

765

766 Figure S1: Recombinant sOX40L does not induce Treg cell death and Purified CD14+ 767 monocytes cultured in the presence of SLE sera (SLE-DC) or ex-vivo SLE-mDC expressed OX40L.

768

769

(A-B), Sorted CD4⁺CD25⁺CD127⁻ Tregs cells were cultured with or without sOX40L (100 ng/mL) and 770 Annexin-V/PI staining was performed after 3 days of culture for the assessment of cell death. (A), 771 772 Representative dot plot of Treg Annexin-V/PI staining after 3 days of culture. Annexin-V+/PI+ cells were 773 considered as dead cells. (B), Cumulative data showing the percentage of dead cells after 3 days of 774 Tregs culture. Statistical analyses were conducted using the two-tailed Mann-Whitney U-test. (C-D), 775 Purified CD14⁺ monocytes from healthy donors were cultured with GM-CSF+IL-4 or SLE Sera (SLE-776 DC) for 4 days. OX40L expression was assessed by flow cytometry. (C) Representative staining for OX40L expression. (D). Cumulative results for OX40L-expression (as expressed by MFI) in both 777 conditions. GM-CSF+IL-4 DC (n=8), SLE-DC (n=21). Cumulative data are shown with S.E.M and P 778 779 value < 0.01 (**). (E-F) Ex-vivo OX40L expression level was assessed within circulating APCs such as CD11c+DR+ mDC, CD14+ monocytes and CD19+ B lymphocytes cells. 7 healthy donors and 15 SLE 780 patients (including 9 active (SLEDAI ≥ 6 and 7 quiescent (SLEDAI < 6) SLE) APCs were analyzed by 781 782 flow cytometry. The figure shows a representative staining and cumulative data represented as mean with S.E.M. Data are compared using non parametric Mann-Whitney test. ** P<0.01, ****P<0.001. 783 784

Supp Figure 2

Figure S2: Effect of sOX40L on effector CD4 T cells proliferation alone

(A) Effect of sOX40L on the proliferative capacity of Effector CD4+ T cells following activation with anti-CD3 and anti-CD28 at different concentrations. Purified CD4 T cells were stained with CFSE and stimulated with or without agonist soluble OX40L (100ng/ml) for 4 days with different concentration of pre-coated anti-CD3 and soluble anti-CD28. The figure shows one of two independent experiments.
(B) Effect of soluble OX40L (100ng/ml) co-stimulation on effector CD4 T cells proliferation stimulated by anti-CD3 and anti-CD28 micro-beads. This figure is representative of 4 independent experiments.
(C) Dose effect of soluble OX40L co-stimulation (100ng/ml) on purified effector CD4 T cells stimulated

by pre-coated anti-CD3 (1ug/ml) and soluble anti-CD28 (3ug/ml) or anti-CD3+anti-CD28 beads for 4 days. 4 independent experiments were realized using 4 different effector CD4 T cells donor (as show by color plots).

Figure S3: Blood CD4+CD25^{high} Tregs and serum concentration of sOX40L in healthy donors and SLE patients.

815

816 (A) Serum concentration of sOX40L (in ng/ml) from HD (n=15), iSLE (n=14) and aSLE patients (n=11). 817 Individual values are given with mean and S.E.M, and compared using non-parametric Kruskall-Wallis 818 test with Dunn's correction for multiple comparisons. P-value < 0.05 (*), P-value < 0.01 (**).(B) 819 Correlation between sOX40L concentration in serum and SLE activity (SLEDAI), using Spearman rank 820 correlation test. (C-D), Peripheral Effector CD4 T cells, Tregs, and B cells were investigated for OX40 expression by flow cytometry. PBMCs were isolated and stained for OX40 expression from Healthy 821 donors (n=8) and SLE patients (n=9). (C) Representative staining and (D) OX40 MFI values with S.E.M 822 823 are shown and compared using one-way ANOVA with Holm-Sidak's correction for multiple comparisons. P value <0.01 (**), p<0.0001 (****). (E), sOX40L impacts Foxp3 expression in different Treg subset. 824 825 Purified Treas with or without sOX40L (100ng/ml) pre-treatment were cultured in pre-coated anti CD3 826 (1ug/ml) supplemented by soluble anti-CD28 (3ug/ml) in 96 wells plate for 3 days. Intra-nuclear Foxp3 827 expression was assessed by flow cytometry on different Treg sub-population based on CD25 and CD45RA cell surface expression: active Tregs (CD45RA CD25^{high}), resting Tregs (CD45RA+CD25+) and 828 829 non-functional Tregs (CD45RA CD25+) subset. 5 different donors were studied in 2 independent 830 experiments. Individual data are shown with mean and S.E.M, and compared using non-parametric twotailed Mann-Whitney test, p<0.05 (*), p<0.01 (**). (F-G), Frequency of blood CD4+CD25^{high} Tregs in HD 831 832 (n=10) and SLE patients with inactive (iSLE, n=25) and active (aSLE, n=24) disease. (F) Results are 833 expressed as % of CD4+CD25^{high} cells among CD4+ T cells, and are compared using non-parametric Kruskall-Wallis test with Dunn's correction for multiple comparisons. 834 (G), Absolute count of 835 CD4+CD25^{high} Tregs cell in blood of HD (n=10) and iSLE (n=25) and aSLE patients (n=24). Results are 836 expressed in Giga/L and are compared using non-parametric Kruskall-Wallis test with Dunn's correction 837 for multiple comparisons. iSLE, patients with inactive disease (SLEDAI<6); aSLE, SLE patients with 838 active disease (SLEDAI≥6).

Figure S4: Schematic showing experimental design for experiment in Figure 3A.

Supp Figure 4

874 Figure S5: Tregs intranuclear Helios expression following OX40L co-stimulation

875
876 Isolated Tregs from healthy donors were cultured using pre-coated anti-CD3 (1ug/ml) 96 well plate with
877 or without soluble OX40L (100ng/ml) for 48 hours. Intranuclear Helios expression level was evaluated
878 by flow cytometry. 9 independents experiments using 9 different Tregs donors were realized. Data are
879 shown as mean MFI and compared using two-tailed paired non-parametric Wilcoxon test. *, p < 0.05.

Supp Figure 6

902

Figure S6: Cell surface expression of CD25, PD-1, ICOS, GITR and Bcl-6 of Tonsil and blood TFH, TFR, Tregs and naïve T cells in HD.

(A, left and right panel), cell surface expression of CD25, PD-1, ICOS, GITR and Bcl-6 in Tonsils TFH, 905 906 TFR, Tregs and naïve T cells. (A, left panel), Representative dot plots showing CD3+CD4+FoxP3-907 CXCR5⁺ TFH cells (blue line), CD3+CD4+FoxP3+CXCR5+ TFR cells (red line), 908 CD3+CD4+FoxP3+CXCR5- Tregs cells (black line) and CD3+CD4+FoxP3-CXCR5- naïve T cells (grey 909 filled). (A, right panel), expression of cell surface markers according to cell subsets. Representative of 910 one out of 2 experiments. (B, left panel), Representative dot plots showing CD3+CD4+Foxp3-CXCR5+ TFH cells (blue line), CD3⁺CD4⁺Foxp3⁺CXCR5⁺ TFR cells (red line), CD3⁺CD4⁺Foxp3⁺CXCR5⁻ Tregs 911 cells (black line) and CD3+CD4+Foxp3-CXCR5- naïve T cells (grey filled) in blood and (**B**, right panel) 912 expression of cell surface markers according to cell subsets. Representative of one out of 2 experiments. 913 914

- 915 916
- 510
- 917
- 918
- 919

numper															
	2	ĺ			ĺ		,	3	2	ļ			37		ŀ
2 +	27	- Ξ	A. C. H. N. PP. APS	٨	10	MTX, RTX	00 P	29	58		A H	A	10	AZA	00 4
ω	35	Ŧ	, н	A	20	HCQ	4	29	57	Ŧ	ĄН	A	15	HCQ, AZA	6
4	33	т	C, H, APS		10	HCQ, MMF	0	30	35	Ŧ	A, C, H, M, N, R	A, R	20	HCQ, MMF	16
4	34	Ŧ	C, H, APS		10	HCQ, MMF	2	30	35	Ŧ	A, C, H, M, N, R		17,5	HCQ, MMF	2
л	35	Ŧ	A, C, R		7	HCQ, AZA	2	31	58	Ŧ	A, C		17,5	HCQ	2
6	35	т	A, C, H, R, APS		50	CYC	4	32	25	Ŧ	Ąн			MTX	4
7	41	Ŧ	A, C, H, R	N, R	10	MPA	26	32	25	Ŧ	А, H	A	10	MTX	80
00	34	ß	A, C, H, R	C, R, V			20	33	38	Ŧ	A, H, R	R			16
9	40	т	A, C, H			HCQ, MTX	0	33	39	Ŧ	A, H, R		00	MMF	2
10	32	Ŧ	A, C, H, R	A, C, R		HCQ	22	34	17	Z	A, C, PP, R	R	10	HCQ, MMF	12
10	31	т	A, C, H, R		25	HCQ, CYC	4	35	21	Ŧ	A, C, APS			HCQ	4
10	31	Ŧ	A, C, H, R	R	25	HCQ, CYC	00	35	21	Ŧ	A, C, APS			HCQ	4
10	31	Ŧ	A, C, H, R	R	20	HCQ, CYC	00	35	21	Ŧ	A, C, APS			HCQ	4
11	41	Ŧ	A, H, APS		з	HCQ, MMF	4	36	19	Ŧ	A, C, R	R	5	HCQ, MMF	00
12	72	R	C, H, N, PP, R	C, N, PP, R		HCQ	24	37	39	Ŧ	A, C, R		ω	MMF, RTX	2
13	36	п	A, C, R		10	AZA	4	38	51	Ŧ	A, H, R	A	10	Abatacept	80
14	22	Ŧ	A, C, R			AZA	2	38	51	Ŧ	A, H, R	R	00	Abatacept	80
15	22	Ŧ	A, C, H, R	R	2,5	MMF	12	38	52	Ŧ	A, H, R	R	9	Abatacept	12
16	23	R	H, R	R		MMF	00	38	52	Ŧ	A, H, R	A	10		00
16	22	M	H, R			MMF	4	39	57	Ŧ	A, H, PP, R	R	л	HCQ	17
17	60	ß	A, H, N, R	A, N, R	10	HCQ	19	39	56	Ŧ	A, H, PP, R	R	20	HCQ	4
17	58	3	A, H, N, R		10	HCQ	2	40	65	-	H, APS)	1		0
5	2 2	'З	A, H, N, K		3 0	HUQ PTV	• •	41	38	- ר	A, L, PP	Ċ	5 0	HUU	
10	5		A C LI DD ADC		30	HCU, KIX	. 2	42	34		A, C, H, N	,	01	HCQ, MIMIF	4
10	2 2		A C H DD ADC	•	4 0		0 1	43	28		K, H, A		J	HCQ, MIMIF	2 4
19	100	- n	A C H. R	A C.N.R	00	HCO. MMF	24	44	3 5		с, <i>А</i> , я	DD	30	HCQ, AZA	22
19	19	T	A, C, H, R		30	MPA	0	46	37	≤ .	A R D	:	л	MMF	2 5
19	19	Ŧ	A, C, H, R		7	MPA	0	47	37	T i	A		7	НСО	2
19	20	Ŧ	A, C, H, R	A	6	MPA	00	48	57	Ŧ	А		л	HCQ	4
19	20	т	A, C, H, R		6	HCQ, MPA	2	49	53	Ŧ	A		S	MTX	ω
20	40	т	A, C, R, APS		6	MMF	2	50	80	Ŧ	A, N, PP		9		4
21	58	т	A, C, H		ω	HCQ, MTX	4	51	20	Ŧ	R			HCQ, MTX	2
22	42	ъ	A, H, R	R, V			33	52	41	F	C, A, R				80
23	44	R	A, H, PP, R		00	MMF	4	53	43	Ŧ	А	A	20		00
24	18	ъ	н				з	54	50	Ŧ	т			HCQ	4
25	27	Ŧ	A, C, R	A	10	HCQ, MMF	00	55	55	Ŧ	A, C			MMF	4
26	48	Ŧ	D, H, M, PP, R	R	40	AZA	16	56	27	Ŧ	A, R				16
26	46	т	D, H, M, PP, R		20	MMF	4	57	25	۳	A, R, H, PP				23
26	46	т	D, H, M, PP, R		5	HCQ, MMF	4	58	18	Ŧ	А, Н	A	12.5	AZA	00
27	39	т	A, H, N, R, APS		5	HCQ, AZA	2	59	35	Ŧ	A		10	HCQ	4
28	35	т	A, C, H, N	A	10		00	60	37	Ŧ	A, C	A	10	HCQ	14
	л	Ŧ	A, C, H, N	A	15		00	61	41	Ŧ	A, C, H	A, R	5	HCQ	25

Supplementary Table 1: clinical and biological informations concerning SLE patients

922

Legends

V: vascular, APS: anti-phospholipid syndrom.

F: female, M: male, A: articular, C: cutaneous, D: digestive, H: haematologic, M : myocardic, N : neurologic, PP: pleuro-pericardic, R: renal,

HCQ: hydroxychloroquin, AZA: azathioprin, CYC. cyclophosphamide, MMF: mycophenolate mofetil, MPA: mycophenolicadd, MTX: methotrexate, RTX: rituximab

Supplementary Table 2: Antibodies and clones informations

Marker	Clone	Company		
CD3 APC	UCHT1	Beckman Coulter		
CD4 PC7	SFCI12T4D11	Beckman Coulter		
CD8 FITC	B9.11	Beckman Coulter		
CD16 FITC	3G8	BD Biosciences		
CD11c APC	B-ly6	BD Biosciences		
HLA-DR PC7	lmmu-357	Beckman Coulter		
CD14 PC5	RM052	Beckman Coulter		
CD25 PC5	B1.49.9	Beckman Coulter		
CD127 PE	R34.34	Beckman Coulter		
TNFR2 PE	hTNFR-M1	BD Biosciences		
CTLA-4 APC	BNI3	BD Biosciences		
OX40L PE	ANC10G1	Ancell		
CCR7 FITC	REA546	Miltenyi		
CD56 PE	B159	BD Biosciences		
GITR APC	DT5D3	Miltenyi		
Foxp3 PE	236A/E7	eBioscience		
CD45RA ECD	2H4LDH11LDB9	Beckman Coulter		
CXCR5 AF647	RF8B2	BD Biosciences		
PD-1 FITC	EH12.2H7	Biolegend		
ICOS PC7	C398.4A	Biolegend		
Bcl-6 AF647	K112-91	BD Biosciences		
CD38 PC7	HIT2	Biolegend		
CD27 PC5	0323	eBioscience		
IgD FITC	IA6-2	BD Biosciences		
CD19 PE	LT19	Miltenyi		

Supplementary Table 3: Clinical information concerning patients used in Tregs experiment

930

Patient number	Clinical disease activity	Age	Sex	Flare	Current organ involvement	steroids (dose, mg/day)	Associated treatments	SLEDAI	%CD11cDR OX40L
#1	Active	65	F	yes	N	0	-	8	15
#2	Active	42	F	yes	R, C, H, V, PP	80	HCQ	29	5
#3	Active	41	F	-	А	3	HCQ	4	9,7
#4	Active	35	F	yes	R	60	HCQ - MMF	16	19
#5	Active	25	F	-	А	0	MTX	4	6
#6	Quiescent	60	F	-	-	5	MTX	1	1
#7	Quiescent	58	F	-	-	15	HCQ	4	0
#8	Quiescent	27	Μ	-	-	0	-	4	0
#9	Quiescent	19	F	-	-	7	MMF	0	3
#10	Quiescent	25	F	-	-	30	RTX	4	1

Legends:

F: female, M: male, A: articular, C: cutaneous, D: digestive, H: haematologic, M : myocardic, N : neurologic, PP: pleuro-pericardic, R: renal, V: vascular HCQ: hydroxychloroquine, MMF: mycophenolate mofetil, MTX : methotrexate, RTX: rituximab

931

932