Supplemental figure 1

(A) Representative pictures of retina immunostaining of Isolectin B4 (red, upper panels) or Isolectin B4 (red, lower panels) and desmin (green lower panels) in P8. Scale bar, $500 \mu \mathrm{~m}$ (upper panels) and $100 \mu \mathrm{~m}$ (lower panels). (B) The effect of APB5 on retinal radius and vessel diameter in P8 ($\mathrm{n}=6$). (C) Representative pictures of retina immunostaining of Isolectin B4 (red) and fibrinogen (green) in P8. Scale bar, $100 \mu \mathrm{~m}$. (D) Representative pictures of retina immunostaining of Isolectin B4 (red) and F4/80 (green) in P8. Scale bar, $100 \mu \mathrm{~m}$. * Significantly different from the results in vehicle treated mice at $\mathrm{p}<0.05$. Data are presented as means \pm SEM.

Supplemental figure 2

Representative pictures of retina in situ hybridization of Cxcr4 (purple) and collagen IV (brown) in P8.White arrow heads indicate double positive staining reagion of Cxcr4 and collagen IV.; Scale bar, $50 \mu \mathrm{~m}$.

Supplemental figure 3

(A) Representative pictures of retina immunostaining of Isolectin B4 (red) and F4/80 (green) in P8. Scale bar, $100 \mu \mathrm{~m}$. (B) Representative pictures of retina immunostaining of Isolectin B4 (red) in P8. Scale bar, $100 \mu \mathrm{~m}$. (C) Representative pictures of retina immunostaining of Isolectin B4 (red) and fibrinogen (green) in P8. Scale bar, $100 \mu \mathrm{~m}$.

Table S1. Primer sequences for PCR.

Target	Forward primer	Reverse primer
SDF-1 α (CXCL12)	ATCGCCAGAGCCAACGTCAAG	GGCACAGTTTGGAGTGTTGAG
CCL2	TGCCCTAAGGTCTTCAGCAC	AAGGCATCACAGTCCGAGTC
CCL7	TCCTCACCGCTGTTCTTTCT	TTAGGCGTGACCATTTCACA
CCL12	GTCCTCAGGTATTGGCTGGA	CGGACGTGAATCTTCTGCTT
CCL20	AAGACAGATGGCCGATGAAG	CACCCAGTTCTGCTTTGGAT
ICAM-1	TTCCAGCTACCATCCCAAAG	CTTCAGAGGCAGGAAACAGG
VCAM-1	ACAGACAGTCCCCTCAATGG	GTCACAGCGCACAGGTAAGA
E-selectin	CGTTTGACTGTGTGGAAGGG	ACAGGTCACAGCTTTGCATG
Tbp	CCCCCTCTGCACTGAAATCA	GTAGCAGCACAGAGCAAGCAA
$18 s$ rRNA	CGTTCTTAGTTGGTTGGAGCG	AACGCCACTTGTCCCTCTAA

