Supplemental information

Wilms' Tumor 1 Drives Fibroproliferation and Myofibroblast Transformation in Severe Fibrotic Lung Disease

Vishwaraj Sontake¹, Rajesh K. Kasam^{1, 4}, Debora Sinner³, Thomas R. Korfhagen³, Geereddy B. Reddy⁴, Eric S. White⁵, Anil G. Jegga² and Satish K. Madala^{1*}

¹Division of Pulmonary Medicine, ²Division of Biomedical Informatics and ³Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229 USA ⁴Department of Biochemistry, National Institute of Nutrition, Hyderabad, Telangana 500007 India ⁵Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan 48109 USA

*Address Correspondence to Satish K. Madala, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, MLC 2021, 3333 Burnet Avenue, Cincinnati, OH 45229 Email: satish.madala@cchmc.org Phone: (513) 636-9852 Fax: (513) 636-9946 The authors have declared that no conflict of interest exists

Running Title: WT1 regulation of pulmonary fibrosis

Supplemental figure legends:

Figure S1. WT1positive cells are restricted to the pleura/subpleural fibrotic lesions in pulmonary fibrosis.

(A) Schematic diagram of treatments with tamoxifen and Dox. Control or TGF α / WT1^{*CreERT2/mTmG*} mice were induced with tamoxifen and one week later pulmonary fibrosis was induced by administering Dox in food for four or six wk. (B) Immunofluorescence images show progressive accumulation of WT1-derived cells residing in subpleura but not adventitia in both pre-tamoxifen treated and pre/post-tamoxifen treated TGF α /WT1^{*CreERT2/mTmG*} mice placed on Dox for four or six wks. 10x low magnification, Scale bar, 200 µm. Adventitial regions (dashed square boxes) were highlighted in the high magnification images taken at 40x, Scale bar, 50 µm.

Figure S2. Gating strategy used for assessing the GFP positive population by flow cytometry in WT1 lineage tracing experiments.

Figure S3. Computational mapping of conserved WT1-binding sites in the promoter region of α SMA gene. Schematic representation of α SMA gene with location of the putative WT1 binding sites that are conserved among mammals including humans and mice.

Figure S4. Genetic knockdown of WT1 alters lung resident fibroblast gene expression. CD45- Col+ Lung resident fibroblast were isolated by negative selection using MACS CD45+ magnetic beads from primary lung cultures of CCSP/TGF α mice placed on doxycycline (Dox) food for 10days, RNA was isolated, and RNA-seq analysis was performed using next-generation sequencing. Heat map shows two clusters of differentially expressed genes up or down regulated (indicated with color key) by two fold or more upon genetic knockdown of WT1 compare to control siRNA. (N=3).

Figure S5. WT1-regulated gene networks in idiopathic pulmonary fibrosis (IPF). (A) Venn diagram depicting the comparison and overlap of differentially expressed genes in IPF lungs and WT1 siRNA-treated fibrotic fibroblasts (from RNA-seq data). The red color box indicates genes that were up- (107 genes) or down-regulated (DN, 63 genes) in IPF lungs compared with WT1 siRNA knockdown gene expression signatures. (B) WT1-driven genes activated in IPF were analyzed using ToppFun and visualized using Cytoscape. Red- and

green-colored circles represent genes that are up and downregulated respectively in IPF lungs. The blue-colored circle represents enriched biological processes for the inversely correlated genes between WT1 siRNA knockdown and IPF. (C) WT1 regulates pro-fibrotic ECM gene expression in lung-resident fibroblasts. The lung-resident fibroblasts were isolated from primary lung cultures of TGF α mice on doxycycline (Dox) food for 10 days and transfected with either control or WT1 specific siRNA for 72 hr. We observed a significant decrease in the transcript levels of Wt1, Col14, Col15, Itg7, Itg2 and Lum. Gene expression values were normalized using hypoxanthine guanine phosphoribosyl transferase as a control. Data are means + SEM. Results are representative of three independent experiments and the statistical significance between groups was measured using an unpaired Student's t-test. *P<0.05, **P<0.0005, ***P<0.0005, ***P<0.0005.

Figure S6. Increased proliferation of lung resident fibroblasts in IPF. Lung resident fibroblasts were isolated from primary lung cultures of IPF or normal lungs by negative selection using ant-CD45 magnetic beads. Fibroblast proliferation was quantified by BrdU incorporation assay. Results are cumulative of two independent experiments with similar results (N=6).

Figure S7. Decreased proliferation with the loss of WT1 in lung resident fibroblasts. Lung resident fibroblasts were isolated from primary lung cultures of TGF α mice on Dox for 4 wk by negative selection using ant-CD45 magnetic beads. The proliferation was quantified by PCNA immunostaining of lung resident fibroblasts transfected with either control or WT1-specific siRNA. Quantification was performed post 72 hr of transection. Results are cumulative of two independent experiments with similar results (N=3). Unpaired student t test *P<0.05, **p<0.005.

Figure S8. The loss of WT1 has no effect on lung morphology and collagen deposition in control mice. CCSP/rtTA and tetO/TGFα transgenes were bred into WT1CreERT2 knock-in mice (WT1+/-) to generate CCSP/rtTA transgenic mice with wild type or mutant WT1 allele. Images are representative of Masson's Trichrome stained lung sections of CCSP/rtTA/WT1+/+ and CCSP/rtTA/WT1+/- mice on Dox for four wks (N=4-5/group); Image magnification x5; Scale bar, 400 μm. Figure S1.

Figure S3.

Low High

7

Figure S7.

CCSP/- WT1^{+/+}

CCSP/- WT1^{+/-}

Genes Upregulated in IPF and Downregulated by WT1 Knockdown	Genes Downregulated in IPF and Upregulated by WT1 Knockdown	
Gene ID	Gene ID	
SLC29A3	OPN3	
EFCAB11	RPS6KA2	
CYGB	CD109	
DACT1	FAM174B	
MFAP4	PCDH12	
AEBP1	FABP4	
ARID5B	FABP5	
C1QTNF2	PLIN2	
SMPD3	HOXA5	
MMP3	ADRB1	
ARHGAP20	PLAG1	
MMP16	SRPX	
SFRP1	FOXF1	
EMB	SH3BP5	
ENC1	MIER2	
PLEKHA4	FBLN5	
CPZ	SORBS2	
APOE	SNX24	
BHLHE40	WFS1	
AQP5	TMEM243	
SBNO2	GBA2	
SLC16A2	SLC40A1	
FRZB	LIMS2	
UHRF1	TXNIP	
SNAPC1	PDE8B	
ATP1B1	LGI3	
ATP1B2	СТН	
FIGNL1	RASL10B	
SPP1	RAPGEF2	
ADAM23	CTNND2	
ADGRB2	IL6R	
Р4НАЗ	DKK2	
SEC11C	CXADR	
BCL3	SEMA3E	

BDKRB1	FAM65B	
FGF18	DOCK11	
STAR	INPP5A	
SEPT6	KLRG2	
BNC1	SPIN4	
GBP5	LIN7A	
IER5L	PTPRB	
SPHK1	FIBIN	
C3	MAMDC2	
C4B	SIGLEC10	
CACNA1G	PID1	
STRA6	ANKS1A	
IL33	DMTF1	
NT5E	TBXAS1	
SOCS3	TSC22D3	
CH25H	GRK5	
RUNX1	LAMA2	
ZMAT3	CAV1	
TIMP1	CAV2	
P2RY6	SLC7A7	
CPXM1	OPHN1	
HAS1	ADGRG6	
CDH3	TMTC1	
DCLK1	FADS3	
FRMD5	SYTL5	
SP140	P3H2	
CFH	MAP3K13	
ENPP3	AJUBA	
GDF6	CDH10	
WNT4		
CHN1		
ZBP1		
KCNE4		
SLC9A3R1		
FAM110C		
VCAM1		
PRRX1		
COL15A1		
WT1		

CXCL14	
СР	
PODXL2	
IFI16	
GDA	
IGFBP4	
SLFN13	
PLXNA4	
BNC2	
TNFRSF9	
TSHZ2	
INHBB	
CXCL10	
FAM46C	
PTGER4	
PMEPA1	
ITGB8	
LYPD1	
FAM83D	
TMEM45A	
KIF26B	
DUSP4	
STEAP4	
TSPAN5	
E2F8	
CEMIP	
SSPN	
NAMPT	
LGI2	
STEAP3	
CLMP	
GREM1	
CKAP2	
TRIB1	

Supplemental Table 2. Sequences of gene specific primers used for quantitative RT-PCR in murine samples.

Gene	Forward	Reverse
mHprt	GCCCTTGACTATAATGAGTACTTCAGG	TTCAACTTGCGCTCATCTTAGG
mWT1	CAGATGAACCTAGGAGCTACCTTAAA	TGCCCTTCTGTCCATTTCA
mαSma	TGACGCTGAAGTATCCGATAGA	CGAAGCTCGTTATAGAAAGAGTGG
mCol14α	ACGACGTGACTGAGAACAGC	AATGTCTGTGTGTGTGTCTCTCCAA
mCol15a	CCAGGGCTAAAAGGAGAACA	GGACGTCCCCAGTCAAGA
mItga7	CGTGCTCTGGACTCTGTGG	CCCAGCTCACACTCGACAT
mItga2	ACTTCCGGCATACGAAAGAA	TCAGCCAGCAGGTGATGTTA
mLum	CAGCAACATTCCGGATGAG	TCATTGTGAGATAAACGCAGGT
mGrem1	GACCCACGGAAGTGACAGA	CCCTCAGCTGTTGGCAGTAG
mRunx1	CTCCGTGCTACCCACTCACT	ATGACGGTGACCAGAGTGC
mWnt4	ACTGGACTCCCTCCCTGTCT	TGCCCTTGTCACTGCAAA
mStat3	GTTCCTGGCACCTTGGATT	CAACGTGGCATGTGACTCTT
mPrrx1	GGAGCAACCCATCGTACCT	AAGTAGCCATGGCGCTGTA
mIgf1	AGCAGCCTTCCAACTCAATTAT	GAAGACGACATGATGTGTATCTTTATC
mCcnb1	GCGCTGAAAATTCTTGACAAC	TTCTTAGCCAGGTGCTGCAT
mE2f8	TCAGCCCAAACAACAGTGG	GCAGACTGCTCAGCCTCTAAG
mTgfα	TTGCTGCCACTCAGAAACAG	ATCTGCCACAGTCCACCTG
mCol1a	AGACATGTTCAGCTTTGTGGAC	GCAGCTGACTTCAGGGATG
mCol5a	CTACATCCGTGCCCTGGT	CCAGCACCGTCTTCTGGTAG

Supplemental Table 3. Sequences of gene specific primers used for quantitative RT-PCR in human samples.

Gene	Forward	Reverse
hβ-actin	CCAACCGCGAGAAGATGA	CCAGAGGCGTACAGGGATAG
hαSMA	GCTTTCAGCTTCCCTGAACA	GGAGCTGCTTCACAGGATTC
hWT1	AGCTGTCCCACTTACAGATGC	CCTTGAAGTCACACTGGTATGG

Supplemental Table 4. Antibodies used for Immunostainings

Antibody	Dilution	Catalog#.	Company
WT1	1:50	ab89901	Abcam
Calretinin	1:250	AB1550	EMD Millipore
PCNA	1:1000	2586S	Cell signaling technology
GFP	1:1500	ab13970	Abcam
αSMA	1:2000	A5228	Sigma
Ki67	1:400	12202	Cell signaling technology
RFP	1:500	600-401-379	Rockland immunochemicals

Supplemental Table 5. Antibodies used for Western blot

Antibody	Dilution	Catalog#.	Company
αSMA	1:20000	A5228	Sigma
PCNA	1:1000	2586S	Cell signaling technology
WT1	1:500	12609-1-AP	Proteintech
β-Actin	1:10000	sc-47778	Santa cruze biotechnology