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Introduction
Over the past 30 years, advances in our understanding of  basic mechanisms of  normal and abnormal 
angiogenesis have had a significant effect on the fields of  cancer, cardiovascular, and ophthalmology 
research. Novel therapeutics, such as antivascular endothelial growth factor agents that target neovessel 
formation, play an important role in cancer therapy (1) and have revolutionized the therapeutic approach 
for neovascular retinal diseases, such as age-related macular degeneration and diabetic retinopathy (2). Due 
to its unique anatomical properties, the eye represents an ideal model system to study basic mechanisms in 
angiogenic diseases and to test novel antiangiogenic therapeutics (3).

The mouse model of  oxygen-induced retinopathy (OIR) is one of  the most commonly used rodent 
models to study ischemia-driven abnormal neovessel formation and retinal vasoproliferative disease (4). In 
this model, young pups at P7 exposed to an atmosphere containing 75% oxygen, which induces regression 
of  the central capillary system, resulting in a centralized area of  vaso-obliteration (VO). When pups are 
then transferred to room air on P12, this area of  VO becomes hypoxic and triggers neovascularization (NV), 
resulting in the growth of  abnormal vessels toward the vitreous (5). At P17, VO and NV areas represent 
primary readout parameters in this model.

High variability due to a volatile vascular phenotype and a subjective manual quantification method 
of  assessing VO and NV represent the greatest challenges in this model. Controlling for body weight 
gain in pups and comparison to control-treated groups greatly improve reproducibility of  OIR results 
(6). However, existing quantification protocols used to determine VO and NV areas still remain an 
important source for variability of  OIR data within and between research groups (5, 7, 8). VO and 
NV quantification require expert knowledge, are prone to bias in the case of  unmasked quantifiers, 

Oxygen-induced retinopathy (OIR) is a widely used model to study ischemia-driven 
neovascularization (NV) in the retina and to serve in proof-of-concept studies in evaluating 
antiangiogenic drugs for ocular, as well as nonocular, diseases. The primary parameters that are 
analyzed in this mouse model include the percentage of retina with vaso-obliteration (VO) and NV 
areas. However, quantification of these two key variables comes with a great challenge due to the 
requirement of human experts to read the images. Human readers are costly, time-consuming, and 
subject to bias. Using recent advances in machine learning and computer vision, we trained deep 
learning neural networks using over a thousand segmentations to fully automate segmentation in 
OIR images. While determining the percentage area of VO, our algorithm achieved a similar range 
of correlation coefficients to that of expert inter-human correlation coefficients. In addition, our 
algorithm achieved a higher range of correlation coefficients compared with inter-expert correlation 
coefficients for quantification of the percentage area of neovascular tufts. In summary, we have 
created an open-source, fully automated pipeline for the quantification of key values of OIR images 
using deep learning neural networks.
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and remain heavily time-consuming. Automating this process will further improve the reproducibil-
ity of  OIR experiments within and among labs working with this model. Prior attempts have led to 
partial automation of  the segmentation tasks but still required several manual, subjective steps (8–10). 
Full automation will ensure common standards for the detection of  VO and NV, eliminate the risk for 
user-dependent bias, and accelerate the quantification process, freeing valuable staff  resources.

Using deep learning, the goal of  our study was to create and validate a fully automated algorithm to 
segment the VO and NV regions on OIR images. Machine learning is the general field of  training predictive 
models on large data sets with computers. The predictive models can be built implicitly or explicitly with 
hand-crafted features that best extract signal from noise in the data. Deep learning is a subfield of  machine 
learning in which feature construction is automated and learned implicitly through a purely data-driven 
approach using many layers of  neural networks.

The development of  deeper neural networks has been facilitated by the advent of  graphics-pro-
cessing units suited for efficient evaluation of  convolution as well as new neural network architec-
tures. Recently, deep learning has revolutionized computer vision tasks, such as classification, object 
detection, and semantic segmentation (11–14), and is increasingly used in ophthalmic image-processing 
applications (15–18).

Here, we present an end-to-end solution using deep learning to automatically quantify VO and NV as 
primary readout parameters of  the OIR retinal image.

Results
An overview of  the fully automated pipeline is provided in Figure 1. As a standard machine learning prac-
tice, over a thousand images were used to develop and train the deep learning model and were divided into 
three sets: training, validation, and test (19). There were 682, 171, and 214 images in each set, respectively, 
for the two deep learning models (Figure 2).

For training the segmentation of  the VO region, the model was trained with 14,000 iterations of  
batch sizes of  32. The learning curve of  the training iterations and the validation set are shown in Sup-
plemental Figure 1 (supplemental material available online with this article; https://doi.org/10.1172/
jci.insight.97585DS1). For the test set, the model achieved a median Dice coefficient of  0.870, with a 
standard deviation of  0.135. Examples of  model outputs are shown in Figure 3. A separate test set of  

Figure 1. Overview of the fully automated analysis pipeline for oxygen-induced retinopathy images. The input image is fed through 3 separate fully automat-
ed methods: Segmentation of the vaso-obliteration region using deep learning, segmentation of the neovascular complexes using deep learning, and segmenta-
tion of the whole retina. These are combined to calculate quantitative ratios of the percentage of vaso-obliteration and percentage of neovascular complexes.
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37 images was segmented by 4 human experts as well as the final trained deep learning model. Each 
human expert was set as the gold standard, and the other 3 human experts as well the deep learning 
model were compared with the gold standard (Figure 4).

For the training of  the neovascular complexes, the model was trained with 60,000 iterations of  batch 
sizes of  8. The learning curve of  the training iterations and the validation set are shown in Supplemental 
Figure 2. The model achieved a median Dice coefficient of  0.750, with a standard deviation of  0.156, for 
the test set. Examples of  model outputs are shown in Figure 5. Similar to the inter-rater reliability results 

Figure 2. Deep learning model architectures used for vaso-obliteration and neovascular segmentation. The U-net architecture for vaso-obliteration 
(VO) segmentation (top) and neovascularization (NV) segmentation (bottom). For each convolutional layer, the filter size is 3 and the stride is 1. The 
number of filters is labeled on top of its corresponding layer. ReLU was used as the activation function. The receptive fields were 140 × 140 and 318 × 
318 for VO and NV segmentation, respectively.
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for VOR, the trained deep learning model was able to achieve similar median Dice coefficients as human 
experts for a separate set of  37 images (Figure 6).

In order to fully automate the segmentation of  the total retina, the k-means clustering algorithm 
was able to segment and identify the total retina. For the 37 retina images segmented by humans, the 
algorithm achieved a median Dice coefficient of  0.960, with a standard deviation of  0.013. Examples of  
algorithm outputs are shown in Figure 7. The median Dice coefficients between the automated segmen-
tations were similar to the median Dice coefficients among the human experts (Figure 8).

For the 37 images that served as an independent test set, the deep learning–based algorithm generated 
two percentages: VO relative to the total retina and NV complexes relative to the total retina. Tables 1 and 2  

Figure 3. Example segmentations of vaso-obliteration region. The left column shows the original image, the middle column shows expert segmentations, 
and the right column shows deep learning segmentation.
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show the linear correlation between each pairwise comparison of  human experts and the deep learning 
algorithm for the VO and NV percentages, respectively.

The code for this project has been published online as a free, public, open-source repository (https://
github.com/uw-biomedical-ml/oir/tree/bf75f9346064f1425b8b9408ab792b1531a86c64). This repository 
contains setup instructions, the trained model architectures, the trained weights of  all the models, software 
code for running the fully automated pipeline, and generation of  formatted results. Users will be able to 
download this repository to further train the models if  they wish. In addition, we have created an online web 
application located at http://oirseg.org where users may upload images that need to be processed and down-
load the resulting segmentations and quantification results, without the need to setup any software locally.

Discussion
In this study, we have created a fully automated tool for the quantification of  OIR images using a deep 
learning approach. The mouse model of  OIR represents one of  the most commonly used in vivo models 
to study basic mechanisms in ocular angiogenesis and test potential antiangiogenic therapeutics. In this 
model, reproducibility of  experimental results can represent a major challenge due to high variability in 

Figure 4. Inter-rater reliability with 4 human expert segmentations compared with deep learning for vaso-obliteration region. Inter-rater reliabil-
ity with 37 images segmented by 4 human experts and the deep learning model for vaso-obliteration segmentation. Each set of box plots represents 
a different human expert set as ground truth compared against the other 3 human experts and the deep learning model using Dice coefficients. The 
middle bar represents the median, the box represents the interquartile range, and the whiskers extend to the most extreme data point, which is no 
more than 1.5 times the interquartile range from the box.
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the vascular phenotype. In addition, manual analysis of  the model’s readout parameters, area of  VO and 
NV, is a time-consuming process, requiring expert knowledge and thus significant costs. While monitor-
ing of  confounders such as body weight can minimize the variability of  the vascular phenotype, only 
fully automated quantification tools can eliminate potential grader bias.

Our fully automated deep learning approach identified and segmented the areas of  VO and NV in the 
OIR images with high correlation to 4 separate expert human graders. After training with 682 images, the 
model achieved a mean Dice coefficient that is similar to inter-rater Dice coefficients when comparing those 
of  human experts for the segmentation of  VO area and NV regions. In addition, machine learning was used 
to identify the area of  total retina in a fully automated fashion. We noted that with VO segmentation, the deep 

Figure 5. Example segmentations of neovascular tufts. The left column shows the original image, the middle column shows expert segmentations, and 
the right column shows deep learning segmentation.
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learning model generated smoother contours compared with expert graders (Figure 3). These differences did 
not translate to a difference in Dice coefficients or to a difference between the correlation of  percent VO area. 
Our algorithm achieved a similar range of  correlation coefficients (range 0.878–0.951) to expert inter-human 
correlation coefficients (range: 0.889–0.951) for quantification of  the percentage area of  VO. On inspection, 
deep learning appeared to generate segmentations that look very similar to human segmentations for neo-
vascular complexes (Figure 5), and machine learning generated much more precise segmentations of  the 
total retina and was able to ignore artifacts of  the flat-mount preparation (Figure 7). Our algorithm achieved 
a higher range of  correlation coefficients (range: 0.943–0.987) compared with inter-expert correlation coef-
ficients (range: 0.925–0.972) for quantification of  the percentage area of  neovascular complexes. Because 
the contrast was varied during training of  the models, the resulting algorithm is resistant to varying levels of  
contrast inherent in the OIR images (Figure 5, bottom row).

Prior attempts to automate this process have resulted in solutions that were partially automated but still 
required subjective manual input. Doelemeyer et al. described a computer-aided system in which the user traced 
the whole retina before the quantification of the VO region could be segmented, but the system could not quan-
tify the neovascular regions (9, 10). Stahl et al. achieved automated segmentation of the neovascular regions 

Figure 6. Inter-rater reliability with 4 human expert segmentations compared with deep learning for neovascular tufts. Inter-rater reliability with 
37 images segmented by 4 human experts and the deep learning model for neovascular segmentation. Each set of box plots represents a different 
human expert set as ground truth compared against the other 3 human experts and the deep learning model using Dice coefficients. The middle bar 
represents the median, the box represents the interquartile range, and the whiskers extend to the most extreme data point, which is no more than 
1.5 times the interquartile range from the box.
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but required manual segmentation of the VO region. Furthermore, automated quantification of the NV area 
required manual thresholding of the intensity in each quadrant of the whole-mount retina image, which may 
be subjectively biased (8). In contrast, we achieved a fully automated pipeline, which only takes the whole retina 
image as input and provides automated segmentation of the VO region, neovascular complexes, and whole 
retina. The algorithm also provides quantitative measures that can easily be incorporated into statistical analyses.

Key strengths of  the study include the fully automated pipeline and the efficiency of  the algorithm. 
The segmentation of  VO and NV regions in each OIR image took less than few seconds, which makes the 
algorithm scalable to many hundreds or thousands of  OIR images. In addition, the algorithm can run on a 
standard desktop computer without the need for specialized hardware.

Limitations of  our study are that our models were trained on images of  the mouse model of  OIR gen-
erated from a single laboratory. Our models are currently not trained to segment images from the rat model 
of  OIR. Furthermore, training on images generated from a single laboratory may also result in decreased 
generalizability, if  there are systematic biases in which these images were graded. In that case, the algo-
rithm may seem to perform poorly when compared with segmentations from a different laboratory. Future 
studies to collect segmentations from several key research groups to further train the model will be critical 
in improving the generalizability of  the automated pipeline.

In general, automating the analysis of  OIR images may not only improve the efficiency but also the 
overall quality of  OIR results. All labs using this tool will automatically apply the same standards for 
the identification of  VO and NV, thereby increasing the generalizability and reproducibility of  study 
results. Future extensions of  the tool may also include estimates of  model accuracy of  the deep learning 
segmentation and improved model accuracy as more images are used for training. This parameter would 
substantially depend on the original image quality and hence represent an important parameter to esti-
mate the quality of  flat-mount preparation and imaging.

The described pipeline may also open the door to simultaneously look at more readout parameters and 
detect more subtle changes in this model. For example, Fruttiger and colleagues suggested using vascular 
tortuosity as an early outcome measure in OIR (20). Other parameters affected by OIR include vascular 
density, diameter, and branching points, which together provide important insight into the health of  the 
vascular bed (21). Currently, these parameters are not part of  routine analyses because of  the time and 
effort that would be required for their quantification. However, similar approaches to those performed in 
this study may provide a fully automated solution for an objective quantification of  subtle vascular changes.

In summary, we present a fully automated analysis pipeline as a free and open-source analysis pack-
age for an objective quantification of  the percentage area of  VO and NV in OIR images. Our software 

Table 1. Correlation coefficients of the percentage of total retina with VO regions for each pairwise comparison

Expert 2 Expert 3 Expert 4 Deep learning
Expert 1 0.951 0.926 0.922 0.951
Expert 2 0.907 0.945 0.914
Expert 3 0.889 0.892
Expert 4 0.878

VO, vaso-obliteration.

Table 2. Correlation coefficients of the percentage of total retina with NV regions for each pairwise comparison

Expert 2 Expert 3 Expert 4 Deep learning
Expert 1 0.952 0.972 0.971 0.986
Expert 2 0.972 0.925 0.943
Expert 3 0.959 0.970
Expert 4 0.987

NV, neovascularization.
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tool will allow OIR researchers to shift resources from the repetitive and time-consuming quantification 
process that requires expert training to more important tasks, such as data analysis and experimental 
planning. Future extensions of  this tool could include a web-based segmentation system in which experts 
can provide corrected feedback for online iterative training of  the deep learning models.

Methods
In this study, flat-mount images of  C57BL/6, C57BL/ScSnJ, and transgenic mice (CB57/10ScSnD-
mdmdx, B6Ros.Cg-Dmdmdx-4Cv/J, B6.Cg-Dmdmdx-3Cv/J, The Jackson Laboratory) subjected to the model 
of  OIR were used. The OIR model was performed as previously described (4). In brief, pups (male and 

Figure 7. Examples of retina segmentation. The left column shows the input images, the middle column shows the human expert-labeled segmenta-
tions, and the right column shows the model prediction.
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female) with their nursing mother were exposed to hyperoxia (75% oxygen) between P7 and P12 and 
then transferred to room air. Pups were weighed (6) and euthanized at OIR P17. Retinas were dissect-
ed, fixed in 4% paraformaldehyde on ice for 1 hour, stained with Isolectin B4 568 (I21412, Thermo 
Fisher Scientific), and flat-mounted. Flat-mount images were acquired with a confocal laser–scanning 
microscope (LSM710 Zeiss) using ×10 magnification and tile scanning (6 × 6 tiles) to capture whole flat-
mount images. Manual quantification of  the area of  VO NV was performed according to an established 
protocol using Photoshop (Adobe) (5, 7).

The quantification of  the percentage of  the VO region and the percentage of  the NV regions on the 
OIR images was broken down into 3 separate image analysis problems: the segmentation of  the VO region, 
the segmentation of  NV region, and identification of  the total retinal area. We divided the images into 64%, 
16%, and 20% for training, validation, and test sets, respectively.

In order to train the neural network within the confines of  current GPU architectures, the original 
3,000 × 3,000 images were downsampled to 256 × 256 for the training of  the VO automated algorithm. 
The ground truth was created as a binary mask, with background set to false and the VO region set to true.

Figure 8. Inter-rater reliability with 4 human expert segmentations compared with deep learning for retina. Inter-rater reliability with 37 images 
segmented by 4 human experts and the deep learning model for total retinal area. Each set of box plots represents a different human expert set 
as ground truth compared against the other 3 human experts and the deep learning model using Dice coefficients. The middle bar represents the 
median, the box represents the interquartile range, and the whiskers extend to the most extreme data point, which is no more than 1.5 times the 
interquartile range from the box.
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A modified version of  the U-net architecture was utilized (Figure 2, top) (22, 23). The final output layer 
activation was set to a sigmoid function. Binary cross-entropy was used for the loss function during training 
and back-propagation. Batch normalization was applied after each convolutional layer (22). Adam, an 
adaptive learning optimizer, was set to an initial learning rate of  0.01 and was used for stochastic gradient 
descent (11).

To allow more generalizability of  the trained model, online data augmentation was utilized during 
training by random rotation of  360 degrees and varying the contrast of  the images by multiplying the imag-
es with a random value uniformly distributed between 0.7 and 1.3. Every 100 iterations, a random subset of  
the validation set was used to assess the model performance. At the end of  training, the parameters of  the 
model were frozen and the Dice coefficient was used to measure segmentation accuracy in the final held 
out test set.

Finer delineation was required for segmentation due to finer details found in neovascular complexes 
compared with VO regions; therefore the original 3,000 × 3,000 images were downsampled to 512 × 512. 
A modified version of  the U-net architecture was utilized due to the different input size (Figure 2, bottom). 
All other hyperparameters were the same as the above described settings.

Segmentation of  the whole retina was achieved as follows. Because the background brightness varies 
from image to image, there was no single threshold that could always identify the background from the ret-
ina region. Empirically, we found that pixels with intensity greater than 100 were always retina pixels. For 
the remaining pixels, we used k-means with k = 2 to cluster the pixels into background and retina regions 
based on log intensity alone.

Statistics. In order to validate the trained models, a test set of  37 images were manually segmented 
prospectively by 4 human experts. Each grader was set to the ground truth, and the other 3 graders as 
well as the deep learning output were compared with the ground truth by Dice coefficients for both the 
VO and NV regions. For each segmentation result, the percentage of  VO and NV regions were calculated 
and a linear correlation coefficient was calculated for each pairwise comparison. All training and vali-
dation of  images were performed using Torch7 and trained on one computer containing two NVIDIA 
Titan X Pascal GPU cards.

Study approval. C57BL/6 and transgenic mice used in these studies were treated in adherence with the 
National Institutes of  Health Guide for the Care and Use of  Laboratory Animals (National Academies Press, 
2011). Animal studies were reviewed and approved by the Institutional Animal Care and Use Committee 
of  The Scripps Research Institute.

Author contributions
SX and AYL designed the study. SX, YW, AR, and AYL created the deep learning model. FB, KVM, 
RF, SDA, and EA acquired the data. SX, YW, AR, CSL, MF, and AYL analyzed the data. SX, FB, CSL, 
and AYL wrote the manuscript. YW, AR, KM, RF, SDA, EA, and MF provided critical review and final 
approval of  the manuscript.

Acknowledgments
We would like to acknowledge the NVIDIA Corporation for their generous donation of  graphics cards for 
the development of  artificial intelligence algorithms. This work was supported by grants from the National 
Eye Institute (K23EY024921 to CSL and R01 EY11254 to MF), the Lowy Medical Research Institute (to 
MF), the Gordon & Betty Moore Foundation (to AR), the Alfred P. Sloan Foundation (to AR), and the 
German Research Foundation (Bu 3135/1-1 to FB) as well as an unrestricted research grant from Research 
to Prevent Blindness (to CSL, AYL, SX, and YW). The contents of  this manuscript do not represent the 
views of  the US Department of  Veterans Affairs or the US government.

Address correspondence to: Aaron Y. Lee, Department of  Ophthalmology, University of  Washington, Box 
359608, 325 Ninth Avenue, Seattle, Washington 98104, USA. Phone: 206.543.7250; Email: leeay@uw.edu.

 1. Jayson GC, Kerbel R, Ellis LM, Harris AL. Antiangiogenic therapy in oncology: current status and future directions. Lancet. 
2016;388(10043):518–529.

 2. Stahl A. Anti-Angiogenic Therapy in Ophthalmology. Cham, Switzerland: Springer International Publishing; 2016.
 3. Stahl A, et al. The mouse retina as an angiogenesis model. Invest Ophthalmol Vis Sci. 2010;51(6):2813–2826.



1 2insight.jci.org   https://doi.org/10.1172/jci.insight.97585

T E C H N I C A L  A D V A N C E

 4. Smith LE, et al. Oxygen-induced retinopathy in the mouse. Invest Ophthalmol Vis Sci. 1994;35(1):101–111.
 5. Connor KM, et al. Quantification of  oxygen-induced retinopathy in the mouse: a model of  vessel loss, vessel regrowth and 

pathological angiogenesis. Nat Protoc. 2009;4(11):1565–1573.
 6. Stahl A, et al. Postnatal weight gain modifies severity and functional outcome of  oxygen-induced proliferative retinopathy. Am J 

Pathol. 2010;177(6):2715–2723.
 7. Banin E, et al. T2-TrpRS inhibits preretinal neovascularization and enhances physiological vascular regrowth in OIR as assessed 

by a new method of  quantification. Invest Ophthalmol Vis Sci. 2006;47(5):2125–2134.
 8. Stahl A, et al. Computer-aided quantification of  retinal neovascularization. Angiogenesis. 2009;12(3):297–301.
 9. Chatenay-Rivauday C, et al. Validation of  a novel automated system for the quantification of  capillary non-perfusion areas in 

the retina of  rats with oxygen-induced retinopathy (OIR). Invest Ophthalmol Vis Sci. 2003;44(13):2907–2907.
 10. Doelemeyer A, et al. Automated objective quantification of  vascular morphology in rodent oxygen-induced retinopathy. Invest 

Ophthalmol Vis Sci. 2003;44(13):3618–3618.
 11. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. Cornell University Library. http://arxiv.org/abs/1412.6980. 

Published December 22, 2014. Updated January 20, 2017. Accessed December 6, 2017.
 12. He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. Cornell University Library. http://arxiv.org/

abs/1512.03385. Published December 10, 2015. Accessed December 6, 2017.
 13. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation. 

IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495.
 14. Girshick R, Donahue J, Darrell T, Malik J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmenta-

tion. Cornell University Library. https://arxiv.org/abs/1311.2524. Published November 11, 2013. Updated October 22, 2014. 
Accessed December 6, 2017.

 15. Lee CS, Baughman DM, Lee AY. Deep learning is effective for classifying normal versus age-related macular degeneration OCT 
images. Ophthalmology Retina. 2017;1(4):322–327.

 16. Prentašic P, et al. Segmentation of  the foveal microvasculature using deep learning networks. J Biomed Opt. 2016;21(7):75008.
 17. Abràmoff  MD, et al. Improved automated detection of  diabetic retinopathy on a publicly available dataset through integration 

of  deep learning. Invest Ophthalmol Vis Sci. 2016;57(13):5200–5206.
 18. Lee CS, Tyring AJ, Deruyter NP, Wu Y, Rokem A, Lee AY. Deep-learning based, automated segmentation of  macular edema in 

optical coherence tomography. Biomed Opt Express. 2017;8(7):3440–3448.
 19. Hastie T, Tibshirani R, Friedman J. The Elements of  Statistical Learning: Data Mining, Inference, and Prediction. New York, NY: 

Springer New York Inc; 2001.
 20. Scott A, Powner MB, Fruttiger M. Quantification of  vascular tortuosity as an early outcome measure in oxygen induced reti-

nopathy (OIR). Exp Eye Res. 2014;120:55–60.
 21. Nakamura S, Imai S, Ogishima H, Tsuruma K, Shimazawa M, Hara H. Morphological and functional changes in the retina 

after chronic oxygen-induced retinopathy. PLoS ONE. 2012;7(2):e32167.
 22. Ioffe S, Szegedy C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. Cornell 

University Library. https://arxiv.org/abs/1502.03167. Published February 11, 2015. Updated March 2, 2015. Accessed Decem-
ber 6, 2017.

 23. Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Navab N, Hor-
negger J, Wells W, Frangi A, eds. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Cham, Switzer-
land:Springer, Cham; 2015:234–241.


