Inflammatory cytokines promote mesenchymal transformation in embryonic and adult valve endothelial cells

GJ Mahler, EJ Farrar, JT Butcher - Arteriosclerosis, thrombosis, and …, 2013 - Am Heart Assoc
GJ Mahler, EJ Farrar, JT Butcher
Arteriosclerosis, thrombosis, and vascular biology, 2013Am Heart Assoc
Objective—Inflammatory activation of valve endothelium is an early phase of aortic valve
disease pathogenesis, but subsequent mechanisms are poorly understood. Adult valve
endothelial cells retain the developmental ability to undergo endothelial-to-mesenchymal
transformation (EndMT), but a biological role has not been established. Here, we test
whether and how inflammatory cytokines (tumor necrosis factor-α and interleukin-6) regulate
EndMT in embryonic and adult valve endothelium. Methods and Results—Using in vitro 3 …
Objective
Inflammatory activation of valve endothelium is an early phase of aortic valve disease pathogenesis, but subsequent mechanisms are poorly understood. Adult valve endothelial cells retain the developmental ability to undergo endothelial-to-mesenchymal transformation (EndMT), but a biological role has not been established. Here, we test whether and how inflammatory cytokines (tumor necrosis factor-α and interleukin-6) regulate EndMT in embryonic and adult valve endothelium.
Methods and Results
Using in vitro 3-dimensional collagen gel culture assays with primary cells, we determined that interleukin-6 and tumor necrosis factor-α induce EndMT and cell invasion in dose-dependent manners. Inflammatory-EndMT occurred through an Akt/nuclear factor-κB–dependent pathway in both adult and embryonic stages. In embryonic valves, inflammatory-EndMT required canonical transforming growth factor-β signaling through activin receptor-like kinases 2 and 5 to drive EndMT. In adult valve endothelium, however, inflammatory-induced EndMT still occurred when activin receptor-like kinases 2 and 5 signaling was blocked. Inflammatory receptor gene expression was significantly upregulated in vivo during embryonic valve maturation. Endothelial-derived mesenchymal cells expressing activated nuclear factor-κB were found distal to calcific lesions in diseased human aortic valves.
Conclusion
Inflammatory cytokine–induced EndMT in valve endothelium is present in both embryonic and adult stages, acting through Akt/nuclear factor-κB, but differently using transforming growth factor-β signaling. Molecular signatures of valve EndMT may be important diagnostic and therapeutic targets in early valve disease.
Am Heart Assoc