[HTML][HTML] Involution of the mouse mammary gland is associated with an immune cascade and an acute-phase response, involving LBP, CD14 and STAT3

T Stein, JS Morris, CR Davies, SJ Weber-Hall… - Breast Cancer …, 2004 - Springer
T Stein, JS Morris, CR Davies, SJ Weber-Hall, MA Duffy, VJ Heath, AK Bell, RK Ferrier…
Breast Cancer Research, 2004Springer
Introduction Involution of the mammary gland is a complex process of controlled apoptosis
and tissue remodelling. The aim of the project was to identify genes that are specifically
involved in this process. Methods We used Affymetrix oligonucleotide microarrays to perform
a detailed transcript analysis on the mechanism of controlled involution after withdrawal of
the pups at day seven of lactation. Some of the results were confirmed by semi-quantitative
reverse transcriptase polymerase chain reaction, Western blotting or immunohistochemistry …
Introduction
Involution of the mammary gland is a complex process of controlled apoptosis and tissue remodelling. The aim of the project was to identify genes that are specifically involved in this process.
Methods
We used Affymetrix oligonucleotide microarrays to perform a detailed transcript analysis on the mechanism of controlled involution after withdrawal of the pups at day seven of lactation. Some of the results were confirmed by semi-quantitative reverse transcriptase polymerase chain reaction, Western blotting or immunohistochemistry.
Results
We identified 145 genes that were specifically upregulated during the first 4 days of involution; of these, 49 encoded immunoglobulin genes. A further 12 genes, including those encoding the signal transducer and activator of transcription 3 (STAT3), the lipopolysaccharide receptor (CD14) and lipopolysaccharide-binding protein (LBP), were involved in the acute-phase response, demonstrating that the expression of acute-phase response genes can occur in the mammary gland itself and not only in the liver. Expression of LBP and CD14 was upregulated, at both the RNA and protein level, immediately after pup withdrawal; CD14 was strongly expressed in the luminal epithelial cells. Other genes identified suggested neutrophil activation early in involution, followed by macrophage activation late in the process. Immunohistochemistry and histological staining confirmed the infiltration of the involuting mammary tissue with neutrophils, plasma cells, macrophages and eosinophils.
Conclusion
Oligonucleotide microarrays are a useful tool for identifying genes that are involved in the complex developmental process of mammary gland involution. The genes identified are consistent with an immune cascade, with an early acute-phase response that occurs in the mammary gland itself and resembles a wound healing process.
Springer