For exam-
ple, microarray analyses of blood cells derived from patients with SLE have shown that the IFN pathway
is dysregulated in a subset of individuals who have more active and severe disease (2-5). Increases in
IFN-related genes have also been observed in subsets of patients with other diseases, including systemic
sclerosis (SSc), dermatomyositis (DM), polymyositis (PM), primary Sjogren’s syndrome (SS), and rheuma-
toid arthritis (RA), although levels of IFN-inducible gene products were typically highest in SLE (6-10). A
review of the biomedical literature identified IFN and neutrophils as major focuses of recent SLE research,
with approximately 150 and 40 references per year, respectively. In addition to the IFN signature, upregula-
tion of transcripts associated with granulopoiesis and plasmablasts were observed in individuals who have
SLE and were found to be associated with disease activity (3, 5). McKinney et al. used gene expression
analysis of purified immune cell populations to identify a transcriptional signature in CD8" T cells that
was associated with increased likelihood of SLE disease flare (11). They went on to identify an exhaustion
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signature, associated with decreased risk of flare, in CD8" T cells from individuals who have SLE (12).
However, the majority of these studies have been limited by small sample sizes, low levels of clinical and
geographic heterogeneity, potential artifacts related to use of a single experimental gene array platform,
and lack of external validation. A more robust approach is needed to interrogate the molecular signatures
that underlie the highly variable presentation and course of SLE.

‘We have previously described a multicohort analysis framework (Metalntegrator) to identify robust
disease signatures, and we have repeatedly demonstrated its applications for discovering diagnostics, prog-
nostics and drug targets, and drug repurposing, which leverages the biological and technical heteroge-
neity present in the large amounts of publicly available gene expression data across a broad spectrum of
conditions including infections, organ transplant, vaccination, cancer, and autoimmune diseases (13—15).
Metalntegrator is based on a random-effects meta-analysis, drawing statistical power from the integration
of many diverse data sets (14). By computing effect sizes for each data set independently, Metalntegrator
embraces heterogeneity and avoids the limitations of batch effect correction. We have demonstrated appli-
cation of this framework across a broad spectrum of diseases, including cancer (16, 17), solid organ trans-
plant (13), sepsis (18), viral infection (19), tuberculosis (20), neurodegenerative diseases (21), vaccination
(22), and SSc (23). Here, we applied the framework to analyze 40 publicly available whole transcriptome
profile data sets containing 7471 samples from patients with SLE, individuals with other autoimmune
diseases or infections, and healthy volunteers. Together, these data sets represented real-world diversity
because of both (a) the biological heterogeneity, as the samples were collected from multiple tissue and cell
types (e.g., blood, skin, and kidney) at 17 centers across 5 countries, and (b) the technical heterogeneity,
since data were generated using diverse microarray platforms (e.g., Affymetrix arrays, Illumina beadchips,
and Hitachisoft chips). Our analysis identified a robust SLE MetaSignature that (a) distinguishes SLE from
other autoimmune and inflammatory diseases; (b) is present in multiple affected tissues and immune cell
subsets; (c) is independent of age; and (d) is correlated with disease activity. We validated the SLE Meta-
Signature using additional independent publicly available transcript data sets. We then devised a custom,
microfluidic quantitative PCR (qPCR) assay to analyze RNA transcripts in blood derived from a prospec-
tive, independent pediatric SLE (pSLE) cohort. Pathway analysis identified potentially novel dysregulated
pathways in SLE, including those related to nucleotide biosynthesis and metabolism. Importantly, we iden-
tified a non-IFN component of the SLE MetaSignature that correlated more positively with disease activity
measures than the IFN-related genes. Finally, our results discovered 14 “non-IFN, nonneutrophil” genes as
underappreciated targets for biomarker and therapeutic development.

Results

Identification of the SLE MetaSignature. To perform a comprehensive, unbiased study of the molecular changes
underlying SLE, we identified and downloaded gene expression data from all publicly available human SLE
data sets in Gene Expression Omnibus (24). In total, we identified 40 data sets from 17 centers in 5 coun-
tries composed of 7471 samples derived from whole blood, peripheral blood mononuclear cells (PBMCs),
kidney, skin, synovium, B cells, T cells, monocytes, neutrophils, and endothelial progenitor cells (Figure 1
and Tables 1, 2, 3). We randomly selected 6 data sets consisting of 370 whole blood and PBMC samples as
“Discovery” data sets, based on our previous finding that 5 data sets with 250-300 samples are sufficient to
find a robust disease gene signature using our multicohort analysis framework (14). We divided the remain-
ing 34 data sets into ‘“Validation” (2,407 samples in 8 data sets) and “Extended Validation”data sets (4,694
samples in 26 data sets). Discovery and Validation data sets were required to include PBMC or whole blood
samples from healthy controls and patients with SLE. Extended Validation data sets included samples from
other tissues or cell types, comparisons between SLE and other diseases, and longitudinal SLE samples.

We identified 93 significantly differentially regulated genes (82 upregulated and 11 downregulated)
(Supplemental Table 1; supplemental material available online with this article; https://doi.org/10.1172/
jei.insight.122312DS1) with a FDR less than or equal to 5% and an absolute effect size greater than or
equal to 1 compared with healthy volunteers in the Discovery data sets (Figure 2A and Supplemental Table
1). We defined these 93 genes as the “SLE MetaSignature.” In the Validation data sets, 73 of these 93 SLE
MetaSignature genes met the same filtering criteria (|ES| = 1 and FDR < 5%) and effect sizes for all 93
genes exhibited the same directionality as in the Discovery data sets (Figure 2B and Supplemental Figure 1).
Of the 20 SLE MetaSignature genes that did not meet the filtering criteria, 18 were statistically significant
(FDR < 5%) but had an effect size less than 1 (median effect size, 0.78). In the Extended Validation data
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Figure 1. Identification and validation of a SLE-specific gene signa-
ture using integrated, multicohort analysis. (A) We downloaded 40
publicly available data sets from 17 centers in 5 countries comprising
7471 samples. We identified data sets that included whole blood or
PBMC samples from SLE patients and healthy volunteers to serve as
discovery (6 studies) and validation (8 studies) sets. The remaining 26

Validation
8 Studies, 2,407 Samples

Validation

studies contained samples from other tissue types or lacked healthy

’ volunteer samples, and they were examined as extended valida-

tion data sets. We used the Metalntegrator framework to identify a
93-gene SLE MetaSignature (effect size > 1, FDR < 0.05, measured in >
4 data sets). We examined the classification accuracy of the signa-
ture in validation data and the generalizability of the signature in the
extended validation data. To prospectively validate the SLE meta-anal-
ysis signature using an external cohort, we analyzed individuals who
have pSLE (n = 43) or JIA (n = 12) from the Stanford Pediatric Rheuma-
tology Clinic, as well as healthy adult (n = 10) volunteers using Fluidigm
gPCR arrays. (B) We leveraged publicly available data to identify
non-IFN components of the SLE MetaSignature, examine the role of
neutrophils in SLE, and study heavy metal exposure.
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sets, which included data from diverse sample types and other diseases, the SLE MetaSignature gene effect
sizes were consistent with the Discovery data set (Figure 2C). Regardless of the genetic background of the
patients, technical variation, tissue, and cell type, the genes comprising the SLE MetaSignature were all
differentially expressed (Figure 2, A—C), demonstrating the robustness of the SLE MetaSignature.

We defined an “SLE MetaScore” for each sample using the 93-gene signature (see Methods). In the
Discovery data sets, the SLE MetaScore distinguished SLE patient samples from healthy samples with a
summary area under the receiver operating characteristic curve (AUROC) of 0.95 (95% CI, 0.83-0.99)
(Figure 2D). The SLE MetaScore distinguished samples from patients with SLE and healthy volunteers
with high accuracy in the 8 Validation data sets (summary AUROC = 0.94; 95% CI, 0.89-0.97) (Figure
2E), further demonstrating the robustness of the SLE MetaSignature.

Of the 93 genes in the SLE MetaSignature, 46 had been previously associated with SLE (2, 3, 5,
25). To the best of our knowledge, the remaining 47 genes have not previously been associated with
SLE. We performed pathway analysis of the SLE MetaSignature using Differential Expression Analysis
for Pathways (DEAP) (26) to identify biological processes that are dysregulated in SLE. DEAP takes
advantage of the meta-analysis effect sizes for all genes (not just those in the SLE MetaSignature) and
pathway topology to identify patterns of differential expression that are consistent with known biological
pathways. By taking advantage of effect sizes of all genes, DEAP significantly improves power com-
pared with gene list-based approaches (26). Furthermore, DEAP specifies genes involved in the most
differentially expressed subpathway. As input for DEAP, we used study level effect sizes from the Dis-
covery and Validation data sets (26). Supplemental Table 2 summarizes pathways that were differentially
expressed at a FDR equal to or under 10% based on 5000 random permutations of the data. In addition
to the expected inflammatory pathways (e.g., IFN-y signaling pathway, chemokine/cytokine-mediated
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Table 1. SLE discovery data set summaries

Data set name
GSE11909
GSE17755

GSE22098
GSE39088

GSE50635
GSE8650
6 Data sets

Tissue type Center Sample size Discovery samples Reference
PBMC Baylor University, Texas, USA 175 75 (123)
PBMC Wakayama Medical University, 244 44 (124)

Osaka, Japan
Whole blood Baylor University, Texas, USA 274 83 (38)
Whole blood Universite Catholique de Louvain, 142 60 (125)
Brussels, Belgium
Whole blood Mayo Clinic, Minnesota, USA 49 49
PBMC Baylor University, TX, Texas, USA 246 59 (126)
Whole blood and 4 Centers, 3 Countries 1,130 370
PBMC

More extensive descriptions in Supplement S1.

signaling pathway, and IL signaling pathway), our analysis identified several highly significant, unex-
pected pathways (salvage pyrimidine deoxyribonucleotides, formyltetrahydrofolate biosynthesis, and sal-
vage pyrimidine ribonucleotides) related to nucleic acid metabolism. Thus, pathway analysis of the SLE
MetaSignature provided insights into the biological mechanisms underlying SLE.

SLE MetaScore distinguishes SLE from other autoimmune, inflammatory, and infectious diseases. We compared
SLE MetaScores across inflammatory conditions, including other autoimmune and infectious diseases, to
explore its specificity to SLE. We found that adult SLE (aSLE) and patients with pSLE had significantly
higher SLE MetaScores than individuals with staphylococcal infection, streptococcal pharyngitis, Still’s
disease (systemic onset juvenile idiopathic arthritis; sJIA), RA, pyogenic pyoderma gangrenosum and acne
(PAPA), B cell deficiency, diabetes, HIV infection, and liver transplant acute rejection in whole blood and
PBMC samples across multiple independent data sets (Figure 3, A and B, and Supplemental Figure 2, A
and B). In concordance with the previously reported increased severity of disease observed in patients
with pSLE compared with adults (27), we found that patients with pSLE had significantly higher SLE
MetaScores compared with patients with aSLE (Figure 3B). Taken together, these results demonstrate that,
both in adult and pediatric populations, the SLE MetaScore is highly specific to SLE compared with other
autoimmune, inflammatory, and infectious diseases.

The SLE MetaScore is systemically higher across tissues in patients with SLE. SLE is a systemic autoimmune
disease that affects multiple tissues and organs. Therefore, we explored whether the SLE MetaScore is per-
sistent in tissues other than whole blood and PBMC:s in patients with SLE. SLE MetaScores were higher in
a data set derived from glomeruli and tubulointerstitium of kidneys from individuals with SLE compared
with pretransplant living donors (Figure 3C and Supplemental Figure 3A). SLE MetaScores were higher in
a data set from synovial biopsies of patients with SLE compared with those with microcrystalline arthritis

Table 2. SLE validation data set summaries

Data set name
GSE12374
GSE24706
GSE49454
GSEB1635
GSEB5391
GSE72738
GSE81622
GSE88884

8 Data sets

Tissue type Center Sample size Validation samples Reference
PBMC Wakayama Medical University, Osaka, Japan 17 17 (127)
PBMC University of Texas - Southwestern, Texas, USA 48 48 (128)

Whole blood Universite Catholigue de Louvain, Brussels, Belgium 49 82 (129)
PBMC University of Miami, Florida, USA 129 129

Whole blood Baylor University, TX, Texas, USA 996 230 (5)

Whole blood Universite Catholique de Louvain, Brussels, Belgium 82 26 (130)
PBMC University of Texas- Southwestern, Texas, USA 55 55
PBMC EliLilly and Company, Indianapolis, Indiana, USA 1,820 1,820 (131)

Whole blood 6 Centers, 3 Countries 3,196 2,407

and PBMC

More extensive descriptions in Supplement S1.
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Table 3. SLE extended validation data setsummaries

Data set name
GSE10325

GSE13887

GSE24060

GSE26949
GSE26950
GSE26975
GSE27427
GSE29536
GSE30153

GSE32591
GSE36700

GSE36941

GSE37356
GSE37573
GSE38351

GSE4588
GSE46920
GSE46923
GSE50772
GSES51997

GSE52471
GSES5447

GSE72747

GSE78193
GSE88885

GSEB8886

26 Data sets

Tissue type Center Sample size Reference
Sorted cells: CD4* T cells, CD19* B cells, University of Texas - Southwestern, Texas, 67 (132)
myeloid USA
T cells State University New York Upstate, New 27 (133)
York, New York, USA
Whole blood National Institute of Environmental Health 80 (134)
Sciences, North Carolina, USA
Endothelial progenitor cells University of Michigan, Michigan, USA 12 (135)
Endothelial progenitor cells University of Michigan, Michigan, USA 12 (135)
Neutrophils University of Michigan, Michigan, USA 29 (35)
Neutrophils Baylor University, Texas, USA 47 (136)
Whole blood Baylor University, Texas, USA 410 (137)
B cells Institut de Biologie Moléculaire et Cellulaire, 26 (138)
Strasbourg, France
Kidney: tubulointerstitium and glomeruli University of Michigan, Michigan, USA 93 (139)
Synovial biopsy Universite Catholique de Louvain, Brussels, 25 (140)
Belgium
PBMC Pierre and Marie Curie University, Paris, 20 (141)
France
Sorted cells: monocytes and macrophages Northwestern University, lllinois, USA 72
B cells: EBV transformed University of Texas- Southwestern, Texas, USA 104
PBMC Deutsches Rheuma-Forschungszentrum, 74 (142)
Berlin, Germany
Sorted cells: CD4* T cells, B cells Universite Catholique de Louvain, Brussels, 49
Belgium
Monocytes Baylor University, Texas, USA 12 (143)
Monocytes Baylor University, Texas, USA 142 (143)
PBMCs Genentech, California, USA 81 (25)
Sorted cells: CD4* T cells, CD16* monocytes, Deutsches Rheuma-Forschungszentrum, 36 (144)
CD16™ monocytes Berlin, Germany
Skin Mount Sinai, New York, USA 38 (145)
Sorted cells: CD4* T cells, CD8* T cells, Mayo Clinic, Minnesota, USA 208 (146)
monocytes, B cells
Whole blood Universite Catholique de Louvain, Brussels, 30
Belgium
Whole blood Amgen, California, USA 125 (147)
PBMC Eli Lilly and Company, Indianapolis, Indiana, 908 (131)
USA
PBMC Eli Lilly and Company, Indianapolis, Indiana, 118 (131)
USA
Whole blood, PBMC, sorted cells, tissues 16 Centers, 4 Countries 4,056

More extensive descriptions in Supplement S1.

insight.jci.org

(gout and pseudogout), osteoarthritis (OA), RA, or seronegative arthritis (Figure 3D). Finally, we found
that a data set derived from skin biopsies from individuals with discoid lupus erythematosus exhibited sig-
nificantly higher SLE MetaScores than healthy volunteers and individuals with psoriasis, suggesting shared
pathways between systemic and cutaneous lupus (Supplemental Figure 3B). Collectively, these results pro-
vide strong evidence that the SLE MetaScore is higher in multiple affected tissues in SLE in comparison
both with healthy controls and other autoimmune diseases.

The SLE MetaScore is differentially expressed in diverse immune cell types. Multiple functional chang-
es have been described in T cells of patients with SLE, including upregulation of costimulatory
molecules, hypomethylation, increased expression of key immune-related genes (28), and aberrant
signaling pathway activation downstream of TCR activation (29). We found that the SLE MetaS-
core was significantly higher in multiple independent data sets from CD4* T cells of patients with
SLE compared with healthy volunteers (Supplemental Figure 4, A-C) and RA patients (Figure 3E).
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Figure 2. SLE MetaSignature persists across diverse data sets. (A-C) Effect size heatmaps of SLE MetaSignature genes across discovery (A), validation (B), and
extended validation (C) data sets. Each column represents a gene in the SLE MetaSignature, ordered from lowest to highest effect size in the discovery data.
Each row represents a gene expression data set. (D and E) Receiver operating characteristic curves are broken into discovery (D) and validation (E) data. A perfect
classifier will have an AUROC of 1, and a random classifier will have an AUROC of 0.5. We show both whole blood (WB) and peripheral blood mononuclear cell
(PBMCs) samples. The summary curve is a composite of the individual study curves. The extended validation ROC plot is shown in Supplemental Figure 9.

Similarly, the SLE MetaScore was significantly increased in a data set from CD8* T cells of individuals

with SLE, compared with healthy volunteers (Supplemental Figure 4D).

Dysregulation of B cells is a hallmark of SLE, including autoantibody production, defective negative

selection, and changes in the proportions of key B cell subpopulations (30, 31). The SLE MetaScore was
less robust in data sets from B cells than T cells, classifying SLE in some data sets (Figure 3F and Sup-
plemental Figure 4E) but not others (Supplemental Figure 4, F and G). Finally, the SLE MetaScores in

data sets from monocytes and neutrophils were not significantly different between patients with SLE and

healthy controls (data not shown).

insight.jci.org

The SLE MetaScore is positively correlated with disease activity and inflammation. The SLE Disease Activity Index
(SLEDAI) is a standardized, albeit imperfect, measure of disease severity and activity. SLEDAI is based on the
presence or absence of 24 features at the time of the visit, including arthritis, rash, fever, and increases in anti-
DNA autoantibodies. It is often used by clinicians to monitor disease activity in an individual SLE patient (3).
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Figure 3. SLE MetaSignature persists across diseases, tissues, and cell types. In these violin plots, each point represents a patient, and the SLE
MetaScore (y axis) has been calculated using the SLE MetaSignature genes. (A and B) The SLE MetaScore distinguished SLE from other diseases.
See also Supplemental Figure 2. (C and D) The SLE MetaScore distinguishes SLE from other diseases and healthy controls in diverse tissues. See
also Supplemental Figure 3. (E and F) The SLE MetaScore distinguishes SLE patients from healthy and other diseases in sorted immune cells.
See also Supplemental Figure 4. RA, rheumatoid arthritis; pSLE, pediatric SLE; aSLE, adult SLE; Staph, staphylococcal infection; Still’s, Still's
disease; Strep, streptococcal pharyngitis; Crystal Arth, microcrystalline arthritis; OA osteoarthritis; and SA, seronegative arthritis. For all panels,

Mann-Whitney U test was used to calculate P values for pairwise comparisons.
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Five independent data sets that profiled PBMC or whole blood samples from patients with SLE also reported
SLEDAI scores. We observed a positive correlation between SLEDAI and the SLE MetaScore across each of
the 5 data sets (Figure 4, A and B, and Supplemental Figure 5, A-D). The median correlation across these stud-
ies (correlation of 0.281) was significantly elevated compared with random gene sets (P < 0.01). The weakest
SLEDALI correlation is observed in GSE27427 (Table 3), which contains only 18 samples and is derived from
neutrophils. The positive correlation of SLEDAI with SLE MetaScore in the blood is notable, since the SLE
MetaSignature was identified without considering disease activity when selecting initial data sets for discovery.
Furthermore, we found that the SLE MetaScore correlated highly with individual clinical measures of systemic
inflammation, including erythrocyte sedimentation rate (ESR) (Supplemental Figure 5E and ref. 32), and levels
of complement C3 (Figure 4C) and C4 (Supplemental Figure 5F).
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Figure 4. Disease activity is significantly associated with the SLE MetaScore. (A) Positive Spearman correlations are observed across all 5 data sets where
SLEDAI was available. Box size is proportional to the confidence of the correlation estimate. Summary is the pooled, inverse variance summary correlation
value. (B) The SLE MetaScore in an example SLE whole blood data set is positively correlated with SLEDAI. Spearman’s rank correlation = 0.25, P = 2.47

x 1072 (calculated using AS 89 algorithm; ref. 122). (C) SLE MetaScore is inversely correlated with complement C3 levels. Spearman’s rank correlation =
-0.303, P =1.79 x 10 (calculated using AS 89 algorithm; ref. 122). See also Supplemental Figure 5.
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Prospective validation of SLE MetaSignature in an independent pSLE cohort. We validated the SLE
MetaSignature in an independent pediatric cohort by studying RNA transcripts in whole blood sam-
ples from healthy adult controls and from pediatric patients with SLE or JIA. We selected 33 genes
from the SLE MetaSignature based on their significance and availability of validated probes for mea-
suring expression using a microfluidic gPCR array (Supplemental Table 3). Thirty genes out of 33
were significantly differentially expressed in SLE samples compared with healthy adult controls and
pediatric JIA patients (FDR < 5%, Supplemental Table 3). Furthermore, the SLE MetaScores based
on these 33 genes in the patients with pSLE were significantly higher than healthy adult controls and
pediatric JIA patients (P = 3.7 x 10 and 1.8 x 107, respectively; Figure 5A); distinguished patients
with pSLE with high accuracy (AUROC = 0.94); and were positively correlated with SLEDAI (Spear-
man’s correlation = 0.307, P = 0.045; Figure 5B).

Stanford Pediatric SLE Cohort
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Figure 5. Prospective validation of the SLE MetaSignature in an independent pSLE cohort using a microfluidic qPCR assay. The relative levels of 33
transcripts selected from the SLE MetaSignature (and housekeeping genes) were analyzed in total RNA prepared from the whole blood of new-onset
pSLE patients (n = 43), individuals with JIA (n = 12), and adult healthy volunteers (n = 10) in parallel using a multiplexed, microfluidic gPCR assay. (A) The
geometric means of the relative concentrations of the 33 transcripts in the SLE MetaSignature were calculated for each individual. Plots show Z scores
calculated across individuals. Mann-Whitney U tests were used to compare groups. (B) SLEDAI scores for individual patients were calculated at the time
of sampling and were correlated with their SLE MetaScores. Spearman’s rank correlation = 0.307, P = 0.0455 (calculated using AS 89 algorithm; ref. 122).
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Figure 6. SLE MetaSignature genes dependent or independent of IFN stimulation. Based on our meta-analysis of

16 data sets of type | IFN stimulation in primary cells, we estimated IFN effect sizes in response to stimulation. We
compared the SLE MetaSignature to the results of an IFN meta-analysis by examining SLE effect size versus IFN effect
size. For a volcano plot for all of the IFN effect sizes, please see Supplemental Figure 6.

A subset of the SLE MetaSignature is not robustly induced by IFN. Dysregulation of the type I IFN pathway
has been repeatedly observed in subsets of patients with SLE with active disease and is thought to be a crit-
ical mediator in disease pathology. Therefore, we explored the proportion of IFN-stimulated genes in the
SLE MetaSignature. We analyzed 16 transcriptome data sets composed of 190 samples derived from prima-
ry human cells treated with type I IFN to identify a robust set of type I IFN-stimulated genes (Supplemental
Table 4). Of the 93 genes in the SLE MetaSignature, 70 were significantly differentially expressed (effect
size > 0.8) in primary cells stimulated by type I IFN (Figure 6 and Supplemental Table 1). The remaining
23 genes in the SLE MetaSignature had low effect sizes and high FDRs within the IFN-stimulated data sets
(Supplemental Figure 6), suggesting that these 23 genes were not affected in cells exposed to type I IFN.

We separated the SLE MetaSignature into “IFN” and “non-IFN” SLE MetaSignatures and computed
scores as before. Both scores distinguished patients with SLE with equally high accuracy in the validation
data sets (Supplemental Table 5). In 4 of 5 data sets with SLEDAI disease severity measurements, the
non-IFN SLE MetaSignature had a higher correlation with SLEDAI than the IFN SLE MetaSignature
Supplemental Table 6). Collectively, our analyses identified a clinically important, non-IFN component of
the SLE MetaSignature.

The role of non-IFN MetaSignature genes in neutrophils. We used immunoStates to identify cell lineages that
most highly express genes that comprise the SLE MetaSignature. We found that many of the non-IFN SLE
MetaSignature genes were upregulated in neutrophils (33), consistent with prior literature implicating neu-
trophils in SLE (3, 34-38). Low-density granulocytes exhibit enhanced type I IFN production and NETosis,
a form of neutrophil cell death implicated in SLE pathogenesis (39) in which DNA neutrophil extracellular
traps (NETs) are extruded from activated neutrophils (36, 39). We identified a transcript profiling data set
that compared low-density granulocytes and neutrophils from patients with SLE or healthy controls. We
observed that the non-IFN SLE MetaSignature was prominently found in low-density granulocytes from
patients with SLE but not in neutrophils from patients with SLE or healthy controls (ref. 35 and Figure 7A).
‘We observed a strong correlation between neutrophil abundance and SLE MetaScore in both studies where
quantitative neutrophil counts were available (Supplemental Figure 10). Collectively, these results suggest
that the SLE MetaSignature genes related to neutrophils are the result of an expansion of the neutrophil
compartment in patients with SLE rather than an altered expression profile in SLE neutrophils.

To further explore the role of the non-IFN genes in neutrophils, we identified 4 publicly available gene
expression data sets with 84 samples that explored either NETosis or neutrophil development (Supplemen-
tal Table 7). The non-IFN SLE MetaSignature was upregulated in cell lines that were stimulated to induce
both Nox-dependent and Nox-independent NETosis (Figure 7B). The non-IFN SLE MetaSignature pro-
gressively increased during intermediate stages of neutropoiesis (Figure 7C and Supplemental Figure 7, A
and B). Collectively, these results indicate that a significant proportion of the non-IFN SLE MetaSignature
is related to transcriptional signatures of NETosis and neutropoiesis.
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Figure 7. The role of non-IFN MetaSignature genes in SLE neutrophils. \Ve examined the non-IFN component of the SLE
MetaSignature (a total of 23 genes) in data sets related to neutrophils. (A) Non-IFN SLE MetaScore in control neutrophils,
SLE neutropbhils, and SLE low-density granulocytes (LDGs). SLE MetaScore in LDGs is significantly elevated compared

with both the control neutrophil and SLE neutrophil populations. (B) Non-IFN SLE MetaScore enriched in primary cells in
response to both Nox-dependent (PMA) and Nox-independent (A23187) NETosis. (C) Non-IFN SLE MetaScore progressively
increased in sorted intermediate cell populations along the neutropoiesis lineage. See also Supplemental Figure 7. For all
panels, Mann-Whitney U test calculated P values, shown for pairwise comparisons. **P < 0.01; *P < 0.05.

Identification of underappreciated, non-IFN, nonneutrophil SLE MetaSignature genes. IFN stimulation and
neutrophil involvement explained the differential expression of 79 of the 93 genes in the SLE MetaSig-
nature (Figure 8A and Supplemental Table 1). The remaining 14 genes (termed “Underappreciated SLE
MetaSignature”; Table 4) provided an opportunity to explore potentially new disease mechanisms that
underlie SLE. The underappreciated SLE MetaScore correlated more positively with disease activity mea-
surements than the IFN SLE MetaScore in every blood-derived data set (Supplemental Table 8). Interest-
ingly, 3 members of the metallothionein family (MT1E, MT1F, and MT1HL1) were in the underappre-
ciated SLE MetaSignature. Metallothioneins play an important role in oxidative stress responses and the
clearance of heavy metals. We identified 2 data sets in which human cell lines were exposed chronically
to cadmium or acutely to zinc. The underappreciated SLE MetaSignature was significantly elevated in
cells exposed to heavy metals when compared with the untreated cell lines (ref. 40 and Figure 8, B and C),
providing a potential link between SLE and heavy metals, or when exposed to other environmental stimuli
that induce oxidative stress. A cadre of the remaining 11 genes in the underappreciated SLE MetaSignature
encode molecules with interesting functions related to immune cells, while the remainder of the genes have
not been linked to SLE and have yet to be well characterized in the literature.

Discussion

Previous gene expression meta-analyses in SLE have been limited to a few experiments, lacked external vali-
dation, or did not investigate the signature’s specificity to SLE (41, 42). Our method leverages biological and
technical heterogeneity to identify a robust disease signature, and it has been successful in diverse diseases that
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Figure 8. Identification of underappreciated non-IFN, nonneutrophil SLE MetaSignature genes. (A) IFN effect size
versus neutrophil effect size. Neutrophil effect size estimated from immunoStates (33). Red indicates the 70 genes
that were in the SLE MetaSignature and were significantly differentially expressed in response to IFN. Green indicates
the 9 genes that were in the SLE MetaSignature, were not significantly differentially expressed in response to IFN, and
were significantly differentially expressed in neutrophils. Blue indicates the 14 genes in the SLE MetaSignature that
were not significantly differentially expressed in neutrophils or in response to IFN stimulation. Dashed lines indicate an
effect size threshold of |0.8| for both neutrophil and IFN effect sizes. (B) Cell lines that were chronically exposed to cad-
mium displayed an increased underappreciated SLE MetaScore compared with control cell lines. (C) Cells exposed to a
water soluble zinc compound exhibited an increased underappreciated SLE MetaScore compared with those exposed to
both a control compound and an insoluble form of zinc (40). For all panels, Mann-Whitney U test was used to calculate
P values, shown for pairwise comparisons.

range from cancer to autoimmunity and infection (13, 16-23). We performed a multicohort gene expression
analysis of more than 7,000 samples from 40 data sets representing real-world biological heterogeneity (includ-
ing genetic background, age, sex, treatment, tissue, cell type, and disease duration) and technical heterogeneity
(including RNA isolation, microarray platform, sample preparation, and experimental protocol) to identify a
persistent SLE MetaSignature. The robustness and reproducibility of the SLE MetaSignature demonstrate its
generalizability to diverse patient populations not observed in traditional, single-cohort analyses (14).

Beyond generalizability, the SLE MetaSignature was both specific to SLE and correlated with disease activi-
ty. Since the SLE MetaSignature distinguished SLE from other diseases, such as diffuse or organ specific autoim-
mune diseases, inflammatory arthritides, and infectious diseases, the SLE MetaSignature identified SLE-specific
disease processes instead of those that are generically dysregulated in other immune-mediated diseases. SLE-
DAL is the current standard for assessing severity of SLE disease activity, although it is a qualitative, subjective,
and difficult-to-reproduce measure (43). Therefore, the positive correlation between the SLE MetaScore and
SLEDALI suggests that the SLE MetaScore is not only capturing disease activity, but also is quantitative and
objective. Therefore, it could potentially serve as a metric of disease activity in future studies or as an exploratory
outcome measure in future clinical trials. Because the SLE MetaScore includes both IFN and non-IFN genes, it
expands upon the current best practices of using IFN-focused gene expression to measure quantitative disease
activity. Finally, to the best of our knowledge, this is the largest analysis of SLE performed to date that demon-
strates that there is a transcriptional signature systemically expressed across different cell types and tissues from
patients with SLE and is distinct from other autoimmune and infectious diseases. Our work has the potential to
enable more precise molecular definition of SLE that is distinct from other autoimmune diseases.

The role of IFN in SLE has been important in improving the understanding of disease pathogenesis, lead-
ing to many publications defining the mechanisms of IFN in SLE (2-5) and several promising clinical trials
testing anti-IFN treatments in patients with SLE (44, 45). To explore beyond this existing knowledge about the
role of IFN in SLE, we specifically separated the SLE MetaSignature into genes related to IFN and genes that
were independent of IFN based on a meta-analysis of 16 transcript profiling data sets from IFN-stimulated
human cells. We found that the non-IFN SLE MetaSignature was equally accurate in identifying patients with
SLE. Notably, the non-IFN SLE MetaSignature had a higher correlation with SLE disease activity compared
with the IFN SLE MetaSignature. Prior studies have likely focused on the IFN-inducible signature due to the
high effect sizes of these inflammatory genes. Excluding highly differentially expressed IFN-inducible tran-
scripts allowed us to focus on genes representative of the more nuanced biology underlying SLE.
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Table 4. Underappreciated genes in SLE MetaSignature

Gene symbol Gene name Description Associated disease  Prior SLE references
ABCB1 ATP binding cassette subfamily Membrane-associated protein; a member of Colchicine resistance; (148-150)
B member 1 the superfamily of ATP-binding cassette (ABC) inflammatory bowel
transporters; an ATP-dependent drug efflux pump disease
for xenobiotic compounds with broad substrate
specificity.

cD1c CD1c molecule A member of the CD1family of transmembrane Mycobacterium (151-153)

glycoproteins, which mediate the presentation malmoense; foramen

of primarily lipid and glycolipid antigens of self or ~ magnum meningioma
microbial origin to T cells.

DSC1 Desmocollin 1 A calcium-dependent glycoprotein; a member of the  Subcorneal pustular
desmocollin subfamily of the cadherin superfamily; dermatosis; a subtype of
an adhesive protein of the intercellular desmosome IgA pemphigus

junctions that is required for cell adhesion and
desmosome formation.

ELANE Elastase, neutrophil expressed A serine protease that hydrolyzes many proteins in Cyclic neutropenia; (72)
addition to elastin. severe congenital
neutropenia, autosomal
dominant
GPR183 G protein-coupled receptor 183 A GPCR expressed in lymphocytes; upregulated Epstein-Barr virus
upon Epstein-Barr virus infection of primary B infection
lymphocytes.
GRN Granulin Precursor A member of the secreted, glycosylated peptide Neuronal ceroid (154-157)
family; involved in cell growth; important in normal lipofuscinosis; Grn-

development, wound healing, and tumorigenesis.  related frontotemporal
lobar degeneration with
Tdp43 inclusions

KLRB1 Killer Cell Lectin Like Receptor Important for NK cells cytotoxicity. Cytomegalovirus (35,78, 79)
B1 infection; inflammatory
bowel disease
LHFPL2 LHFPL Tetraspan Subfamily A member of the lipoma HMGIC fusion partner (LHFP) Deafness
Member 2 gene family, which is a subset of the superfamily of

tetraspan transmembrane protein encoding genes;
plays a role in female and male fertility; involved in
distal reproductive tract development.
MTIE Metallothionein 1E A high content of cysteine residues that bind various
heavy metals; transcriptionally regulated by both
heavy metals and glucocorticoids.
MTIF Metallothionein 1F A high content of cysteine residues that bind various
heavy metals; transcriptionally regulated by both
heavy metals and glucocorticoids.
MTIHL1 Metallothionein 1H Like 1 A high content of cysteine residues that bind various
heavy metals; transcriptionally regulated by both
heavy metals and glucocorticoids.

NAPIL3 Nucleosome Assembly Protein A member of the nucleosome assembly protein
1Like 3 (NAP) family.
TCN2 Transcobalamin 2 A member of the vitamin B12-binding protein family; Transcobalamin
binds cobalamin and mediates the transport of Il deficiency;
cobalamin into cells. transcobalamin
deficiency
VSIGT V-Set and Immunoglobulin A member of the junctional adhesion molecule  Gastric, esophageal, and
Domain Containing 1 (JAM) family; ovarian cancers

The 14 genes from the underappreciated SLE MetaSignature are listed, including their gene symbol, gene name, description, and human diseases with
which these genes have associated. Bolded genes are upregulated in SLE versus healthy controls; downregulated are not bolded.

Neutrophils also play a critical role in SLE pathogenesis. Low-density granulocytes serve as the primary
source of proinflammatory NETs (3, 34-39). We found that the non-IFN SLE MetaSignature was most ele-
vated in mature neutrophils, which contrasted with the more immature neutropoiesis signature observed in
Bennett et al. (3). The non-IFN SLE MetaSignature was also elevated both in low-density granulocytes and
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in response to NETosis-inducing stimulation. Overall, our work further refines the signature of neutropoiesis
in SLE and reinforces an important role for low-density granulocytes and NETosis in SLE. Although B cells
have an established role in SLE, the SLE MetaScore exhibited mixed results on available sorted B cell gene
expression data sets. Due to limited availability of data, we cannot conclusively evaluate whether these chal-
lenges are the result of experimental conditions or a lack of signal in B cells.

One of the most exciting discoveries in the SLE MetaSignature is the identification of 14 genes that
are unrelated to type I IFN- or neutrophil-specific gene dysregulation and are genes that, by and large,
have not previously been implicated in SLE pathogenesis. These newly identified genes fall into catego-
ries that include genes with interesting known biologies that are expressed in immune cells (e.g., KLRBI,
GPR183 [also called EBIZ], CDIC, and ELANE), genes involved in inflammation and cellular stress respons-
es (MTIE, MTIF, and MTIHLI), and individual genes related to vitamin B12 metabolism (7CN2) and
epidermal cellular integrity (DSCI).

The most striking group of genes that we identified were members of the metallothionein gene fami-
ly (MTIE, MTIF, and MTIHLI). Metallothioneins are intracellular, cysteine rich, metal binding proteins
involved in diverse intracellular functions that include clearance of heavy metals (cadmium, zinc, and cop-
per) from cells and maintenance of essential ion homeostasis (46, 47). Metallothioneins normally bind
zinc (48), an important element and potent antioxidant that influences redox state, enzyme activity, gene
transcription, energetic metabolism, cell cycle, cell migration, invasivity, apoptosis, and proliferation (49).
Both human cell line and animal studies have indicated a role for metallothioneins in protection against
cadmium toxicity (50-53). Metallothioneins can be activated by a variety of stimuli, including metal ions,
cytokines, and growth factors, as well as oxidative stress and radiation (49, 54). During oxidative stress,
metallothioneins are upregulated to protect the cells against cytotoxicity, radiation, and DNA damage (55—
57). Interestingly, metallothionein proteins are expressed at elevated levels in the kidneys of lupus nephritis
patients (58). We found that transcript profiles of human cell lines exposed acutely or chronically to heavy
metals resembled the underappreciated SLE MetaSignature. We hypothesize that upregulation of metal-
lothioneins in SLE may be a protective response to elevated oxidative stress during chronic inflammatory
responses and/or exposure to environmental sources of heavy metals (59-62). The importance of metallo-
thioneins in SLE pathology is underscored by the observation that 2 additional family members (M 714 and
MT24) are induced by IFNs and were identified in the 93-gene SLE MetaSignature.

The ELANE gene encodes neutrophil elastase (NE), a serine protease implicated in host defense and tissue
injury. In addition to elastin, NE also hydrolyzes proteins within azurophil granules, extracellular matrix pro-
teins, the outer membrane protein A (OmpA) of E. coli, and the virulence factors of other bacteria (63). In con-
trast to the digestive serine proteases, NE has unusually high affinity for nucleic acids (64). In naive neutrophils,
NE is normally stored in azurophilic granules (65, 66). Upon activation, NE translocates from azurophilic
granules to the nucleus, where it partially degrades specific histones, thereby promoting chromatin deconden-
sation and regulating the formation of NETs (67). NE-KO mice are susceptible to bacterial and fungal infec-
tions (68, 69). Mutations in ELANE can lead to cyclic and severe congenital neutropenia (70). Furthermore, the
NE enzyme may also play a role in various lung, bowel, and skin inflammatory diseases (71). Dysregulation
of ELANE in SLE was previously noted in a single-cohort gene expression profile (72). Although known as a
neutrophil-expressed gene, we did not identify neutrophil-specific dysregulation of ELANE in our analysis of
SLE data sets, and rather than being classified under the neutrophil-related SLE MetaSignature genes, ELANE
was classified as an underappreciated SLE MetaSignature gene. Unexpectedly, our further analysis of cell type
expression of ELANE using immunoStates (33) indicated that ELANE is most differentially expressed in hema-
topoietic progenitor cells and basophils (Supplemental Figure 8). This suggests that novel functions for ELANE
in other cells, in addition to neutrophils, may be involved in the pathophysiology of SLE.

DSCI encodes a calcium-dependent glycoprotein in the desmocollin subgroup of the cadherin family.
The desmocollins are critical adhesive proteins of the desmosome cell-cell junction linking epithelial cells and
are required for cell adhesion and desmosome formation. DSC! is expressed in the upper epidermis of the
skin (73) and has been implicated as an autoantigen for bullous skin disease (74, 75), which is also frequently
manifested in patients with SLE (75). Mice lacking DSCI exhibit epidermal fragility accompanied by defects
in epidermal barrier and differentiation (76). Neonatal mice lacking desmocollin develop epidermal lesions,
and older mice develop ulcerating lesions resembling chronic dermatitis. Based on the above observations, we
speculate that the abnormally low levels of DSCI in patients with SLE lead to reduced adhesion and barrier
maintenance of the upper epidermis, increasing the susceptibility to develop bullae and dermatitis.
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KLRBI (also known as CDI161) encodes a C-type lectin-like receptor that is composed of a disul-
fide-linked homodimer of approximately 40 kDa subunits and is part of the NK gene complex (NKC) (77).
KILRBI has been previously shown to be downregulated in SLE (35, 78, 79). This gene is expressed by NK
cells, subsets of off and yd T cells, and invariant CD1d-specific NK T cells (80-82). The KLRBI receptor,
by interacting with its ligand LLT1 (83, 84), plays an inhibitory role in NK cell-mediated cytotoxicity and
IFN-y secretion during immune responses to pathogens (80, 83—85). Polymorphisms in KLRBI are associ-
ated with structural alterations of the protein and impact its regulatory functions on NK cell homeostasis
and activation (86). In contrast to its inhibitory potential in NK cells, the function of KLRBI in T cells
is less clear, with reports suggesting both coactivating (81, 85, 87) and inhibitory (88, 89) effects. CD161
(KLRBI) has been used as a marker to define Th17 and Tc17 subsets of CD4" and CD8* T cells that secrete
the proinflammatory cytokine IL-17. However, a more recent study found that CDI61-expressing T cell
subsets are not all committed to the Th17 axis but are much more diverse, and that expression of CD161
identifies a transcriptional and functional phenotype shared across human T lymphocytes that is indepen-
dent of both T cell receptor (TCR) expression and cell lineage (87). The dysregulation of KLRBI in SLE
may be directly linked to aberrant IFN signaling pathways and immune cell subpopulations in this disease.

GPRI83 (also known as EBI2) encodes the GPCR183 that binds oxysterols, the most potent of which
is 7a, 25-dihydroxycholesterol (7a,25-OHC) (90). GPR183 is upregulated in a Burkitt’s lymphoma cell line
upon Epstein-Barr virus infection (91), an infection that is also strongly linked to SLE (91, 92). Interesting-
ly, GPR183 is also strongly induced in UVB-irradiated skin biopsies (93) and UV light has been postulated
to induce SLE photosensitivity (94) and DNA damage—driven apoptosis (95). The GPR183 protein is a neg-
ative regulator of IFN (96). In lymphoid organs, GPR183 plays a key role in mediating the migration and
antibody response of multiple immune cell types, including B cells, T cells, DCs, and monocytes (97-101).
GPR183-deficient mice have fewer plasma cells, reduced antibody titres (97, 98), and diminished CD4*
splenic DCs. In another study, mice lacking GPR183 or its 7a,25-OHC ligand show defects in the trafficking
of group 3 innate lymphoid cells and defects in lymphoid tissue formation in the colon (102). GPR183 has
been implicated in inflammatory and autoimmune diseases, including multiple sclerosis (103), inflamma-
tory bowel disease (104), Crohn’s disease (104), type 1 diabetes, and cancer (101). In multiple sclerosis,
data from the experimental autoimmune encephalomyelitis (EAE) animal model suggest that GPRI83 is a
critical mediator of CNS autoimmunity and regulates the migration of autoreactive T cells into inflamed
organs (105). Thus, the intriguing links between GPR183 and SLE through Epstein-Barr virus, IFN, and
UV light, as well as its important functions in instructing immune cell localization and antibody response,
identify GPR183 and its ligand 70,25-OHC as potential biomarkers and/or therapeutic targets for SLE.

Research in many immunological disorders, including SLE, has recently focused on the importance of
immunometabolism in disease (106, 107). In SLE, particular focus has been on T cell metabolism (mito-
chondria, oxidative stress, mTOR, glucose, and cholesterol pathways), with additional interest in B cells (gly-
colysis and pyruvate), macrophages (stress response), DCs (mTOR, fatty acids), and neutrophils (NETosis,
oxidation) (107). Concordant with these prior findings, our pathway analysis (26) of the SLE MetaSignature
recapitulated many similar immunometabolic pathways in SLE, including pyruvate metabolism, fructose
galactose metabolism, and oxidative stress response. In addition, our pathway analysis identified many non-
inflammatory pathways involved in nucleic acid metabolism (including formyltetrahydrofolate biosynthesis,
salvage pyrimidine deoxyribonucleotides, salvage pyrimidine ribonucleotides, and purine metabolism). Two
therapies in SLE, methotrexate (108) and leflunomide (109-111), both inhibit nucleic acid metabolism (112—
115), and other new molecular entities that target these pathways are entering clinical trials. Collectively, our
pathway analysis results reinforce the importance of immunometabolic pathways in SLE pathogenesis.

Arguably, our approach, which leverages heterogeneity within patient populations to identify a com-
mon transcriptional signature across SLE, is ill-suited in the era of personalized medicine. A goal of person-
alized medicine is to cluster heterogeneous patients into homogeneous subgroups, which does not account
for the individual variations that should be targeted. The underlying assumption is that the individual varia-
tion between subgroups is likely causal, which can be targeted to improve therapy and outcomes. However,
it is equally likely that the disease-causing biology may be the same across all patients, and the variation
observed between patients and subgroups is a result of environmental exposures. Studying a homogeneous
patient population may identify a signature that explains the variation between groups but may not be
causal and therapeutically relevant. Therefore, we believe that a more suitable approach would be to com-
plement “personalized medicine” with “precision medicine” in SLE such that it first provides a precise
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molecular definition of SLE, as we have done here. This could then lead to identification of multiple drug
targets and corresponding therapies, increasing the number of drugs available to treat patients with SLE.

We anticipate that the full SLE MetaSignature, and particularly the underappreciated SLE Meta-
Signature, will be tested in blood and tissue derived from prospectively collected SLE cohorts to identify
relationships between SLE flares, clinical subgroups, and responses to newly tested therapies. Another
important question is whether the proteins encoded by these genes are abnormally expressed or observed
in unanticipated cell populations or tissues. Our results will help guide targeted analyses of SLE blood and
kidney samples using single cell technologies such as scRNA-Seq, ATAC-Seq, Cytometry Time of Flight,
Multiplexed Ion Beam Imaging, and CO-Detection by IndEXing (116). Many of these methods are being
used by the Accelerating Medicines Partnership RA/SLE program to characterize human SLE tissue, with
a goal to identify novel pathways and disease targets (117). Ongoing studies using CRISPR screens and
IHC are interrogating the role played by these genes in cultured immune cells, as well as the effect of the
underappreciated SLE MetaSignature on IFN signaling, neutrophil biology, and animal models.

Our analysis has a few limitations. First, we focused on identifying a gene signature that is conserved
between cohorts and across samples and that does not identify patient subgroups. Although this is bene-
ficial for capturing features that are consistent across populations, it is ill-suited for identifying subgroups
of disease. Second, because we only used publicly available data sets, our analyses were restricted to the
comparisons available in the public data, including tissues, cell types, and diseases sampled. To enable even
richer analysis, we encourage the research community to contribute richly annotated data sets to the public
domain. In the context of SLE, particularly important annotations — when available — include: age, sex,
SLEDAI with individual components specifically recorded, drugs at the time of blood draw, drug doses and
start dates, organ system involvement, and cell proportions from complete blood count or flow cytometry.

Recent studies have been dominated by important discoveries that link type I IFN, neutrophils,
and NETs to SLE. We have identified a unified SLE MetaSignature that implicates 14 underappreci-
ated genes in SLE pathogenesis, only 4 of which were identified through a direct PubMed search of
SLE (KLRBI, GRN, CDIC, and ABCBI, with 2, 5, 7, and 9 references each, respectively). Scouring of
published literature reveals connections to additional genes, including ELANE, EBI2, and LHFPL2, but
none of these have garnered significant attention in SLE research. Eight of the underappreciated SLE
MetaSignature genes have plausible roles in SLE because they are expressed in immune cells, skin, or
stress response. Perhaps even more interesting are the 6 genes (ABCB1, GRN, LHFPL2, NAPIL3, TCN2,
and VSIGI) that are not linked to the immune system, plausible pathogenic mechanisms, or autoim-
mune diseases. Scientists often fall prey to the “streetlight effect” — looking for answers where the light
is better rather than where the truth is more likely to lie (118-121). Although many of the underappre-
ciated SLE MetaSignature genes make mechanistic sense, we should not lose sight of the 6 genes that
had previously been in the shadows but are now illuminated.

Methods
Supplemental Methods are available online with this article.

Study approval. The vast majority of the data was obtained from public repositories (NCBI GEO). For
the prospective validation analysis, all subjects were recruited and all samples were collected following
protocols approved by the Stanford University IRB (IRB protocol 13952, 14734).
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