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Introduction
Clear cell renal cell carcinoma (ccRCC) represents the most common subtype of  RCC (65%–70%) and is 
highly variable in prognosis, biological behavior, and response to therapies (1–3). Sporadic ccRCC frequent-
ly carries an inactivating mutation of  the von Hippel-Lindau (VHL) tumor suppressor gene on chromo-
some 3p with subsequent upregulation of  the HIF/VEGF pathway, leading to intense tumor angiogenesis 
(4–6). The Tumor Cancer Genome Atlas (TCGA) analysis of  gene and protein expression has confirmed 
major alterations in glucose, amino acid, and lipid metabolism in ccRCC, characterized histologically by 
prominent storage of  glycogen and lipids (7, 8). High levels of  lipid anabolic enzymes are expressed in 
ccRCC. In particular, fatty acid synthase (FASN; enzyme commission [EC] 2.3.1.85) and stearoyl-CoA 
desaturase 1 (SCD1; EC 1.14.19.1) are associated with poor prognosis (9, 10). Previous studies have also 

BACKGROUND. Dysregulated lipid and glucose metabolism in clear cell renal cell carcinoma (ccRCC) 
has been implicated in disease progression, and whole tumor tissue–based assessment of these 
changes is challenged by the tumor heterogeneity. We studied a noninvasive quantitative MRI 
method that predicts metabolic alterations in the whole tumor. 

METHODS. We applied Dixon-based MRI for in vivo quantification of lipid accumulation (fat fraction 
[FF]) in targeted regions of interest of 45 primary ccRCCs and correlated these MRI measures to 
mass spectrometry–based lipidomics and metabolomics of anatomically colocalized tissue samples 
isolated from the same tumor after surgery.

RESULTS. In vivo tumor FF showed statistically significant (P < 0.0001) positive correlation with 
histologic fat content (Spearman correlation coefficient, ρ = 0.79), spectrometric triglycerides (ρ 
= 0.56) and cholesterol (ρ = 0.47); it showed negative correlation with free fatty acids (ρ = –0.44) 
and phospholipids (ρ = –0.65). We observed both inter- and intratumoral heterogeneity in lipid 
accumulation within the same tumor grade, whereas most aggressive tumors (International Society 
of Urological Pathology [ISUP] grade 4) exhibited reduced lipid accumulation. Cellular metabolites 
in tumors were altered compared with adjacent renal parenchyma.

CONCLUSION. Our results support the use of noninvasive quantitative Dixon-based MRI as a 
biomarker of reprogrammed lipid metabolism in ccRCC, which may serve as a predictor of tumor 
aggressiveness before surgical intervention.
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shown increased accumulation of  cholesterol in ccRCC (11, 12). Altogether, these observations strongly 
suggest that reprogrammed lipid metabolism in ccRCC may provide not only biomarkers of  oncological 
aggression, but perhaps therapeutic targets as well. While percutaneous tissue biopsies can offer a preop-
erative diagnosis of  kidney cancer with high sensitivity, they are invasive and commonly yield inadequate 
results for tumor grade (13). Furthermore, the preoperative assessment of  metabolic alterations in vivo is 
challenged by the intratumoral molecular heterogeneity that characterizes and likely drives the biologi-
cal behavior of  ccRCC (14). Moreover, the well-documented genetic branched evolution of  ccRCC (15) 
would suggest that tumors may also undergo a temporal transformation of  their metabolic phenotype as 
they evolve from more indolent, lower-grade neoplasms into aggressive, higher-grade tumors. The clinical 
implementation of  active surveillance protocols and lack of  established criteria for neoadjuvant therapy in 
ccRCC emphasize the need for diagnostic tools that can accurately capture the metabolic phenotype of  a 
tumor in a given time. Thus, noninvasive quantitative imaging methods that provide an objective, spatially 
encompassing assessment of  metabolic alterations in the whole tumor in vivo are appealing.

Multi-echo Dixon-based MRI (mDixon) (16) is a method for in vivo fat quantification that has been 
validated in liver steatosis against tissue biopsies (17–19). The purpose of  this study was to prospectively 
assess the role of  Dixon-based MRI-derived quantitative measures of  intratumoral lipid accumulation as a 
noninvasive in vivo biomarker of  heterogeneous metabolic reprogramming in ccRCC.

Results
Anatomical coregistration of  tissue-based analysis with MRI quantitative parameters. We applied Dixon-based 
MRI for tumor lipid accumulation in targeted regions of  interest (tROIs) in patients who underwent pre-
operative MRI imaging. Figure 1 represents the schematic of  the experimental design and the workflow of  
this study. Patients underwent MRI, and quantitative estimates of  fat fraction (FF) were derived for lipid 
phenotype as indicated. Patients then underwent radical or partial nephrectomy. The surgical specimen was 
spatially colocalized with the MRI and bivalved immediately after surgery (see Methods). Tissue samples 
were collected from anatomic locations within the tumor corresponding to the tROIs and subjected to his-
topathological staining, mass spectrometric analysis for lipid contents, and whole cell metabolite analysis. 
The readouts of  tissue-based analysis were correlated with the quantitative MRI measures of  lipid accumu-
lation (FF). Each tumor was classified based on the International Society of  Urological Pathology (ISUP) 

Figure 1. Anatomical coregistration of tissue-based analysis with MRI quantitative parameters. Patients underwent MRI, including a Dixon acquisition for 
fat fraction (FF) quantification. Colored circles representing the location and approximate size of the tissue samples were placed on representative locations 
within the tumor on the FF (%) MRI maps. After surgical resection, each tumor was anatomically coregistered and sliced to match the imaging plane. Tis-
sues from the same location in the tumor specimen as those of the targeted regions of interest (tROIs) were collected as targeted samples. These samples 
underwent oil red O (ORO) staining for lipid distribution analysis and mass spectrometry for lipidomic analysis, as well as whole cell metabolite analysis. The 
results were then correlated with the two MRI measures. Tumors were classified based on the International Society of Urological Pathology (ISUP) grade.
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nucleolar grade (20). The patient and tumor characteristics for the ccRCC tumors collected and analyzed 
in this study are provided in Supplemental Table 1 (supplemental material available online with this article; 
https://doi.org/10.1172/jci.insight.94278DS1).

MRI FF quantification correlated with intracellular lipids and indicated heterogeneity in lipid accumulation in 
ccRCCs. Since ccRCC tumors show histopathologically abundant storage of  lipid species (21–23), a validat-
ed noninvasive methodology to assess the heterogeneity of  lipid accumulation in these tumors would be a 
valuable tool. Hence, we used an established methodology, mDixon, originally developed for quantitative 
evaluation of  liver steatosis (24). We generated an FF tumor map to correlate with histopathological and 
molecular lipid quantity. First, we validated MRI-derived FF as a surrogate of  intratumoral fat content by 
comparing it with the results of  oil red O (ORO) stain, a diazo dye used for staining triglycerides (TG), and 
cholesterol esters (CE) (25, 26). Freshly frozen tissues were stained and manually scored by an urologic 
pathologist as percentage of  positively stained tumor cells. Figure 2A shows representative images of  tumors 
with tROIs exhibiting low fat content (tumor 1) and high fat content (tumor 2), along with the colocalized 
ORO stains of  the targeted tissues samples obtained from the same locations in both tumors. Figure 2B 
represents the scatter plot derived from 27 targeted tumor samples (22 patients) stained for ORO and the cor-
responding FF values derived from tROIs. The FF values from tROIs showed significant positive correlation 

Figure 2. Clear cell renal cell carcinoma (ccRCC) tumors exhibit heterogeneous lipid accumulation, independent of tumor grade. (A) Representative 
T2-weighted MRI images (left) and quantitative fat fraction (FF) maps (middle) of 2 tumors (black and white circular contours on both sets of images, 
respectively) indicating location of targeted region of interest (tROI, orange circle), and corresponding ex vivo oil red O (ORO) staining for fat content of 
targeted tumor samples as described in Methods (top panel: Tumor 1, ISUP grade 2; bottom panel: Tumor 2, ISUP grade 3). Color bars in FF maps indicate 
the percent of fat signal in tumor from 0%–60%. The scale bar values in the ORO staining indicate 100 μm. (B) Spearman correlation analysis between 
in vivo mean tumor FF and percentage of cells staining with ORO in 27 targeted tumor samples (ρ = 0.79, P < 0.0001). Green circle, Tumor 1 in A (FF = 2%, 
ORO percentage = 5%); purple circle, Tumor 2 in A (FF = 14%, ORO percentage = 90%). Same-colored data points represent tissue samples obtained at 
different locations within the same tumor. (C) Distribution of FF across tumor grades from 45 ccRCCs. The x-axis is sectioned in 3 parts representing Inter-
national Society of Urological Pathology (ISUP) grade, with each point representing 1 individual tumor. The y-axis represents the mean percentage of FF in 
the whole tumor as measured by Dixon MRI. Vertical whiskers represent the mean ± SD within the individual tumor, indicating substantial intratumoral FF 
heterogeneity. ccRCCs exhibit heterogeneous intratumoral lipid accumulation among different tumor grades and within each tumor grade. Grade-4 tumors 
exhibited lower fat content than grade-3 tumors (P = 0.0163), although not different than grade-2 tumors (P = 0.33).
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with the percentage of  tumor cells staining positively for ORO (Spearman correlation coefficient, ρ = 0.79; 
P < 0.0001; after adjusting for multiple measures in the same tumor, ρ = 0.79; 95% bootstrap CI, 0.69–0.87). 
The linear regression model showed FF = 0.13 × ORO% (95% CI of  the slope is 0.09–0.18, P < 0.0001; after 
adjusting for multiple measurements in the same tumor, 0.13; 95% CI, 0.08-0.19, P = 0.0029). The tumor 
characteristics of  this subset of  tumors are provided in Supplemental Table 2. Importantly, Dixon-MRI was 
able to capture intratumoral heterogeneity in lipid accumulation with different samples from the same tumor 
exhibiting distinct FF levels (Figure. 2B). Since Dixon-MRI is designed to measure tissue TG, our results 
are supported by previous reports indicating that ORO stains predominantly TG and cholesteryl oleate (27). 
This further validated the FF quantification methodology to assess the lipid distribution in our ccRCC sam-
ples. Since the ccRCC phenotype is characterized by dysregulated lipid biosynthesis and this has been asso-
ciated with tumor prognosis (7) and invasiveness (23), we evaluated the relationship between MRI-derived 
FF and tumor grades in 45 ccRCC, as defined by ISUP grading. We found heterogeneous lipid accumulation 
not only between the tumors of  different grade, but also between tumors within the same tumor grade (Fig-
ure 2C). The intratumoral heterogeneity is illustrated by the SD of  the FF measures for any given tumor, 
with several tumors exhibiting a range of  FF varying over 10% in different areas of  the tumor; the range 
of  mean FF across all tumors was –0.2% to 14%. However, analysis of  multiple systematic ROIs (sROIs) 
obtained on each individual tumor (see Methods) demonstrated that 63% of  the variation in FF was due to 

Figure 3. Lipidomic profiling of clear cell renal cell carcinoma (ccRCC) tumors showed differential levels in the uninvolved renal parenchyma (URP) and 
ccRCC tissue samples and correlated with fat fraction measures. (A) The data represent the normalized intensity peaks of selected lipid species, with 
the horizontal bars and whiskers indicating the means ± SEM in ccRCC and URP samples (n = 14 patients). The intensity of each peak was normalized to 
the total lipid signal and summed to give the intensity of each class as percentage of all identified lipids. The statistical significance of the differences 
between measurements as indicated in the figure were assessed using an unpaired Mann-Whitney U test. (B) Correlation of fat fraction (FF) assessment 
using Dixon-based MRI method with lipidomic analysis of 33 targeted tumor samples (n = 14 patients) from the same tumor location. Levels of lipid 
species were analyzed in fresh targeted tumor samples by mass spectrometry, as indicated in Methods. The Spearman correlation was applied to evaluate 
correlation between fat fraction and levels of cholesterol (ρ = 0.47, P = 0.006), cholesterol ester (ρ = 0.11, P = 0.5399), triglycerides (ρ =0.56, P < 0.001), free 
fatty acids (ρ = –0.44, P = 0.01), total phospholipids (ρ = –0.65, P < 0.001), and phosphatidylethanolamine (ρ = –0.65, P < 0.001).
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intertumor variation (intraclass correlation [ICC] = 0.63), whereas 37% of  variability represents intratumor-
al heterogeneity in lipid accumulation. Furthermore, there was no difference in intratumoral heterogeneity 
in FF based on tumor size for all tumors (P > 0.05) or between those within the same ISUP grade (ISUP 
2, 3, or 4; P > 0.05). Overall, these data indicate that the heterogeneity in lipid content is greater between 
different tumors than the intratumoral heterogeneity. Lipid accumulation was statistically lower in grade-4 
tumors than in grade-3 tumors (P = 0.0299), although not in grade-2 tumors (P = 0.0787). Our results were 
consistent with the previous observation that high-grade ccRCC has lower lipid content (28).

MRI FF quantification predicts altered fatty acid metabolism. Next, we evaluated whether our ccRCC tis-
sue samples exhibited altered fatty acid metabolism, one of  the characteristic biochemical signatures of  
cancer cells (21, 23). Global lipidomic profiling using our nontargeted assay platform helped detect 1,759 
lipid species in the ccRCC samples (Supplemental Table 3). These lipid molecules included phospholipids 
(PL; 980 species), sphingolipids (74 species), neutral lipids (677 species), and polar lipids (28 species). We 
observed a statistically significant (P < 0.0001) increase in the TG and CE levels in our ccRCC samples as 
compared with the uninvolved renal parenchyma (URP), a finding consistent with the literature (29–31) 
(Figure 3A). In addition to the accumulation of  CE and TG, our experiments also showed ccRCC-associ-
ated alterations in phosphoethanolamine (PE) (Figure 3A). We observed a lower level of  PE in the tumor 
samples compared with samples of  URP, consistent with a previous report (29), further suggesting that the 
PE pathway downregulation is another significant feature of  ccRCC tumors. We then determined whether 
the MRI-derived FF values correlated with altered lipid metabolic features we observe in these ccRCC 
tumors. The FF values derived from the tROIs corresponding to tissues used for lipid analysis (Figure 3B) 

Figure 4. Clear cell renal cell carcinoma (ccRCC) exhibits widespread metabolic alterations compared with uninvolved renal parenchyma (URP). (A) 
Heatmap of unsupervised hierarchical clustering of 80 human samples in 23 patients with ccRCC (57 tumors and 23 URP) analyzed for the abundance of 
108 metabolites. Each column and row corresponds to 1 tissue sample and a single metabolite, respectively. Yellow cluster represents tumor samples, 
and the green cluster represents normal samples. (B) Volcano plot analysis of metabolites significantly altered in tumor versus URP. The fold change of 
metabolite levels is plotted on the x-axis. The FDR-adjusted significance is plotted on the y-axis. Horizontal dash line represent q value cutoff of –log10 
(0.05); vertical dash lines represent log2-fold change (tumor/URP) of –1 and +1.71. Metabolites with significantly different levels in tumor vs. URP samples 
are indicated as blue, light blue, pink, and red dots. With fold-change cutoff of 2, 19 metabolites were decreased (blue) and 14 metabolites were increased 
(red) in tumor vs. URP samples. Black dots represent the metabolites that did not pass the q value cut-off. A two-sided t test was performed, and the hits 
with P < 0.05 adjusted by Benjamini-Hochberg procedures were considered significant.
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showed a positive Spearman correlation with increased TG (ρ = 0.56, P < 0.001) and free cholesterol (ρ = 
0.47, P = 0.006), and a weak negative correlation with the free fatty acids (FFA) (ρ = –0.44, P = 0.01). Inter-
estingly, we observed an indirect correlation with PL. Specifically, we found a negative correlation between 
FF in the tumors and PE, a predominantly membrane-localized lipid (Figure 3B, see Discussion). Hence, 
Dixon-MRI can be applied to noninvasively predict the abundance and alterations directly in intracellular 
lipids and indirectly in membrane-bound lipids, which are both linked to ccRCC tumor progression. It has 
been reported that cancer cells selectively activate cholesterol synthesis pathways to keep up with energy 
demand and for survival (32, 33), and increased activity of  lipogenic enzymes such as FASN is a known 
phenotype in ccRCCs (7, 9). Additionally, FASN expression predicts poor prognosis in cancer patients 

Figure 5. Clear cell renal cell carcinoma (ccRCC) exhibit greater intertumoral than intratumoral metabolic heterogeneity. (A) Heatmap for the metabolom-
ics analysis of 57 ccRCC samples (from 23 patients) ordered by average linkage hierarchical clustering. Columns represent tumor samples, and rows represent 
metabolites. Colored rows above the heatmap indicate the origin of the samples, with the tumor identification number in the y-axis. Tumor samples 
obtained from the same tumor tend to cluster, except for a few tumors. (B) Metabolomics data from principal component analysis (PCA) of samples with 
different International Society of Urological Pathology (ISUP) grades indicates lack of differentiation based on the overall tumor metabolic profile. (C) Graph-
ical representation of ISUP grade–dependent variations of the top metabolites (adjusted P < 0.05) showing increase (n = 5) or decrease (n = 5) in expression. 
A two-sided Jonckheere-Terpstra test (Jonckheere trend test) was performed. P < 0.05 adjusted by Benjamini-Hochberg procedures. The error bars represent 
the mean ± SD of the indicated metabolite levels of the tumors within each grade.



7insight.jci.org      https://doi.org/10.1172/jci.insight.94278

C L I N I C A L  M E D I C I N E

in general (34), and specifically in ccRCC patients (7). We investigated whether the FF correlated with 
the FASN expression in tumors. Immunohistopathological staining was done on 21 ccRCC tumors, and 
cytoplasmic FASN expression was analyzed and scored using the automated Aperio Imagescope software. 
Although, we did not observe a significant correlation, likely due to known outliers (see Discussion), FASN 
expression showed a positive trend toward correlation with FF values (Supplemental Figure 1).

ccRCC tumor–specific metabolic alterations and intertumoral heterogeneity. ccRCC is characterized by signif-
icant alterations in intermediary metabolism and antioxidant response, and metabolite increases in gluta-
thione and cysteine/methionine metabolic pathways are associated with tumor progression and metasta-
sis (35, 36). In order to understand the correlation between FF and cellular metabolism in these tumors, 
we performed a targeted metabolomic analysis of  ccRCC, from fresh frozen high-quality tumor samples 
and corresponding adjacent URP. This cohort consisted of  80 samples (57 ccRCC tumors and 23 normal 
tissues) across different ISUP grades. Mass spectrometric analysis (from glycolysis, the pentose phosphate 
pathway, one-carbon/nucleotide metabolism, the TCA cycle, amino acid degradation, and other path-
ways) detected 108 metabolites, where each metabolite was normalized to the total protein content and 
relative abundance was determined between the samples. Unsupervised clustering of  metabolite levels 
largely discriminated between URP and tumors (Figure 4A). Volcano plot analysis of  metabolites signifi-
cantly altered in tumor versus URP is shown in Figure 4B. The fold change of  metabolite levels is plotted 
on the x-axis, and the FDR-adjusted significance is plotted on the y-axis. Many metabolites decreased in 
ccRCC by half  or more as compared with URP samples with stringent and nominal cutoffs, as indicated 
in the Figure 4 legend. Further, we identified significant increase in some metabolites in ccRCC (q < 0.05) 

Figure 6. Dixon MRI measured fat fraction correlates with altered metabolomic features in clear cell renal cell carcinoma (ccRCC). Heatmap shows 
selected metabolites that positively or negatively correlate with fat fraction levels in 57 targeted ccRCC samples in 23 tumors. The quantitative measure of 
fat fraction as a percentage of the total MRI signal within a targeted region of interest (tROI) corresponding to the anatomically coregistered tumor sam-
ple for each ccRCC tumor is indicated as a color scale above the heatmap. A cutoff of nominal P < 0.05 was used to select metabolites from Spearman’s 
rank correlation between metabolites and fat fraction values.
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by 2-folds or more than URP samples (Figure 4B). Interestingly, we found a significant increase in the 
carbohydrate pathway metabolites (glucose 6-phosphate [G6P], and galactose 1-phosphate (Gal1P) and 
redox markers (glutathione [GSH] and glutathione disulfide [GSSG]), which are consistent with prior 
metabolic analysis reported on ccRCC tumors (35–37).

Our data results confirm stricking metabolic differences between ccRCC and adjacent renal parenchy-
ma, a finding that is consistent with previously reported metabolic alterations in these tumors, and support 
using these tissue-based analyses for correlation with in vivo MRI measures of  FF.

To further understand the metabolic heterogeneity between different ccRCC tumors (intertumor), and 
also between different tissue samples from the same tumor (intratumor), an analysis ordered by average link-
age hierarchical clustering was performed. Figure 5A shows the heatmap for the metabolomic analysis of  57 
ccRCC samples (from 23 patients), where columns represent tumor samples and rows represent metabolites. 
Individual fragments were metabolomically unique, but fragments from the same tumor generally clustered 
together, indicating that intratumor heterogeneity is exceeded by heterogeneity among tumors from different 
patients (Figure 5A and Supplemental Table 4). Although principal component analysis (PCA) of  samples 
from different tumor grades (Figure 5B) did not indicate a clearly defined differentiation based on the overall 
tumor metabolic profile, there were a few metabolites that exhibited significant increased or decreased levels 
(n = 5 in each group, adjusted P < 0.05) among different tumor grades (Figure 5C).

MRI-based phenotyping detects intratumoral heterogeneity in altered metabolic states in ccRCC. Some metabolic 
features in human tumors can be predicted by MRI (38). We therefore tested whether our Dixon-based 
MRI FF values correlated with the metabolic features observed above. Figure 6 shows the heatmap of  
correlation profile between the FF values derived and the metabolites corresponding to those samples in 
57 targeted ccRCC samples (from 23 patients). We obtained a panel of  25 metabolites with a cut-off  of  
nominal P < 0.05 (Supplemental Table 5). A number of  amino acids (proline, isoleucine, and tryptophan) 
negatively correlated with the FF, suggesting a link between abundance of  TG and CE in these tumors and 
alteration in amino acid metabolism. Other metabolites such as UMP, glycine, G6P–fructose 6-phosphate 
(G6P-F6P), and carbomoylphosphate exhibited a strong positive correlation with the FF values. However, 
several of  these metabolites correlated with tumor ISUP grade (Figure 5), as well, possibly indicating a 
metabolic pathway independent of  lipid metabolism.

Discussion
The invasive nature and limitations associated to percutaneous biopsies (e.g., small sample size) in ccRCC, 
an inherently heterogeneous disease, strengthens the value of  accurate whole-tumor evaluation by imaging 
methodologies. Current methods for presurgical risk stratification of  localized primary RCCs have limitations 
with up to 30% of these patients developing a recurrence in spite of  optimal surgical resection (i.e., negative 
margins) (39). Hence, a reliable noninvasive imaging method to predict molecular, genetic, and metabolic 
alterations in the whole tumor may facilitate the management of  ccRCC patients, the prediction of  tumor 
aggressiveness, and the delivery of  personalized care by optimizing therapeutic protocols based on the antici-
pated biologic behavior of  any given tumor (40, 41). In this context, MRI is particularly well suited to provide 
a comprehensive phenotype characterization of  ccRCCs based on excellent soft-tissue contrast and spatial 
resolution, as well as functional and quantitative techniques (41). In this study, we utilized Dixon-based MRI 
FF quantification as a platform to assess noninvasively signature metabolic features of  ccRCC.

The Dixon-based MRI method utilizes a chemical shift technique to detect mobile lipid molecules 
(24), and our results confirm that is able to measure one of  the histological metabolic hallmarks of  the 
ccRCC subtype: the presence of  intracytoplasmic vacuoles containing lipids called lipid droplets. These 
lipid droplets consist of  a neutral lipid core containing TG and CE surrounded by a PL monolayer and 
associated lipid droplets surface proteins (42). The presence of  lipid droplets results in decreased signal 
intensity on T1-weighted (T1W), opposed-phase images compared with the in-phase images of  actively 
proliferating tumor areas. Previous reports have indicated a moderate-to-high sensitivity (42%–82%) 
and very high specificity (94%–100%) for the diagnosis of  ccRCC among different renal masses when 
using a simplified 2-point Dixon approach for detecting intratumoral lipids (43, 44). Furthermore, the 
development of  state-of-the-art multi-echo, multi-peak Dixon techniques such as the one used in our 
study allows for accurate quantification of  fat tissue content (45). However, validation of  Dixon-based 
MRI FF measurements in tumors against histopathology is lacking. To our knowledge, our study com-
pared, for the first time, the MRI-based FF measures with histological lipid quantification in the same 
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tumor region in a 45–ccRCC patient cohort. The simultaneous validation of  the FF measurements 
against ORO histological lipid staining demonstrated strong significant correlation between FF and the 
endogenous lipid accumulation in tumor samples. Furthermore, we used the lipidomic approach, an 
emerging method used to obtain general lipid profiles, to determine whether the FF measures correlate 
with lipidomic alterations in our ccRCC patient cohort. In agreement with reported findings in the 
literature (29), we clearly showed signature lipid alterations in our tumor cohort (higher TG and CE, 
and lower levels of  PL and PE) compared with URP. The significant correlation of  FF against TG and 
CE indicate that the FF measures can predict alterations in lipid metabolites associated with tumor pro-
gression in vivo. However, Figure 3B indicates that some tumor samples with low FF levels in vivo had 
elevated TG on tissue-based analysis. To what extent this is the result of  the precision of  Dixon-based 
methods employed in our analysis, estimated to be ± 3% (46) versus intratumoral heterogeneity and/
or poor colocalization of  the image-based analysis with the tissue sample, is unknown. Moreover, the 
shot-gun lipidomic analysis used in our study was chosen to interrogate possible correlations over a 
large number of  lipids; however, direct targeted measurement of  TGs in tumors may be needed for more 
accurate correlations with in vivo FF (47). These inconsistencies deserve further investigation.

We also observed a significant negative correlation between FF and PE, another recently reported key 
lipidomic feature of  ccRCC associated with tumor growth and proliferation (32). It is important to emphasize 
that MRI signal is derived from the mobile intracellular lipids (predominantly TG), not from the lipids in the 
membranes, which are essentially invisible to the Dixon MRI technique. Our results are in concordance with 
reported alterations in genetic pathways associated with increases in TG. Leonardi et al. (48) demonstrated 
that disruption of  the synthesis pathway of  PE in mice liver by inactivation of  the gene PE cytidylyltransfer-
ase (ECT), which catalyzes the rate-limiting step of  PE synthesis, leads to massive accumulation of  TG in the 
lipid droplets in hepatocytes. The demonstration of  a correlation between fat accumulation in vivo with MRI 
and the increased TG/decreased PE on lipidomic analysis in the same area of  the tumor would support the 
knowledge that fat accumulation in ccRCC is the result of  dysregulation in the PE metabolic pathway.

Our results indicate a statistically significant decrease in FF in ISUP grade-4 tumors as compared with 
grade-3 tumors, although not with grade-2 tumors (Figure 2C). This is consistent with previous reports 
indicating lower fat content in higher-grade tumors (28). However, the FF in low-grade tumors (ISUP grade 
2) was not statistically significantly different than the combined FF of  high-grade tumors (ISUP grades 3 
and 4), largely due to substantial variation in FF values within grade-2 and -3 tumors, with some exhibiting 
abundant lipid content while others had no lipid accumulation at all. Although there is extensive evidence 
of  the association between tumor grade and prognosis, the estimated disease-free survival after surgical 
resection of  grade-2 renal cancer varies between 66%–90% for pT2 and 56%–85% for pT3-stage tumors 
(49). These data indicate that the risk of  metastatic disease in a priori more indolent tumors is still sub-
stantial. The marked variability of  lipid accumulation in grade-2 tumors in our study is intriguing. Based 
on these findings, we postulate that the role of  Dixon-based MRI in the prediction of  oncologic outcomes 
in ccRCC, including low-grade tumors, deserves attention. The ability to noninvasively detect a metabolic 
signature associated to grade-4 tumors could be also of  value in active surveillance protocols where loss of  
intratumoral accumulation of  fat (i.e., initially detected on a lower-grade tumor) would be indicative of  a 
possible transformation of  the tumor toward a more aggressive phenotype. This could be particularly useful 
in the implementation of  active surveillance protocols for larger, heterogenous tumors (e.g., cT1b disease, 
>4 cm in size), which has been proposed as a reasonable option in select patients with significant comorbid-
ities (50). Moreover, given the intratumoral heterogeneity of  FF measures, a better tumor characterization 
may be achieved by directing percutaneous biopsies toward specific areas of  the tumor with lower FF or 
those where a decrease in FF is documented over time.

Our results are also consistent with previous reports indicating that ccRCCs are metabolically 
heterogeneous. Indeed, we found that heterogeneity was more prominent among different tumors than 
within individual tumors, although our results clearly indicate some intratumor heterogeneity, as well. 
These findings were similar to the reported heterogeneity in non–small cell lung cancer patients receiv-
ing 13C-glucose infusions (38). Furthermore, analysis of  MRI-measured lipid content also indicated 
greater heterogeneity among different tumors than within each tumor. Comparison of  in vivo FF levels 
against cellular metabolites provided us with a panel of  altered metabolites (Figure 6). However, these 
metabolites did not seem to cluster into specific metabolic pathways. Therefore, our data does not 
clarify the mechanism for fat accumulation in ccRCC.
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Our study has some limitations. First, based on tissue availability, ORO staining was not performed 
in all tumor samples. Furthermore, the FF were calculated with methodology developed and validated for 
liver steatosis where the R2* of  the various lipids were well understood. It is possible that the lipid peaks 
in ccRCC may have different R2*. However, a single R2* fitting for all hepatic lipids provides robust mea-
surements of  FF (51), and we found a strong correlation between FF and histologic accumulation of  fat 
(i.e., ORO%) within the available samples. Second, although every attempt was made to coregister the FF 
area with tissue specimens with the use of  fiducial markers, this process can lead to sampling errors that 
can affect the correlations between FF and ORO percentage and lipidomic profile. Future studies will be 
focused on addressing these challenges by utilizing 3D-printed molds of  the tumor for coregistration of  the 
tissue specimen with the MR images (52), which we anticipate will increase the accuracy of  sampling in 
the targeted ROIs within each patient. Third, although we found a statistically significant reduction in FF 
in ISUP grade-4 tumors compared with ISUP grade-3 tumors, the number of  ISUP grade-4 ccRCCs in our 
cohort was small; therefore, this preliminary finding needs to be evaluated in larger studies.

In conclusion, this set of  rigorous validation of  the Dixon-based MRI method against histology, chem-
ical lipid extraction, and metabolic profiling provides the basis for using these techniques for the noninva-
sive presurgical metabolic assessment of  ccRCC in patients and has the potential to overcome some of  the 
limitations of  percutaneous tumor biopsies in this heterogeneous disease. While intratumoral metabolic 
heterogeneity in ccRCC was confirmed and detected by Dixon-based MRI, our data demonstrates a higher 
degree of  metabolic heterogeneity across different tumors.

Methods
Patient cohort and selection criteria. Patient selection for the study was performed according to the following 
criteria: known renal mass ≥ 2.5 cm scheduled for partial or radical nephrectomy, > 18 years of  age, 
and confirmed diagnosis of  RCC at histopathology after surgical resection. Patients underwent MRI for 
evaluation of  renal mass prior to surgery between August 2012 and March 2017. Among 83 patients, 62 
patients had a ccRCC that was histologically confirmed after nephrectomy. Of  these, 14 patients were 
excluded due to the lack of  an FF map on MRI and 3 patients due to inability to do ROI analysis in pre-
dominantly cystic tumors. Exclusion criteria were non-ccRCC histology, patients not scanned with quan-
titative mDixon technique and/or FF reconstruction not available, and predominantly cystic tumors. 
Hence, 45 patients represent our study population (Supplemental Figure 2). The mean time between the 
MRI and the surgery was 5 ± 4 days (range 1–19 days).

Histopathology. Tumor specimens were oriented spatially using fiducial markers placed during sur-
gery. The tumor specimen was then bivalved through the center of  the mass to match the imaging plane 
of  the MRI examination as previously described (53). The adequacy of  colocalization of  MRI images 
and specimen was assessed visually based on shape of  the tumor and internal features (e.g., cystic degen-
eration, scar, necrosis) when possible. Tissue blocks were fixed in 10% buffered formaldehyde solution, 
sliced at 3-mm intervals, and embedded in paraffin. Tissue sections were sliced in 4 μm–thick sections 
and stained using H&E;  4-μm sections were used for IHC. Histopathologic diagnosis was obtained by 
means of  partial (n = 28), radical (n = 16), or simple (n = 1) nephrectomy (Supplemental Table 1). All 
tumors were graded based on the ISUP guidelines (grades 1–4). Histopathologic analysis confirmed the 
diagnosis of  ccRCC in these 45 patients; of  those, 19 tumors were low grade (ISUP grade 1–2) ccRCC 
and 26 high grade (ISUP grade 3–4) ccRCC. Tumor samples for different imaging-tissue–based correla-
tion analysis were obtained based on availability. A total of  27 fresh tumor samples matching the location 
of  the tROI within FF map were obtained from 22 patients (2 samples from 3 patients, 3 samples from 1 
patient) and stained with ORO. The percentage of  cells that were stained with ORO was estimated visu-
ally to the nearest 5th percentage (e.g. 5%, 10%, 15%, etc.) by a urological pathologist who was blinded 
to the FF results. Histological slides of  ORO were digitized with the optical image acquisition system 
Aperio Spectrum plus and Scanscope (Leica Biosystems). Lipid in renal tumor was clearly identified as 
punctate red droplets within the ORO-stained histology slides (Figure 2A). FASN monoclonal antibody 
(clone C20G5, Cell Signaling Technology) immunostaining was done on FFPE tumor sections using 
automated immunostainer (Dako North America Inc.) in the Kidney Cancer Core histology laboratory 
(UT Southwestern Medical Center, Dallas, Texas, USA) according to the manufacturer-recommended 
protocol, and the staining was analyzed using automated macros on Aperio Imagescope Software (Leica 
Biosystems). A total of  23 URP samples and 57 additional tumor samples (23 patients) were obtained. 
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Based on tissue sample size, we used those samples for either metabolomic analysis alone (i.e., small 
samples) or for both metabolomic and lipidomic analysis (i.e., larger samples). Overall, 14/23 URP sam-
ples and 33/57 tumor samples were cut in half  with one half  used for lipidomic profile analysis and the 
other half  for metabolomic analysis (see below). The rest of  the URP (9/23) and tumor (24/57) samples 
were used for metabolomic analysis only. All tissue-based analyses were interpreted without previous 
knowledge of  clinical data or MRI results.

MRI protocol. All patients were imaged in the supine position with a commercial 3T dual-transmit MR 
scanner with a 16-channel SENSE-XL-Torso coil (Achieva and Ingenia, Philips Healthcare). Axial and cor-
onal T2-weighted half-Fourier single-shot turbo spin-echo (SShTSE) images were acquired for anatomic ref-
erence with the following imaging parameters: repetition time/echo time (TR/TE), 1,115/80 ms; flip angle 
(FA), 90°; number of  signal averages (NSA), 1; slice thickness, 5 mm; field of  view (FOV), 402 × 340 mm2; 
matrix, 284 × 268; bandwidth, 467 Hz/pixel. Axial 3D T1W fast field-echo (FFE) mDixon quant (Philips 
Healthcare, Best, The Netherlands) acquisitions were then obtained to cover the entire renal mass with the 
following parameters: TR/TE, 6.7–8/1.09–1.24 ms; ΔTE, 0.9–1.1 ms; number of  echoes, 6; FA, 2°–3°; NSA, 
1; slice thickness, 3 mm; in-plane resolution, 1.5 × 2mm2; acquisition FOV, 402 × 240 × 96 mm3; acquisition 
matrix, 268 × 120 × 32, bandwidth, 1,413 Hz/pixel. To minimize respiratory motion during Dixon MRI, 
patients held their breath for 15–19 seconds, dependent on the number of  slices acquired. Patient respiratory 
motion was monitored with respiratory bellows, and good breath-holds were confirmed in all patients. These 
acquisitions where obtained as part of  a more comprehensive multiparametric MRI examination including 
arterial spin labeling (ASL), diffusion weighted imaging (DWI), and dynamic contrast enhanced (DCE) MRI 
(53). For the purpose of  this study, ASL, DWI, and DCE MRI data were not analyzed.

Image analysis. The FF map was reconstructed based on a multipeak model, with the frequen-
cy offsets 3.7, 3.33, 3.01, 2.57, 2.35, 1.83, and –0.71 ppm in the spectral model of  the fat signal, 
which is relative to water frequency (54). For our analysis, we used the well-established multipeak fat 
spectrum model that has been validated in the liver (45) and extended to other sites including breast 
(54) and bone marrow (55). All images were analyzed on an iMac system (OS X; Apple Computer) 
equipped with an open-source digital imaging and communications in medicine (DICOM) viewer 
(Osirix X, version 5.6, 64 bit). The maximum size of  the renal mass was measured on the axial or 
coronal T2-weighted images demonstrating the largest tumor dimension. Total tumor fat content was 
measured by a radiologist, who was blinded to all other results of  the study, by placing an ROI includ-
ing the entire tumor on each axial slice demonstrating the tumor on the 3D FF reconstruction. A 3D 
ROI of  the whole-tumor FF was then created based on these slices, and the mean FF and SD within 
this 3D FF volume was recorded for each tumor. In order to assess the degree of  intra- and intertumor-
al heterogeneity of  fat in ccRCCs, 8 ROIs (approximately 0.5 cm2 in size) were placed systematically 
(sROIs) in each tumor, with 4 located in the upper half  of  the tumor and 4 in the lower half  in the 
anteromedial, anterolateral, posteromedial, and posterolateral locations (for smaller tumors, only 2 
ROIs in the upper half  and 2 in the lower half  were used). Additionally, a tROI was placed on repre-
sentative locations on the FF map correlating to tissue samples obtained for ORO staining. Although 
magnetic susceptibility from hemorrhage is common in ccRCC, these Dixon methods are accurate for 
determination of  FF even in the presence of  iron overload (56). Visceral and subcutaneous fat with > 
90% FF and the native kidneys with negligible FF (< 3%) served as the internal reference for adequate 
fitting. No additional precautions were taken to correct the pixels with bad R2* fitting.

Mass spectrometry (lipidomic profile analysis). Lipids were measured by directly infusing a Blight-Dyer extract-
ed sample into a SCIEX 5600+ TripleTOF MS (SCIEX) using MS/MSALL (commonly known as “shotgun 
lipidomics”). Cholesteryl esters were identified based on their product-ion mass of  369 Da. Free cholesterol 
was identified by the 369.3/148.2 Da mass combinations and confirmed by the 369.3/121.1 Da combina-
tions. TG were identified based on their fatty acid neutral loss in positive ion mode using the LIPID MAPS 
database (http://www.lipidmaps.org/). The intensity of  each peak was normalized to the total lipid signal 
and summed to give the intensity of  each class, which was reported as the percentage of  all identified lipids.

Metabolomics methods and analysis. Immediately after surgical resection, tumor specimens were 
placed in ice in the operating room and transferred to the Pathology Department, where each tumor 
was anatomically oriented using fiducial markers placed during surgery (Figure 1) and bivalved to 
match the imaging plane of  the MRI examination (53). Targeted tissue fragments from tumor and 
URP were then obtained and were kept on ice and then transferred to –80oC for storage. Each tissue 
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fragment was homogenized with 80% methanol in water followed by three freeze-thaw cycles in liq-
uid nitrogen. The insoluble material was pelleted in a cooled centrifuge (4°C), and the supernatant 
was transferred to a new tube and evaporated to dryness using a SpeedVac concentrator (Thermo 
Savant). Metabolites were reconstituted in 100 ml of  0.03% formic acid in analytical-grade water, vor-
tex-mixed, and centrifuged to remove debris. Samples were then injected in randomized order onto an 
AB SCIEX QTRAP 5500 liquid chromatograph/triple quadrupole mass spectrometer.

Separation was achieved on a Phenomenex Synergi Polar-RP HPLC column (150 × 2 mm, 4 μm, 
80 Å) using a Nexera Ultra High Performance Liquid Chromatograph (UHPLC) system (Shimadzu 
Corporation). The mobile phases employed were 0.03% formic acid in water (A) and 0.03% formic 
acid in acetonitrile (B). The gradient program was as follows: 0–3 min, 0% B; 3–15 min, 0%–100% B; 
15–17 min, 100% B; 17–17.1 min, 100%–0% B; 17.1–20 min, 0% B. The column was maintained at 
35°C and the samples kept in the autosampler at 4°C. The flow rate was 0.5 ml/min, and the injection 
volume was 20 μl. The mass spectrometer was an AB QTRAP 5500 (Applied Biosystems, SCIEX) with 
electrospray ionization (ESI) source in multiple reaction monitoring (MRM) mode. Sample analysis 
was performed in positive/negative switching mode. Declustering potential (DP), collision energy, and 
collision cell exit potential (CXP) were optimized for each metabolite by direct infusion of  reference 
standards using a syringe pump prior to sample analysis. The MRM tandem mass spectrometry detec-
tor conditions were set as follows: curtain gas 30 psi; ion spray voltages 1,200 V (positive) and –1,500 
V (negative); temperature 650°C; ion source gas 1 at 50 psi and ion source gas 2 at 50 psi (arbitrary 
pressure units on 0–90 scale); interface heater on; entrance potential 10 V. Dwell time for each transi-
tion was set at 3 ms. Samples were analyzed in a randomized order, and MRM data was acquired using 
Analyst 1.6.1 software (Applied Biosystems SCIEX, Foster City, CA).

Chromatogram review and peak area integration were performed using MultiQuant software version 
2.1 (Applied Biosystems, SCIEX). Although the numbers of  cells were similar and each sample was pro-
cessed identically and randomly, the peak area for each detected metabolite was normalized against the 
protein content of  that sample to correct any variations introduced from sample handling through instru-
ment analysis. The normalized area values were used as variables for the multivariate and univariate sta-
tistical data analysis. The chromatographically coeluted metabolites with shared MRM transitions were 
shown in a grouped format (i.e., leucine/isoleucine). All multivariate analyses and modeling on the nor-
malized data were carried out using SIMCA-P (version 13.0.1, Umetrics). The preprocessed datasets were 
mean-centered and unit-variance scaled and were then evaluated by PCA to visualize the clustering trend, 
as well as to detect and exclude outlier datasets. Univariate statistical differences of  the metabolites between 
two groups were analyzed using two-tailed Student’s t test adjusted by Benjamini-Hochberg procedures. 
Adjusted P values less than 0.05 were considered as statistically significant.

Statistics. Mean FF and SD for 3D ROIs were correlated to tumor size and ISUP grade. The Spearman 
rank-order correlation was used to assess the correlation between FF from Dixon MRI and ORO percentage, 
and between FF from Dixon MRI and lipidomic profile. Spearman correlation coefficient and the 95% boot-
strap CI were also calculated after adjusting for repeated measurements in the same tumor (i.e., more than 
one tissue sample per tumor). A linear regression model was also performed to establish the relation between 
FF and ORO percentage. The ICC of the sROIs was calculated to determine the effect of  intra- and intertu-
mor heterogeneity in FF. To assess the effect of  tumor size in intratumor heterogeneity, the SD of whole-tu-
mor FF and maximum tumor dimension and volume were correlated with Spearman rank-order correlation. 
Two one-sided Wilcoxon rank sum tests were used to test the alternative hypothesis that grade-4 tumors have 
lower median FF than grade-2 and -3 tumors. All statistical analyses were performed with Prism software 
package (Version 6.05, GraphPad Software Inc.) with P < 0.05 considered statistically significant.

Study Approval. The UT Southwestern Medical Center IRB approved this Health Insurance Portability 
and Accountability Act–compliant (HIPAA-compliant) prospective study. A written informed consent was 
obtained from all patients before imaging.
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