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Introduction
Metastatic disease continues to be the main cause of  breast cancer mortality. Intratumor genetic het-
erogeneity in a primary tumor and subsequent metastases is well established (1). It is thought to be an 
underlying reason for the emergence of  drug resistance and, thus, factors into clinical decision making 
(2). For example, estrogen receptor-α (ER) expression, even in a relatively low percentage of  the pri-
mary tumor, influences the decision to administer adjuvant endocrine therapy after surgery. Given the 
importance of  ER, progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) 
for both early and metastatic breast cancer therapy, biopsy of  a metastatic site has now become routine 
when patients present with disease recurrence. However, a survey of  the literature reveals differences 
in opinions regarding the level of  genetic heterogeneity among metastatic tumors and how it could in 
theory affect treatment choices (3–5). Assessing every metastatic tumor would be ideal, particularly in 
light of  recent findings of  hormone therapy–resistant mutations in ER (ESR1 gene) found in only one 
or a subset of  metastatic tumors within a given patient (6, 7). Unfortunately, sampling every metastasis 
is currently impossible in a living patient, and very small tumors (<2 mm) and micrometastases are not 
readily detectable by current imaging techniques (8). Samples from rapid autopsy series present a unique 
opportunity to study the biogenesis and progression of  tumor metastasis. Tumors are harvested promptly 
postmortem and are immediately flash frozen, preserving the quality of  nucleic acids and other cellular 
analytes (9). Here, we analyzed metastatic breast cancer tumors from 5 patients who participated in a 

Heterogeneity within and among tumors in a metastatic cancer patient is a well-established 
phenomenon that may confound treatment and accurate prognosis. Here, we used whole-exome 
sequencing to survey metastatic breast cancer tumors from 5 patients in a rapid autopsy program 
to construct the origin and genetic development of metastases. Metastases were obtained from 5 
breast cancer patients using a rapid autopsy protocol and subjected to whole-exome sequencing. 
Metastases were evaluated for sharing of somatic mutations, correlation of copy number variation 
and loss of heterozygosity, and genetic similarity scores. Pathological features of the patients’ 
disease were assessed by immunohistochemical analyses. Our data support a monoclonal origin 
of metastasis in 3 cases, but in 2 cases, metastases arose from at least 2 distinct subclones in 
the primary tumor. In the latter 2 cases, the primary tumor presented with mixed histologic 
and pathologic features, suggesting early divergent evolution within the primary tumor with 
maintenance of metastatic capability in multiple lineages. We used genetic and histopathological 
evidence to demonstrate that metastases can be derived from a single or multiple independent 
clones within a primary tumor. This underscores the complexity of breast cancer clonal evolution 
and has implications for how best to determine and implement therapies for early- and late-stage 
disease.
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rapid autopsy program, including 3 patients with ER-positive breast cancer and 2 patients with triple-neg-
ative breast cancer. For each patient, we performed whole-exome sequencing using DNA from 3 flash 
frozen metastatic tumors harvested from different organ sites. Where available, limited sequencing was 
performed on the primary tumors, but due to sample exhaustion and poor quality of  DNA from archival 
tissue, this analysis was not complete. In addition, germline DNA was not available for whole-exome 
sequencing. Therefore, we harnessed the ExAC data set as a panel of  normal controls and identified 
somatic single nucleotide variants (SNV) and copy number variants (CNVs) in each metastatic tumor.

In 3 patients, all metastases shared a clonal origin in the primary tumor and diverged genetically as they 
grew separately and gained mutations. Our data suggest that, in the 2 remaining patients, the 3 metastases 
arose separately from 2 different subclones. These 2 patients had primary tumors with mixed histologic and 
pathologic features, suggesting that early divergent tumor evolution within the primary tumor produced 
subclones independently capable of  metastasis.

Results
Sequencing and bioinformatics analyses. Exome data were processed as described in our earlier study (10) to 
produce an annotated list of  somatic mutations for each metastasis (see Methods and flow chart in Sup-
plemental Figure 1; supplemental material available online with this article; https://doi.org/10.1172/jci.
insight.96896DS1).

Overview of  alterations in known breast cancer genes. For each of  the 5 selected metastatic breast cancer 
patients enrolled in a rapid autopsy program (9), we processed 3 metastases, each originating from a dif-
ferent distant organ (see case histories in Supplemental Table 2). We extracted genomic DNA from the 
samples and performed whole-exome sequencing to an average of  50–80× coverage. See Supplemental 
Table 1 for details on anatomical sites, sequencing depth, and mutation metrics for all samples.

We surveyed the SNV and copy number calls for presence of  somatic mutations, copy number changes, 
and loss of  heterozygosity (LOH) across the genome. The spectrum of  mutations was compared across 
metastases within and between patients; here, we categorized variants as high, medium, and low impact 
based upon their predicted functional consequence by SnpSift (11) (Figure 1A). High-impact variants 
include frameshift, stop gain, or splice site variants; moderate-impact variants include missense mutations 
and in-frame indels; and low-impact variants include synonymous changes that are often considered pas-
senger mutations. While private variants were identified for each metastasis, the majority of  both single 
nucleotide and copy number changes were found to be persistent across metastases in all impact categories 
within a patient. For example, TP53 mutations were detected in all 3 metastases from patients MBC007 
and MBC017 (p.Arg248Gln and p.His193Asp, respectively) and confirmed by immunohistochemistry in 
patient MBC007 (Supplemental Figure 2 and Supplemental Table 2; copy number calls for all samples, for 
genes commonly altered in breast cancer, are noted in Supplemental Table 3).

Notable instances in which high-impact variants were found in only 1 or 2 of  the metastases exam-
ined in a patient include the PIK3CA hotspot mutation (p.His1047Arg) (12), CDH1 inactivation, BRCA1 
mutations, and a point mutation in ESR1. Metastases in patient MBC005 are particularly interesting, 
with 2 metastases (liver and pancreas) harboring a high-impact, loss-of-function CDH1 somatic mutation 
(p.Gln631*). The third metastasis (pericardial) has nonmutated CDH1 but has a hotspot ligand-binding 
domain resistance mutation (p.Asp538Gly) in the ESR1 gene (13) that is not found in the other 2 sam-
ples. Additionally, the pericardial metastasis (sample 107) displayed predominant ductal morphology, 
unlike the liver (sample 104) and pancreas (sample 116A) metastases that are both lobular, consistent 
with the CDH1 loss-of-function mutation they harbor. Histopathology and staining confirmed that these 
mutations lead to contrasting patterns of  PR, p21, E-cadherin, and β-catenin expression (14) in the peri-
cardial metastasis, compared with a liver metastasis (Figure 2), and highlight the divergent morphology 
of  these lesions.

Metastases in patient MBC006 were discordant for a PTEN mutation, which was present only in the 
mediastinal lymph node metastasis (sample 117R). This genetic observation was again confirmed by immu-
nohistochemical labeling (Supplemental Figure 3).

Metastases from patient MBC003 and the 2 patients with TP53 mutations, patients MBC007 and 
MBC017, were within each patient highly concordant for CNVs. Copy number changes were persistent 
across metastases for genes that are often coamplified, including amplification of  ERBB2 and TOP2A (15), 
which were found in all 3 metastases in patient MBC003. Along with amplification of  ERBB2, we detected 
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amplification of  TPD52, which has been identified as a survival factor in ERBB2-amplified tumors in breast 
cancer (16). Other commonly detected alterations, such as MYC amplifications, occurred at varying levels 
in all samples (Figure 1B and Supplemental Table 3).

Genome-wide mutational profiles of  metastases. Large-scale genomic alterations, such as CNV and LOH, 
were observed in all of  the metastasis samples to various extents. The fraction of  the genome altered by CNV 
and LOH, and the mutational burden, was generally very consistent within metastases for each patient (Fig-
ure 3 and Supplemental Table 1), though these measures differed markedly among patients. See circle plots 
below and Supplemental Figure 4 for a depiction of  detailed landscapes of  CNV and LOH in all metasta-
ses. The pairwise genetic similarity scores (no. shared variants/no. shared variants + no. unique variants/2) 
were generally high among metastases from a single patient, though the scores varied across effect categories, 
and samples from patients MBC005, MBC006, and MBC007 displayed much less genetic similarity in the 
high-impact category than the other 2 patients (Figure 4 and Supplemental Table 4).

Allele frequencies of  SNVs and indels. As noted in earlier work (10), comparing variant allele frequencies 
across related tumors can shed light on the genetic origin of  the tissues. Figure 5 depicts the average allele 
frequencies of  shared variants in the 3 metastases from each patient (see Supplemental Figure 5 for plots, 
including the distribution of  private variants for each metastasis). Notably, the shared variants from metas-
tases from patients MBC005 and MBC006 have relatively high frequencies compared with those from the 
other 3 patients, and variants at lower frequencies in these samples tended to be private to 1 or 2 metastases, 
suggesting that the metastases in the first 2 patients may be less closely related to each other (corroborating 
the conclusions from the genetic similarity scores).

We appropriated hive plots, a network visualization tool (17), to visualize the allele frequencies of  SNVs 
and small indels among metastases in more detail, and these are displayed along with the corresponding 
circle plot for each patient, depicting CNV and LOH for each metastasis (Figure 6). The global pattern of  
genetic variation in metastases is evident from these plots, as the shared allele frequency distributions are 
notably different (consistent with the violin plots, showing common mutations mostly at high and near-50% 
allele frequency) in patients MBC005 and MBC006. These patients harbor less overall copy number variation 

Figure 1. Single nucleotide and copy number changes across metastases. Overview of single nucleotide variants and copy number changes in genes previ-
ously implicated in breast cancer, across all metastases sampled. Patient IDs are at provided the top, and data for 3 metastases per patient are shown. (A) 
SNVs and indels, colored by predicted impact. (B) Copy number changes.
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than MBC003, MBC007, and MBC017; all 3 of  the latter patients have shared variants 
across all allele frequencies. Extensive shared CNV was apparent in patients MBC007 
and MBC017, consistent with the TP53 mutation observed in those patients, and promi-
nent CNV was seen in patient MBC003 as well.

Discussion
Using genome-wide data from exome sequencing, coupled with histopathological evi-
dence, we determined the mutational load as well as the extent of  CNV and LOH, in 
addition to investigating specific mutations with known impact. Though we lacked 
information about the primary tumor and normal tissue, this approach enabled us to 
infer the relatedness of  metastases from one patient and to determine whether they 
have a single clonal origin or derive from multiple clones in the primary tumor.

Patients MBC005 and MBC006 both have high-frequency variants shared 
among all 3 metastases, fewer mid- and low-allele frequency shared variants, and 
lower genetic similarity scores among metastases. In patient MBC005, metastases 
were discordant for commonly mutated driver/resistance genes in breast cancer (12, 
13, 18, 19), including BRCA1, ARID1A, CDH1, and ESR1 mutations. Along with the 
strong histopathological evidence for multiple subtypes in the primary cancer and 
divergent (lobular vs. ductal) histology in the metastases, this suggests that metas-

tases samples 104 (liver) and 116A (pancreas) derive from a separate subclone that then gave rise to 
metastasis sample 107 (pericardium) in the primary tumor. Similarly, metastases in patient MBC006 
were discordant for PIK3CA and PTEN mutations, and CNVs were less conserved across these, as evi-
dent by lower Pearson correlation coefficients (Supplemental Figure 6). The higher genetic similarity 
score for patient MBC017 was associated with a lower overall mutation burden than any of  the other 
sets of  metastases, though these metastases had extensive copy number alterations (as do the samples 
from patient MBC007), consistent with loss of  TP53 (20–22).

The genomic structure and range of  SNVs in metastases from patients MBC003, MBC007, and 
MBC017 are consistent with metastatic spread from a single subclone in a primary tumor. While vari-
ant allele frequencies span a much wider range in 2 of  these patients (MBC007 and MBC017), these 
patients harbor a TP53 mutation that coincides with strikingly high CNV and LOH. In these cases, shar-
ing of  variants at low allele frequencies can be attributed to massive (and concordant) CNV and LOH 
seen in the metastases. Samples from patient MBC003 also displayed high correlation, marked by high 
mutation burden and low CNV. In all 3 cases, variants are shared at low allele frequencies, consistent 
with extensive shared CNVs.

In these 3 cases, it is apparent that, even as the metastatic tumors develop at distant sites at different 
rates and times, they can maintain a similar mutational landscape that includes SNVs, indels, and complex 
structural changes, suggesting that for these cases, therapies aimed toward one metastasis may affect all 
metastases equally. Thus, for any given therapy, global response or resistance may be seen. This pattern 

Figure 2. Immunohistochemistry correlation with variant calls. Variable immunoreactivity for 
estrogen receptor (ER), progesterone receptor (PR), p21, E-cadherin, and β-catenin in liver and 
pericardial metastases correlates with variable ER and E-cadherin mutational status (MBC005). 
This patient’s primary tumor was an ER- and PR-positive, invasive ductal carcinoma. The 
majority of metastases, including the liver metastases, (A) demonstrated lobular morphology, 
whereas the pericardial metastasis (G) showed predominant ductal morphology. By whole-ex-
ome sequencing, β-catenin was mutated in all metastases. E-cadherin was mutated in the liver 
and pancreatic metastases but not the pericardium, while ER was mutated in the pericardial 
metastases but not the liver and pancreas. Both the liver (B) and pericardial metastases (H) 
demonstrated similar diffuse but weak labeling for ER (60%, weak). While the liver metastasis 
demonstrated minimal (5%, moderate) immunoreactivity for PR (C) and minimal labeling of p21 
(D), the pericardial metastases, which harbored an ESR1 mutation, were diffusely and strongly 
immunoreactive for PR (80%, strong) (I) and demonstrated upregulated p21 expression (J). 
Consistent with mutational analysis, E-cadherin immunohistochemical labeling was lost in the 
liver metastases (E) (note intact expression in hepatocytes at the top part of the figure) but 
predominantly retained in the pericardial metastasis (K). β-Catenin expression was similarly lost 
in the liver metastasis (F) (note intact labeling in entrapped bile ducts) but was cytoplasmic (not 
membranous) in the pericardial metastases (L). Original magnification, ×400.
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would also suggest that the selective pressure of  any effective therapy may lead to acquired resistance and 
the emergence of  subclones that could again be largely similar in their mutational landscape.

Two patients (MBC005 and MBC006), however, displayed a very different trajectory of  metastatic 
tumor evolution. For both patients, we observed fewer overall structural alterations within each of  the 
metastases, but metastases were discordant for major mutagenic events. Interestingly, for both of  these 
patients, the primary and metastatic tumors were discordant for ER status, and the metastases were discor-
dant among themselves for critical breast cancer mutations, suggesting multiple evolutionary trajectories 
among the metastases in each patient. One of  the metastases from patient MBC005 harbors an endocrine 
therapy-resistant ESR1 mutation, and the other 2 metastases from the same patient have CDH1 loss-of-func-
tion mutations. This patient’s primary tumor had ductal histology with lobular features but was positive for 
E-cadherin labeling (9); the presence of  a CDH1 mutation and the level of  dissimilarity among metastases 
suggest that the metastases came from 2 separate subclones in the primary tumor, one lobular and one 
ductal. Metastases from patient MBC006, when compared with those from MBC005, displayed a similar 
profile of  SNV and CNV sharing, including shared low-frequency events and few shared high-frequency 
events. In this patient, 1 of  the 3 metastases had both a PTEN and a PIK3CA mutation that are not shared 
by the other 2 metastases. As these are significant and potentially driver mutations, it is possible that the 
metastases are derived from different subclones in this patient as well.

The approach to treating metastatic disease could theoretically be governed by the biological processes 
that gave rise to those tumors. Current practice for metastatic breast cancer is to biopsy an amenable lesion to 
reassess hormone receptor and HER2 status. Additionally, more patients are having such biopsies sequenced 
with the hope of  finding an actionable mutation that may provide rationale for a clinical trial and/or off-la-
bel use of  targeted therapies (23). However, our study suggests that a single biopsy specimen from the prima-
ry tumor may not give adequate information to guide treatment of  metastatic disease, as the biopsy may not 
cover the relevant subclone; additionally, there may be multiple subclones that generate metastases.

The spectrum of  shared variant allele frequencies may be informative; in the case of  the 2 patients with 
metastases potentially derived from more than one subclone, they will share mostly homozygous or other 
highly prevalent mutations in the primary tumor and are less likely to share mutations that were at low 
allele frequencies in the primary tumor. This lack of  shared passenger mutations signals divergent origins 
of  the metastases. In at least one of  these cases, the primary tumor displayed multiple histological subtypes. 
Biopsies of  multiple metastases, and potentially circulating tumor DNA or tumor cells, may reveal the evolu-
tionary complexity displayed in these patients. Large-scale analyses of  data sets with multiple metastases per 
patient may establish genetic profiles most commonly associated with cancers disseminated from single ver-
sus multiple subclones, possibly enabling determination of  the tumor evolution pattern (and thus the most 
effective treatment protocol) in a newly diagnosed patient without the benefit of  genetic information from 
multiple metastases. During the preparation of  this manuscript, Brown et al. reported similar results using 
primary and metastatic lesions from 10 autopsy patients (24). Their results and conclusions are strikingly 

Figure 3. The extent of genome alteration is similar among metastases from each patient. For each patient, the fractions of the genome altered by 
copy number variation (CNV) (circles) and loss of heterozygosity (LOH) (triangles) are shown for each metastasis. Additionally, the number of variants 
(SNVs and indels) per megabase is shown (squares) for each metastasis.
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similar to our own data, lending further credence to the idea that evolutionary patterns of  metastases can be 
quite variable and may depend on the genetic complexity of  the patient’s primary tumor.

Our results suggest that histologically and genetically homogeneous primary tumors produce homogenous 
metastases and, therefore, genotyping one metastatic lesion may be sufficiently informative to drive clinical deci-
sion regarding treatment course. On the other hand, primary tumors of mixed histology can produce a variety of  
metastases, with each metastatic lesion potentially having a unique susceptibility or resistance to a given therapy. 
Understanding a patient’s paradigm of metastases may enable clinicians to tailor treatment regimens and spare 
side effects by choosing agents that can be effective despite the degree of intertumor heterogeneity.

Methods
Case selection and rapid autopsy. Autopsies were performed within 1–4 hours of  death, and metastases used 
in this study were flash frozen for tumor banking. Detailed descriptions of  this rapid autopsy series, case 
selection, autopsies, and histology have been previously provided (9).

Genomic DNA extraction. For primary tumors, we extracted DNA from formalin-fixed, paraffin-embed-
ded tissue. After H&E-stained slide review and tumor tissue selection, we manually microdissected the 
corresponding tissue from 5 unstained, 5-μm-thick tissue sections using Pinpoint reagent according the 
manufacturer’s protocol (Zymo Research). We purified DNA from the sample using the QIAmp DNA kit 
(Qiagen) and quantified it by spectophotometry.

For metastatic samples, flash-frozen tumors were manually minced into small pieces using a fresh razor 
blade for each sample within a bleached sterile hood to minimize contamination. The samples were lysed 

Figure 4. Genetic similarity scores. Genetic similarity scores were calculated as described for all pairs of samples for high-impact mutations. Similarity 
among metastases within each patient is generally substantial but varies. Genetic similarity scores range from 0 to 1 and are colored as depicted.
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and DNA was extracted and purified using the Qiagen DNeasy Blood & Tissue kit per the manufacturer’s 
instructions. DNA yield was quantified using both picogreen and nanodrop.

Whole-exome sequencing. Tumor samples were subjected to next-generation sequencing library construc-
tion and sequencing (Seqwright DNA Technology Services). Whole-exome probe capture, library construc-
tion, and sequencing were performed using the Illumina HiSeq platform. Average coverage was 50–80× for 
each sample (Supplemental Table 1).

Alignment and variant calling. We aligned paired-end whole-exome sequencing reads to the human refer-
ence genome (GRCh38) using BWA mem (25), with default parameters, and generated BAM files with Sam-
tools (26). We then optimized the alignments according to GATK (version 3.6) MuTect2 (27) best practices. 
We used sambamba (28) to sort and index the alignments, Picard MarkDuplicates (http://broadinstitute.
github.io/picard) to identify duplicate artifacts, and GATK BaseRecalibrator with knownSites set to dbSNP 

Figure 5. Shared variants occur at similar allele frequencies across metastases. Violin plots showing, for each patient, the distribution of allele 
frequencies of variants shared among all metastases of that patient. Box plots mark median and first and third quartiles, and whiskers extend to 
1.5 times the interquartile range.

Figure 6. Hive plots, copy number variation, and loss of heterozygosity profiles reveal patient-specific patterns. Hive plots of allele frequencies for all 
variants, for each patient, suggest trajectories of variant accumulation and tumor evolution. In each hive plot, the axes represent allele frequency, with 0% 
at the center and 100% at the periphery. A variant in one metastasis is connected with a line to the appropriate allele frequencies in the other metastases. 
Variants specific to one metastasis are in purple; yellow denotes variants in 2 metastases. See Supplemental Figure 7 for an overview of hive plots. Also 
shown are copy number variation (CNV) and loss of heterozygosity (LOH) profiles for 3 metastases for each of the 5 patients. Copy number changes are 
displayed in red and blue, inside tracks with LOH marked in purple, in concentric rings for related metastases.
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build 147 (29) to account for systemic base quality errors. For variant calling, we used GATK MuTect2, a 
somatic variant caller with high sensitivity and specificity, with the common dbSNP build 147 database, 
and Catalog of  Somatic Mutations in Cancer (COSMIC) coding mutations database version 77 (http://
cancer.sanger.ac.uk/cosmic) (30). In the absence of  matched control, we employed the ExAC (31) variant 
calls (ExAC.r0.3.1.sites.vep.chr.vcf) as our panel of  normal controls. We used Picard LiftoverVcf  to con-
vert the ExAC database file to GRCh38 using chain file hg19toHg38.over.chain. Criteria for variant selec-
tion included removing variants that were found in more than 6 samples, requiring at least 20 supporting 
reads for each locus in all tumors, a base call quality greater than 30 (phred scale, 99.9% confidence), allele 
frequencies greater than 0.1, and at least 4 reads with the alternative allele (MuTect2 parameters: --analy-
sis_type MuTect2 --reference_sequence [GRCh38] --input_file:tumor [recalibrated and sorted bam file] --nor-
mal_panel [PON from ExAC] --dbsnp [common dbSNP build 147] --cosmic [COSMIC version 77]).

To increase the accuracy of  variant calling, we added a regenotyping step in which we used MuTect2 
to call variants with the —targets.interval_list option, which restricts variant calling to specify genomic 
intervals (in this case, exome capture targets provided by Seqwright) (MuTect2 parameters: --analysis_type 
MuTect2 --reference_sequence [GRCh38] --input_file:tumor [recalibrated and sorted bam file]—normal_
panel [PON from ExAC] --dbsnp [common dbSNP build 147] --cosmic [COSMIC version 77] -L [ vcf  with 
variants from 3 mets combined]).

We assessed functional outcomes of  variants (high, moderate, and low impact) with SnpEff  (32), only 
considering canonical genes annotated in the GRCh38 genome build and annotating variants existing in 
dbSNP build 147 or in COSMIC database version 77 (30). Variants found in the ExAC or the common 
dbSNP databases but not found in COSMIC were taken as population polymorphisms, while variants 
that were either novel or found in the COSMIC database and not in ExAC or dbSNP were assumed to be 
somatic (see Supplemental Figure 1 for the analysis pipeline flowchart).

CNV calling. To determine copy number variations, we used CNVkit (version 0.8.3) (33), with the 
tumor-only options (as recommended in CNVkit documentation), using the batch option with the following 
parameters: cnvkit.py batch [recalibrated and sorted bam file] —normal --targets [exome regions bed file] --fas-
ta [GRCh38] --split --annotate [ftp://hgdownload.cse.ucsc.edu/goldenPath//hg38/database/refFlat.txt.gz] 
--access [cnvkit-master/data/access-10kb.hg38.bed] --output-reference [SAMPLE].cnn.

Data visualization. Python and R scripts were used to construct plots depicting SNV and CNV distribu-
tions, utilizing functions from the VariantAnnotation and ggplot2 packages. To visualize the relationships 
among metastatic tumors, we utilized the HiveR package (34).

Variant sharing metrics. We measured the pairwise relatedness of  CNV profiles via Pearson correlation 
coefficients using R (cor.test) and calculated the relatedness of  SNV profiles by generating a genetic simi-
larity score for variants in each metastatic tumor in all categories, using the following formula: no. shared 
variants/(no. shared variants + no. unique variants/2).

Study approval. Patients with widely disseminated metastatic breast cancer provided written consent to 
participate in a rapid autopsy program that was reviewed and approved by the Institutional Review Board 
of  The Johns Hopkins Hospital and the Department of  Defense.
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