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Introduction
The most common uterine sarcomas are leiomyosarcomas (LMS) that originate in the muscular wall of  
the uterus and tumors derived from endometrial stroma, the tissue supporting the endometrial glands. The 
classification of  endometrial stromal sarcomas has evolved over the past decade and currently distinguishes 
3 tumor subtypes: low- and high-grade endometrial stromal sarcomas (LG and HG ESS, respectively) that 
harbor specific chromosomal translocations and undifferentiated uterine sarcomas (UUS). UUS is a poorly 
defined entity that is often seen as a diagnosis of  exclusion, consisting of  a mixture of  tumor types that 
include poorly differentiated LMS, dedifferentiated LG ESS, a variant of  HG ESS, or carcinosarcoma/
adenosarcoma with sarcomatous component overgrowth (1–5). As the least frequent of  all pathological 
subtypes of  uterine sarcomas, UUS have been barely studied (6). The largest series describing solely the 
clinical features of  UUS included only 21 patients (2), while most of  the remaining series reported only iso-
lated cases, usually observed in a single institution over long periods of  20–30 years (6). Previous molecular 
studies of  UUS included no more than 4 tumors (7–11).

Surgery is the therapy of  choice for the treatment of  all subtypes of  endometrial stromal tumors. UUS 
are associated with very poor prognosis and, while most UUS patients present with high-stage disease, even 

Endometrial stromal tumors include translocation-associated low- and high-grade endometrial 
stromal sarcomas (ESS) and highly malignant undifferentiated uterine sarcomas (UUS). UUS 
is considered a poorly defined group of aggressive tumors and is often seen as a diagnosis 
of exclusion after ESS and leiomyosarcoma (LMS) have been ruled out. We performed a 
comprehensive analysis of gene expression, copy number variation, point mutations, and immune 
cell infiltrates in the largest series to date of all major types of uterine sarcomas to shed light on the 
biology of UUS and to identify potential novel therapeutic targets. We show that UUS tumors have a 
distinct molecular profile from LMS and ESS. Gene expression and immunohistochemical analyses 
revealed the presence of high numbers of tumor-associated macrophages (TAMs) in UUS, which 
makes UUS patients suitable candidates for therapies targeting TAMs. Our results show a high 
genomic instability of UUS and downregulation of several TP53-mediated tumor suppressor genes, 
such as NDN, CDH11, and NDRG4. Moreover, we demonstrate that UUS carry somatic mutations in 
several oncogenes and tumor suppressor genes implicated in RAS/PI3K/AKT/mTOR, ERBB3, and 
Hedgehog signaling.
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those with stage I disease usually die within 2 years from diagnosis (2, 3). LG ESS frequently express estro-
gen and progesterone receptors (ER and PR, respectively) and may respond to adjuvant hormonal therapy. 
HG ESS may also express ER and PR in LG compartments of  the tumor. In contrast, UUS are mostly nega-
tive for ER and PR, and they are often treated with combinations of  gemcitabine/docetaxel and ifosfamide/
doxorubicin that result only in partial responses, usually of  very short duration (2). Little is known about the 
genetics of  UUS beyond their complex chromosomal aberrations and the presence of  TP53 mutations in a 
subset of  cases (7, 8, 11). Recent studies evaluating the expression of  selected tyrosine kinase receptors in 
ESS and UUS suggest that these tumors are unlikely to respond to tyrosine kinase inhibitors (12–14). Thus, 
identification of  new therapeutic options remains a priority to improve the outcomes for UUS patients.

Here, we describe the first, to our knowledge, integrated analysis of  gene expression, copy number 
variation, point mutations, and immune cell infiltrates in the largest series of  4 different subtypes of  uterine 
mesenchymal tumors. Our study provides a comprehensive insight into the genetic landscape of  UUS and 
shows that this group should not be seen as a mixture of  heterogeneous tumors. Through a combination of  
genomic and gene expression profiling of  8 UUS and further validation of  selected findings in an indepen-
dent group of  11 UUS cases, our study identifies therapeutic targets in these aggressive tumors.

Results
Gene expression profiling identifies UUS as tumors with a distinct molecular profile from other uterine sarcomas. 
Gene expression profiling by microarrays was performed on a training cohort of  8 UUS, 9 LG ESS, 4 
HG ESS, and 4 uterine LMS (Table 1). Classification of  these tumors was based on extensive histological 
sampling, evaluation of  multiple immunohistochemical markers (i.e., CD10, ER, PR, SMA, h-caldesmon, 
and desmin), and fluorescence in situ hybridization (FISH) analysis for the presence of  subtype specific 
chromosomal rearrangements. All LG ESS cases carried JAZF1, PHF1, or MBTD1 rearrangements; all HG 
ESS cases had YWHAE-NUTM2A/B translocations; and UUS tumors did not reveal either LG ESS– or HG 
ESS–specific translocations.

Unsupervised hierarchical clustering and principal component analysis (PCA) revealed that UUS, ESS, 
and LMS formed distinct subgroups (Figure 1, A and B). PCA also showed that the first principal compo-
nent separates UUS from the 2 subtypes of  ESS and LMS, indicating that UUS have a markedly distinct 
gene expression profile from the other uterine sarcomas (Figure 1, B and C). These results contradict the 
previous notion that UUS likely encompass a heterogeneous mixture of  dedifferentiated or poorly differen-
tiated homologous sarcomas (including LMS and ESS).

Next, we performed a cross-platform validation of  the microarray-based findings by RNA sequencing 
(RNA-seq). Gene expression profiles of  LMS have been described previously in several studies (15–17). 
Therefore, for the in-depth gene expression analysis combining microarray and RNA-seq platforms, we 
focused solely on the 3 tumor types derived from endometrial stroma. RNA-seq was performed on the 
same cases profiled by gene expression microarrays that had sufficient RNA yield (i.e., 8 UUS, 8 LG ESS, 

Table 1. Summary of clinical and pathological features of UUS and ESS tumors in the training and validation cohort

Training cohort Validation cohort
UUS ESS UUS ESS

Number of specimens 8 13 11 10
Primary tumors (%) 7 (87.5%) 10 (77%) 9 (82%) 4 (40%)
Recurrent tumors (%) 1 (12.5%) 3 (23%) 2 (18%) 2 (20%)
Primary/recurrent
status unknown (%)

– – – 4 (40%)

Average age at diagnosis 
(range)

69 (53–93) 43 (20–69) 59 (47–71) 52 (41–67)

FIGO I 4 1 1 1
FIGO II 3 2 4 0
FIGO III 1 9 1 2
FIGO IV 0 1 3 1
FIGO unknown – – 2 6
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and 3 HG ESS). Unsupervised hierarchical clustering based on RNA-seq data confirmed that UUS form 
a cluster separate from LG and HG ESS (Supplemental Figure 1; supplemental material available online 
with this article; https://doi.org/10.1172/jci.insight.94033DS1). Similar to the microarray analysis, LG 
and HG ESS clustered together and separately from UUS and LMS; therefore, for the subsequent analyses, 
we treated these cases as one group of  translocation-associated ESS.

Gene expression profile of  UUS is strongly driven by M2 macrophage infiltration. In order to characterize gene 
expression profiles of  UUS and ESS, we employed highly stringent analysis criteria to identify differen-
tially expressed genes overlapping between RNA-seq (using DESeq2, edgeR, and significance analysis of  
sequencing data [SAMseq])  and microarray data (using significance analysis of  microarrays [SAM]) (18–
21). We identified 406 genes that were differentially expressed between UUS and ESS in both microarray 
and RNA-seq data (Supplemental Figure 2 and Supplemental Tables 1 and 2). Genes encoding immune cell 
markers and cytokines were among the most overrepresented gene families showing upregulated expres-
sion in UUS (according to the gene family resource in the MSigDB [Molecular Signatures Database]; 
http://software.broadinstitute.org/gsea/msigdb) (Figure 2A, Supplemental Table 3, and Supplemental 

Figure 1. Exploratory analysis of microarray gene expression data. 
UUS specimens (n = 8) cluster together and show distinct gene 
expression profiles compared with other histological types of uter-
ine sarcomas (LG ESS [n = 9], HG ESS [n = 4], and LMS [n = 4]) by (A) 
unsupervised hierarchical clustering and (B) principal component 
analysis (asterisk denotes 2 overlapping UUS cases). (C) Scores from the 
first principal component for each specimen indicate highly significant 
differences between UUS and both types of ESS and LMS (*P = 0.002; 
**P < 0.001; 2-tailed Student’s t test).
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Figure 3). In addition, ToppGene Suite analysis of  the 216 genes overexpressed in UUS pointed to a strong 
overrepresentation of  genes expressed by myeloid cells, with 31 of  50 top coexpression annotations being 
associated with myeloid subsets.

To systematically evaluate the presence of  tumor-infiltrating immune cells in UUS and ESS, we applied 
CIBERSORT, a machine learning approach to enumerate the proportions of  distinct cell types in bulk 
tissue expression profiles. As input, CIBERSORT requires expression profiles that differentiate each cell 
type of  interest, collectively termed a signature matrix. In this study, we used LM22, a signature matrix 
distinguishing 22 subsets of  mature human hematopoietic subsets (22).

CIBERSORT deconvolution in microarray data reached statistical significance in all 8 UUS samples but in 
only 2 of 13 ESS samples (P < 0.05) (Supplemental Table 4), indicating that UUS but not ESS may contain sig-
nificant numbers of immune cells. Among hematopoietic cell subsets, CIBERSORT revealed higher fractions 
of myeloid cells in UUS compared with ESS, with a significant enrichment for M2 macrophages (P = 0.004) 

Figure 2. Identification of M2 macrophage infiltration in UUS.  (A) Top 3 gene families overrepresented in UUS include numerous macrophage-associ-
ated differentiation markers and chemokines (gene family classification based on Molecular Signatures Database, MSigDB). (B) CIBERSORT analysis of 
microarray data indicates significantly higher fractions of M2 macrophages in UUS (n = 8) compared with ESS specimens (n = 13). (C) Forty of 216 genes 
overexpressed in UUS in both microarray and RNA-seq data belong to the M2 macrophage–related CSF1 response signature. (D) Heatmap of loge (TPM+1) 
expression values of the 40 CSF1-response genes that distinguish UUS and ESS specimens. TPM, transcript per million.
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(Figure 2B and Supplemental Table 4). We also observed a high correlation between M2 macrophage fractions 
estimated by CIBERSORT in microarray and RNA-seq datasets (Pearson’s r = 0.79, P = 6 × 10–5). Numerous 
genes encoding M2-specific markers (including CD163, CD206, CD209, STAB1, and CCR2) and genes involved 
in TAM-driven tumor progression, including cell invasion (MMP9, MMP12) and immunosuppression (CCL13, 
CCL18), were significantly overexpressed in UUS specimens (Figure 2A and Supplemental Table 1). Validation 
of gene expression profiling results was performed by quantitative  reverse transcription PCR (qRT-PCR) for 
CCL18 and LILRA6 (Supplemental Figure 4).

One of  the top upregulated genes in UUS encodes the protein tyrosine kinase receptor CSF1R. We 
have previously identified a CSF1-induced immune response signature in tenosynovial giant cell tumors 
that was later applied to study immune cell infiltrates in breast carcinoma (23, 24). This signature is driven 
by overexpression of  CSF1 by tumor cells, resulting in a massive invasion of  TAMs. We found that 36% 
(40 of  112) of  the core CSF1 response signature genes were overexpressed in UUS (hypergeometric test, 
P = 5 × 10–65) (Figure 2, C and D).

To validate gene expression data, IHC was performed on the same tumors as were used for the gene expres-
sion profiling studies, using CD163, CD68, and CCR2 as TAM-specific markers (Figure 3A and Supplemental 
Figure 5). Staining for CD163 and CD68 confirmed heavy infiltration by M2 macrophages in UUS compared 
with ESS (Figure 4, G–I). With the exception of 1 tumor with equivocal staining (UUS_3), CD163 and CD68 
expression in UUS specimens was seen solely in macrophages and not in the tumor cells. CCR2 staining also 
showed a significant difference between UUS and ESS; however, the counts of CCR2+ cells were much lower 
than CD163+ cells (Figure 4, G–L, and Supplemental Table 5). LG and HG ESS showed only scattered M2 
macrophages expressing CD163 and CCR2 (Figure 4, G, H, J, and K). We further confirmed CD163+ M2 
macrophage infiltration in UUS in an independent cohort of 21 patients (11 UUS and 10 ESS) (Figure 3B).

Taken together, these data demonstrate a dense infiltration by TAMs in UUS, which strongly contrib-
utes to the gene expression profile of  these tumors.

Genomic complexity and mutational landscape in UUS. Having characterized distinct transcriptional sig-
natures in UUS and ESS, we next analyzed copy number and mutational profiles of  endometrial stromal 
tumors. Based on the array comparative genomic hybridization (aCGH) results from 19 tumors (9 LG ESS, 3 
HG ESS, and 7 UUS), we calculated the genomic index (GI), a measure of  the extent of  copy number alter-
ations in each sample. GI was calculated as A2/C, where  A is the total number of  segmental gains and losses, 
and C is the number of  involved autosomal chromosomes (as described in ref. 25). LG and HG ESS were 
characterized by relatively simple genomic profiles (median GI = 0 and 5, respectively), while UUS presented 
with a very high genomic complexity (median GI = 57, range 20–81). The most frequent DNA copy number 
alterations in UUS are summarized in Figure 5 and Table 2.

In addition to copy number analysis, we performed whole exome sequencing (WES) on 3 UUS 
and 1 LG ESS, for which normal tissue adjacent to the tumor was also banked after surgery. In UUS, 

Figure 3. CD163+ cell counts in UUS and ESS specimens. Comparison of CD163+ cell counts in UUS and ESS specimens in (A) training and (B) validation 
cohorts, as evaluated by IHC. HPF, high-power field.
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we identified a median of  45 somat-
ic single nucleotide variants (SNVs) 
and indels (range 37–45) per exome 
(Figure 6A). On average 33% (range 
27%–38%) of  these mutations were 
expressed and confirmed in RNA-
seq data from corresponding UUS 
specimens (Supplemental Table 
6). In the single LG ESS case ana-
lyzed by WES, we identified only 2 
somatic variants in exonic regions 
that were not present in RNA-seq 
data, indicating that these variants 
were not expressed.

In UUS, the expressed variants 
were detected in 9 genes known to 

be frequently mutated in cancer (Figures 6, B and C), including TP53, PIK3CA, KRAS, and ERBB3 onco-
genes, as well as FBXW7, PTCH1, and ASXL1 tumor suppressor genes. Mutations in TP53, PIK3CA, KRAS,  
ERBB3, and FBXW7 were confirmed by Sanger sequencing in all 7 UUS cases with DNA available for 
validation. A potential role of  phosphatidylinositol 3-kinase (PI3K) and RAS pathways was further sup-
ported by the functional enrichment analysis of  genes upregulated in UUS, which showed overexpression 
of  15 and 25 genes regulated by PI3K complex and KRAS oncogenic signaling, respectively (Supplemental 
Tables 7 and 8). In addition, we found DNA copy number loss and/or loss of  heterozygosity (LOH) togeth-
er with low gene-expression level in 3 TP53-associated tumor suppressor genes, i.e., NDN, CDH11, and 
NDRG4 (Figure 6C and Supplemental Tables 9 and 10). For NDN and CDH11, mRNA downregulation was 
statistically significantly correlated with the presence of  genomic aberrations in TP53 in UUS specimens 
(Fisher’s exact test, P = 0.003 and P = 0.013, respectively; Supplemental Tables 9 and 11).

This comprehensive analysis of  somatic mutations, copy number alterations, and gene expression 
shows a high chromosomal instability and the possible implication of  several known oncogenes and sup-
pressor genes in the tumorigenesis of  UUS.

Discussion
In this study, we describe molecular and biologic features of  the largest series of  UUS cases to date ana-
lyzed in a training/validation approach. Our results show that UUS harbor clinically relevant genetic aber-
rations and present with high infiltration of  TAMs.

M2 macrophages as therapeutic targets in UUS. TAMs are known to exhibit predominantly M2 polariza-
tion and to orchestrate tumor initiation, invasion, metastasis, immunosuppression, and angiogenesis. In 
the vast majority of  tumor types, TAMs are associated with poor outcome (26). Given the contribution 
of  TAMs to nearly all stages of  tumor progression, they are currently seen as a target for anticancer treat-
ment. Most macrophage-targeted therapies are directed to either inhibit their recruitment to the tumor site, 

Figure 4. Histologic appearance of 
typical LG ESS, HG ESS, and UUS cases. 
Histologic appearance of typical LG ESS, 
HG ESS, and UUS cases (A–C). Stain-
ing for CD10 shows strong reactivity in 
LG ESS (D) and UUS (F). No staining is 
seen in the case of HG ESS (E). Only rare 
macrophages are observed in LG ESS and 
HG ESS (G and H); in contrast, most cases 
of UUS show a dense infiltration by mac-
rophages (I), as shown by CD163 staining. 
Similarly, no CCR2+ cells are seen in LG 
ESS and HG ESS (J and K), but scattered 
CCR2+ cells are noted in UUS (L). Total 
original magnification ×400.
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suppress their survival, redirect M2 polarization to antitumor M1 phenotype, or block tumor-promoting 
activities. In an alternative approach, interfering with the CD47-SIRPα axis has been shown to improve the 
phagocytosis of  tumor cells by macrophages and lead to tumor regression (27). In preclinical models, mac-
rophage-targeted therapies were effective as a monotherapy or in combination with angiogenic inhibitors, 
adoptive cell transfer, and immune checkpoint inhibitors (reviewed in ref. 26). It has also been demonstrat-
ed that depletion of  macrophages may improve response to chemo- and radiotherapy in preclinical models 
(28–30). These promising preclinical data have led to numerous clinical trials evaluating TAM-targeted 
therapies in various tumor types (26, 31).

Here, we demonstrate for the first time to our knowledge that UUS are densely infiltrated by 
TAMs, which opens new therapeutic venues in this aggressive disease. We suggest that UUS patients 
can be treated with already-registered macrophage-targeted drugs or may enter selected clinical 
studies. Chemokines such as CCL2 and cytokines such as CSF1 are major determinants of  macro-
phage recruitment and functional polarization in tumors (32). In addition, MMP9 that is known to 
be involved in TAM-driven cell invasion was also highly expressed in UUS specimens. Therefore, 
based on our gene expression data, we suggest that UUS patients may benefit from therapies targeting 
MMP9-expressing macrophages and inhibiting CCL2-CCR2 and CSF1-CSF1R axes (Table 3). Based 
on the general properties of  TAMs, therapies disrupting CD47-SIRPα axis may also be considered in 
UUS patients (Table 3).

While we found very high counts of  CD163+ and CD68+ TAMs in UUS, less abundant CCR2+ cells 
were noted in the same specimens. CD163 is a M2 macrophage-specific marker, while CD68 is con-
sidered to be expressed both in M1 and M2 macrophages. There was a very high correlation between 
the numbers of  CD68+ and CD163+ macrophages in ESS and UUS specimens (Pearson’s r = 0.98, P 
< 0.00001, based on 12 specimens evaluated for both markers); therefore, we assume that M2 was the 
dominant phenotype in UUS. It has been proposed that, within the M2 macrophage group, there are 
several different cell subpopulations (M2a, M2b, M2c) that express different markers and secrete differ-
ent chemokines. CD163 expression has been associated with both M2a and M2c phenotypes, whereas 
CCR2 appears to be associated only with M2c macrophages (32, 33). Our data suggest that the TAMs 
in UUS may predominantly belong to the M2a subpopulation.

Another interesting property of  TAMs is their involvement in angiogenesis in selected tumor types. 
We previously showed that, in nongynecological LMS, there is a correlation between increased angiogen-
esis and the expression of  CSF1 in the tumor cells and the presence of  CD163+ TAMs (34). However, no 
such correlation was found in uterine LMS, possibly due to already high vascularity in the uterus (34). 
Similarly, in UUS patients, we did not observe a correlation between CD34 protein levels and CD163 
expression (data not shown).

Table 2. Minimal overlapping regions of the most frequent copy number changes in 7 UUS cases analyzed by aCGH+SNP microarrays

% UUS with aberration (n = 7) Chr Cytoband Gain/Loss Start Stop Size (Mb)
57% chr1 q21.1 - q31.3 Gain 144009907 196309360 52.30
57% chr1 q32.1 - q32.2 Gain 204069700 208980594 4.91
57% chr3 q22.3 – q29 Gain 136732261 197837049 61.10
71% chr3 q26.2 – q29 Gain 168381936 197837049 29.46
57% chr6 q21 – q22.31 Gain 108529570 125530734 17.00
57% chr7 q31.31 – q32.1 Gain 118364542 128624248 10.26
57% chr8 q11.1 – q24.3 Gain 47735940 142909763 95.17
57% chr12 p12.3 – p11.21 Gain 15714477 32799215 17.08
57% chr16 q11.2 – q24.3 Loss 46441545 90102469 43.66
71% chr16 q22.1 – q24.1 Loss 691849 85003869 15.25
57% chr20 q11.21 – q13.33 Gain 29652452 62908674 33.26
71% chr20 q13.12 – q13.33 Gain 46288190 62895927 16.61
71% chrX p22.33 – p22.31 Loss 316344 6013484 5.70
57% chrX p22.33 – p11.3 Loss 316344 42759090 42.44

Start/stop positions refer to hg19. Minimum number of probes in region set to 500. Chr, chromosome; Mb, megabase.
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Clinically relevant oncogenic pathways in UUS. Our data from genomic and gene expression profiling of  
UUS indicate that there are clinically actionable molecular alterations in UUS. According to the Broad 
Institute’s TARGET (Tumor Alterations Relevant for GEnomics-driven Therapy) database (version 3), the 
presence of  somatic mutations in PIK3CA, KRAS, ERBB3, FBXW7, and PTCH1 may qualify UUS patients 
for selected targeted treatments. While this work may be seen as an exploratory study, our results point to 
a need for an extended screening for clinically relevant mutations in UUS that may translate into a direct 
clinical benefit for these patients.

Our results show that the PI3K pathway may be activated in UUS patients through mutations and/or 
copy number gains of  PIK3CA or copy number loss/LOH in PTEN. Such alterations in the components of  
PI3K pathway have been associated with poor prognosis and HG histology in several types of  carcinoma 
(35–39). The possible activation of  the PI3K pathway in a subset of  UUS is further supported in our data 
by increased mRNA expression of  numerous PI3K-regulated genes. Furthermore, 4 UUS patients carried 
homozygous missense mutation or had copy number loss with concordant LOH of  FBXW7, a tumor sup-
pressor gene that regulates mTOR signaling (40). Biallelic inactivation of  FBXW7 may predict sensitivity to 
mTOR inhibitors, as well as resistance to anti-tubulin chemotherapy. These findings suggest that UUS may 
be sensitive to PI3K/AKT/MTOR inhibitors.

Hotspot mutations and copy number gains in the KRAS locus were also frequently detected in our 
group of  UUS patients. Coexisting KRAS point mutations and copy number gains have been described in a 
limited subset of  tumors, either in advanced stage or in association with poor survival and/or undifferenti-
ated histology (41–43). UUS tumors showed increased mRNA expression of  multiple targets activated by 
oncogenic KRAS signaling, as well as downregulation of  KRAS-associated tumor suppressor PAWR (44). 
Activation of  this pathway may predict sensitivity to MEK inhibitors in a subset of  UUS patients.

Our findings also implicate a potential role of Hedgehog signaling in UUS based on a decreased expres-
sion of PTCH1 tumor suppressor gene or a possible activation of UBR5 gene (45, 46). According to TARGET 
database, PTCH1 mutations may predict sensitivity to Hedgehog inhibitors, such as vismodegib.

In addition, 2 UUS patients carried point mutations and/or copy number gains in ERBB3 locus, which 
may indicate sensitivity to pertuzumab and other ERBB3 inhibitors.

Figure 5. The most frequent chromosomal copy number alterations in UUS. Only chromosomes altered in more than 50% of cases are shown.
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These findings point to previously unrecognized therapeutic 
venues for UUS patients. Unfortunately, preclinical validation 
of  these therapies in UUS is currently problematic due to lack 
of  in vitro or in vivo models of  this malignancy. Nevertheless, 
our results show that UUS patients harbor clinically actionable 
mutations and could benefit from genomic testing offered by 
increasing number of  hospitals and diagnostic companies.

Spectrum of  genomic alterations in UUS. In this study, we 
observed genomic aberrations in TP53 in 86% (6 of  7) of  UUS 
cases. While TP53 alterations have been previously reported in 
a subset of  UUS (7), our study is the first to identify putative 
tumor suppressor genes that may be affected by TP53 in UUS, 
i.e., a DNA damage response gene NDN (47) and CDH11 that 
is epigenetically inactivated in many types of  carcinomas (48). 
Since NDN loss has been reported in aggressive serous ovarian 
cancer cell lines carrying TP53 mutations (49), we hypothesize 
that NDN is a TP53-target gene in UUS, as well. It has been 
previously described that CDH11 downregulation may also be 
induced upon expression of  mutant TP53 in mammary epithe-
lial cells (50). In addition, NDRG4 (N-Myc downstream-reg-
ulated gene 4 protein) is another TP53-dependent tumor sup-
pressor gene (51) that was downregulated in UUS compared 
with ESS; however, it was not significantly associated with an 
aberrant TP53 in the analyzed tumor specimens.

Our analysis confirmed a high genomic complexity of  
UUS tumors (Figure 5 and Table 2), which was previously 
reported in 2 studies (8, 11). However, copy number aberra-
tions (CNAs) identified in UUS are not specific to this tumor 
type and are also frequently present in tumors considered in 
differential diagnosis of  UUS, including uterine carcinosarco-
mas (e.g., gains of  1q22, 3q26.2, 8q11.23, 20q11.21) (52) and 
uterine LMS (e.g., loss of  16q) (3). Similarly, SNVs and indels 
found in UUS affect genes that are frequently mutated across a 
wide spectrum of  high-grade tumors. In UUS, we identified a 
median of  45 somatic SNVs and indels per exome, which is a 
mutation load comparable with other types of  high-grade gyne-
cological tumors (53, 54).

Advances in understanding genetic background of  UUS. The histological classification of  uterine sarcomas 
has evolved in recent years. Based on the discovery of  a YWHAE-NUTM2A/B chromosomal translocation, 
the latest WHO classification identified a new subtype of  ESS (i.e., HG ESS) that was previously described 

Figure 6. Genetic landscape of UUS. (A) Number of exonic somatic 
mutations in UUS (n = 3) and selected types of cancer based on the 
studies reviewed by Vogelstein et al. (65). Horizontal bars indicate 
25% and 75% quartiles. SCLC, small cell lung cancer; NSCLC, non–
small cell lung cancer; CLL, chronic lymphocytic leukemia; AML, 
acute myeloid leukemia. (B) The most frequent point mutations, 
copy number, and gene expression alterations in cancer-associated 
genes identified in 7 cases of UUS. (C) Genomic and gene expression 
changes in TP53 and associated tumor suppressor genes in UUS. 
Mutations in bold were identified both in DNA (whole exome and/or 
Sanger sequencing) and RNA. Mutations in regular font were identi-
fied only in RNA-seq data. Underlined UUS tumors were analyzed by 
both whole exome sequencing and RNA-seq. mRNA downregulation 
is indicated as TPM value below median across all UUS and ESS speci-
mens analyzed by RNA-seq.
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as “undifferentiated endometrial sarcomas with nuclear uniformity” (7). Our study provides further evidence 
showing that HG ESS significantly differ from UUS in their genetic profile and immune cell infiltration.

There are 4 previously published reports that used high-throughput methods to characterize UUS, but 
these studies used low numbers of  UUS cases (2–4 cases) (8–11) and often used nonstandardized tech-
niques, such as home-made gene expression microarrays covering 3,600 genes (9) or comparative genomic 
hybridization (11). Moreover, none of  the previous molecular studies directly compared UUS to all 3 major 
types of  uterine mesenchymal tumors, including LG ESS, HG ESS, and LMS, despite the hypothesis that 
UUS may be derived from these tumors. The prior studies also failed to show the clinically relevant features 
that characterize UUS. By comparing the largest series of  UUS cases to date with the other 3 main classes 
of  uterine sarcomas, we provide an insight into molecular features of  UUS.

In conclusion, we performed a comprehensive genomic and gene expression profiling of  endometrial 
stromal tumors, which led to the identification of  clinically relevant features of  UUS. A combination of  
differential gene expression analysis and computational approaches for inferring immune cell fractions 
demonstrated that the genetic profile of  UUS is strongly driven by infiltrating TAMs. Most importantly, 
our study prompts reconsideration of  the prior “diagnosis of  exclusion” view on UUS. We demonstrate 
that gene expression profile of  UUS is distinct from other uterine mesenchymal tumors and propose ther-
apeutic avenues for UUS patients, by targeting TAMs and oncogenic pathways activated in these tumors.

Table 3. Currently available macrophage-targeted therapies (approved drugs and ongoing clinical trials)

Therapy Macrophage-
related target

Ref Drug mechanism Current indication/Development phase Ref

Trabectedin CCR2-CCL2 axis 76 Inhibit macrophage recruitment Europe: Advanced soft tissue sarcoma and 
ovarian carcinoma  

USA: Selected soft tissue sarcomas - 
unresectable or metastatic liposarcoma and 

leiomyosarcoma

77 
78

Dasatinib MMP9 79 Suppress TAM survival Chronic myeloid leukemia (CML) and 
Philadelphia chromosome-positive acute 

lymphoblastic leukemia (Ph+ ALL)

80, 81

Zoledronic acid MMP9 82, 83 Suppress TAM survival Hypercalcemia of malignancy, multiple 
myeloma, bone metastases from solid tumors

84, 85

PLX3397
(small molecule 

inhibitor)
CSF1-CSF1R axis 86, 87 Suppress TAM survival 

Inhibit macrophage recruitment

Phase I studies in tenosynovial giant cell 
tumors completed

87

Phase I/II, solid tumors NCT02452424
Phase III, pigmented villonodular synovitis 
(PVNS) and giant cell tumor of the tendon 

sheath

NCT02371369

RG7155 
emactuzumab (mAb)

CSF1-CSF1R axis 86, 87 Suppress TAM survival, Inhibit 
macrophage recruitment

Phase I study in tenosynovial giant cell tumors 
completed

88

LY3022855 (IMC-CS4) 
(mAb)

CSF1-CSF1R axis 86, 87 Suppress TAM survival, Inhibit 
macrophage recruitment

Phase I, solid tumors NCT02265536, 
NCT01346358

AMG820 (mAb) CSF1-CSF1R axis 86, 87 Suppress TAM survival, Inhibit 
macrophage recruitment

Phase I, advanced solid tumors NCT01444404

CNTO 888 carlumab 
(mAb) CCR2-CCL2 axis 76 Inhibit macrophage recruitment

Phase II trial in prostate cancer completed NCT00992186
Phase I trials in solid tumors completed NCT01204996,  

NCT00537368
MLN1202 (mAb) CCR2-CCL2 axis 76 Inhibit macrophage recruitment Phase II study in metastatic cancer completed NCT01015560
CCX872 (small 

molecule inhibitor)
CCR2-CCL2 axis 76 Inhibit macrophage recruitment Phase Ib, pancreatic cancer NCT02345408

Hu5F9-G4 (mAb) CD47-SIRPα axis 27, 89 Induction of specific  
tumor cell phagocytosis

Phase I, solid tumors and acute myeloid 
leukemia 

NCT02216409

CC-90002 (mAb) CD47-SIRPα axis 27, 89 Induction of specific  
tumor cell phagocytosis

Phase I, acute myeloid leukemia and 
myelodysplastic syndromes and hematologic 

neoplasms 

NCT02641002,  
NCT02367196

TTI-621 (SIRPαFc) CD47-SIRPα axis 27, 89 Induction of specific  
tumor cell phagocytosis

Phase I, hematologic neoplasms NCT02663518
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Methods

Patients
A total of  42 endometrial stromal tumors (EST) from 41 patients and 4 uterine LMS were included in the 
study. Twenty patients were treated at the Maria Sklodowska-Curie Memorial Cancer Center and Institute 
- Oncology Center, 18 patients were treated at the KU Leuven and University Hospitals, and 7 patients 
were enrolled at Stanford University Medical Center. The study included frozen and formalin-fixed paraffin 
embedded (FFPE) tissues from 19 UUS, 16 LG ESS, 7 HG ESS, and 4 LMS collected with the approval 
of  the respective institutional research boards. Studied material included 33 tumors collected before che-
motherapy and 6 tumors collected after chemotherapy (1 LG ESS, 2 LMS, and 3 UUS), and the treatment 
status at the time of  sampling was not specified for 7 tumor specimens.

Detailed clinical follow-up was available for 21 EST patients included in the genomic and gene expres-
sion studies (training cohort, Table 1 and Supplemental Table 12). Median follow-up was 47 months (range 
1–276 months). Studied material included 17 primary and 4 recurrent tumor samples. Tumor grade was 
assigned according to the International Federation of  Gynecology and Obstetrics (FIGO) 2009 staging 
criteria for uterine sarcomas (55). FFPE sections from another 21 ESTs were used only for immunohisto-
chemical studies (validation cohort, Table 1 and Supplemental Table 12).

Forty-one of  42 EST were examined for the presence of  JAZF1, YWHAE, and BCOR rearrangements 
by FISH and/or RT-PCR. Selected LG ESS cases were also examined for the presence of  PHF1 rearrange-
ments. All LG and HG ESS cases included in this study carried subtype-specific translocations, and none 
of  the UUS cases disclosed any gene rearrangements.

Microarray gene expression data from 11 cases described in our study (4 LG ESS, 3 HG ESS, and 
4 UUS) have been previously included in a report by Dewaele et al. (ref. 56, GSE46285, SubSeries 
GSE45783), to demonstrate that LG ESS cases with novel MBTD1-CXorf67 fusion clustered with the cases 
carrying classical JAZF1-SUZ12 fusions. It was indicated in that report that a detailed gene expression 
profiling analysis would be a subject of  a separate study (56). Eight cases (3 LG ESS and 5 HG ESS) have 
been previously examined using different analytical methods and included in the study of  Lee et al. (57). 
Selected patients were previously described in case reports that did not include any molecular studies, as 
indicated in Supplemental Table 12.

Histopathology and IHC
Histopathological examination was performed on FFPE tissues. Sections (5 μm) were used for routine 
H&E and IHC staining by avidin-biotin-peroxidase complex method. For IHC, the following monoclonal 
antibodies were utilized: ER (clone SP1, 1:60, Thermo Fisher or clone SP1, prediluted, Ventana), desmin 
(1:20, ICN Pharmaceuticals or clone D33, 1:40, Leica), CD10 (clone 56C6, 1:10, Leica), h-caldesmon 
(clone h-CD, 1:25, Dako), SMA (clone 1A4, 1:200, Cell Marque), CD163 (clone 10D6, 1:50, Leica), CD68 
(clone KP1, 1:1600, Dako), and CCR2 (clone 48607, 1:200, R&D Systems). Appropriate positive and neg-
ative controls were run in parallel. CD163+, CD68+, and CCR2+ cells were counted in 10 randomly selected 
fields at ×400 magnification.

The morphological features of  the 3 types of  endometrial stroma-derived tumors were consistent with 
those described in the literature (3–5), with LG ESS showing a monomorphic population of  cells, with little 
nuclear pleomorphism. The cells in HG ESS were more pleomorphic in appearance, whereas the UUS 
cases showed at least focal HG nuclear changes and tumor necrosis. Representative examples of  each his-
tologic subtype are shown in Figure 4. In 31 of  42 investigated EST, the histologic diagnosis was supported 
by the presence or absence of  characteristic translocations reported previously in ESS.

FISH
FISH analysis was performed on 18 UUS specimens and 23 LG and HG ESS specimens. Bacterial artificial 
chromosome (BAC) DNA probes differentially labeled with SpectrumGreen (SG) or SpectrumOrange (SO) 
(Abbott Molecular) were used for dual-color interphase FISH for detection of  gene fusion/rearrangement  
on the 4- to 5-μm paraffin tumor sections. BACs were obtained from the BACPAC Resource Center 
(Supplemental Table 13; http://bacpac.chori.org). BAC clones were selected based on their location in 
the NCBI Map Viewer build 36.3 (http://www.ncbi.nlm.nih.gov/projects/mapview), and the UCSC 
Human Genome Browser Gateway GRCh37/hg19 (https://genome.ucsc.edu/cgi-bin/hgGateway). DNA  
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isolation, probe labeling, and hybridization were performed as previously described (58). For analysis, 100 
nuclei were scored manually for each set of  probes using an Axioplan fluorescence microscope and ana-
lyzed with CYTOVISION software. A cut-off  of  20% was established for a positive result.

Total RNA extraction
Total RNA was extracted from frozen EST and LMS specimens using the miRNeasy Mini Kit (Qia-
gen), including DNase treatment using RNase-free DNase Set (Qiagen). RNA quality was verified 
using Bio-Rad Experion system.

Gene expression microarrays
Gene expression analysis was performed on 21 EST (9 LG, 4 HG ESS, and 8 UUS) and 4 uterine LMS 
using SurePrint G3 Human GE 8x60K microarrays (G4851A), following one-color microarray-based 
expression analysis protocol (Agilent Technologies). Total RNA (25 ng) was reverse transcribed into cDNA 
by incorporating a T7 oligo-dT promoter primer prior to the generation of  fluorescent complementary 
RNA (cRNA)  using an Agilent LowInput Quick Amp Labeling Kit (Agilent Technologies). Microarray 
slides were scanned using the Agilent G2565A DNA Microarray Scanner (Agilent Technologies). Image 
analysis was done using the Feature Extraction V10.10.1.1 software (Agilent Technologies).

RNA-seq
Paired-end whole-transcriptome sequencing was performed on 19 EST (8 LG, 3 HG ESS and 8 UUS). 
Samples were prepared with the Illumina TruSeq RNA Sample Preparation Kit. The insert sizes of  the 
libraries were assessed using Agilent Technologies 2100 Bioanalyzer. Validated DNA libraries were pooled, 
clustered on the cBot cluster generation station (Illumina), and sequenced on a HiSeq 2000 platform (Illu-
mina). Prepared libraries were sequenced using HiSeq 2000 (Illumina) operated in paired-end 2 × 100 bp 
mode. Reads were quality-filtered using a standard Illumina pipeline.

The paired-end sequence reads were aligned to the human genome (hg19) with Subread (version 
1.5.0) using default settings (59). Reads were summarized using default settings of  the featureCounts pro-
gram for paired-end reads (60). The reads were annotated to 60,308 coding and noncoding genes using a 
Gencode v24lift37 GTF file. Single nucleotide polymorphisms were identified using default settings of  the 
exactSNP program within the Subread package. Variants were annotated with wANNOVAR web inter-
face (http://wannovar.wglab.org) (61). Mutations were filtered for < 0.1% presence in any population 
included in 1,000 Genomes or ExAC studies, exonic location, and nonsynonymous or stopgain effect. 
For variants identified in both WES and RNA-seq data, the presence on forward and reverse strands was 
further verified using integrative genomics viewer (IGV).

qRT-PCR
For the qPCR analysis, samples of total RNA extracted from 19 EST were used. cDNA synthesis was carried 
out from 0.5 μg of RNA with the RT2 First Strand Kit (Qiagen). Custom PCR arrays (SABiosciences) were used 
to simultaneously examine the mRNA levels of CCL18 (chemokine [C-C motif] ligand 18, NM_002988) and 
LILRA6 (leukocyte immunoglobulin-like receptor, subfamily A [with TM domain], member 6, NM_024318), 
according to the manufacturer’s protocol. The arrays also included primers for 2 housekeeping genes. qPCR 
analysis was performed with the RT2 SYBR Green ROX qPCR Master Mix (Qiagen) in the 7500 Fast Real-
Time PCR System (Applied Biosystems) according to the manufacturer’s instructions (Qiagen).

aCGH
Genomic DNA was extracted from 19 frozen tumor specimens (9 LG, 3 HG ESS, and 7 UUS) using Blood 
& Tissue DNeasy kit (Qiagen) or High Pure PCR Template Preparation Kit (Roche Diagnostics) with the 
kit-specific RNase treatment. Genomic DNA (1 μg) was hybridized to 4x180K CGH+SNP whole-genome 
microarrays (G4890A) (Agilent Technologies), according to the manufacturer’s protocol. Microarray slides 
were scanned using Agilent G2565A DNA Microarray Scanner, and image analysis was performed using 
Feature Extraction V10.10.1.1 software (Agilent Technologies).

aCGH data were analyzed using Agilent Genomic Workbench 7.0.4.0 software (Agilent Technolo-
gies). The ADM-2 algorithm was applied to identify DNA CNAs. A copy number loss was defined as a 
log2 ratio < –0.25, and a copy number gain was defined as a log2 ratio > 0.25, with at least 500 probes in a 
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region. An amplification was defined as log2 ratio > 1.5. A female HapMap genotype (European Female, 
NA12878_V1) was used as a reference for the detection of  LOH.

GI for each tumor specimen was calculated as follows: GI = A2/C, where A is the total number of  
alterations (segmental gains and losses of  at least 500 probes in a region), and C is the number of  involved 
autosomal chromosomes (25).

Whole exome sequencing
Genomic DNA from 1 LG ESS and 3 UUS tumors was extracted from frozen material using the same 
method as for aCGH analysis. Fragments of  normal uterine tissue, distant from the tumor site, sampled 
from the same patients were used as control specimens. Genomic DNA was sheared by sonication, and 
libraries were prepared using the TruSeq DNA Library Preparation Kit (Illumina). DNA sequencing librar-
ies were enriched with the SeqCap EZ Human Exome Library v3.0 (Roche, NimbleGen). Validated DNA 
libraries were pooled and sequenced using 2 × 100 bp paired-end mode on the HiSeq2000 platform (Illumi-
na). Median target coverage was 55× (range 47×–66×).

The paired-end sequence reads were aligned to the human genome (GRCh37) with the  
Burrows-Wheeler Aligner (BWA; version 0.7.13) using BWA-MEM algorithm with default settings (62). 
SAMtools (version 1.3) (63) was used for converting SAM to BAM format, and sorting and indexing 
alignments. Picard (version 1.96) was used for duplicate reads removal. The GATK framework (version 
3.3-0) (64) was used for the local realignment and base call recalibration. Somatic variants were identified 
using an automated ensemble approach requiring at least 2 of  4 variant callers to identify each SNV and 
indel. The variant callers used were Mutect (version 2.7-1) (65), VarScan2 (version 2.3.7) (66), FreeBayes 
(version 0.9.21-7) (67), and VarDictJava (version 1.4.1) (68). Variants were annotated with wANNOVAR 
web interface (http://wannovar.wglab.org) (61).

Somatic mutations were identified as alternate allele frequency > 20% in tumor specimen and < 5% in 
adjacent normal tissue. Somatic variants were additionally filtered for < 1% frequency in any population 
in 1000 Genomes and ExAC databases, exonic location and predicted effect being nonsynonymous SNVs, 
frameshift deletions/insertions, or stopgain. For variants identified in both WES and RNA-seq data, the 
presence on forward and reverse strands was further verified using IGV.

Somatic variant validation
Primers were designed using Primer3 software (Supplemental Table 14 and refs. 69, 70). PCR products 
were obtained using AmpliTaq Gold DNA Polymerase (Invitrogen), purified using QIAquick PCR Puri-
fication Kit (Qiagen), and sequenced using BigDye Terminator v3.1 chemistry (Invitrogen) on the 3130xl 
Genetic Analyzer (Invitrogen). Chromas Lite 2.01 software (Technelysium Pty Ltd.) and BLAST software 
were used for the analysis of  sequencing data (http://blast.ncbi.nlm.nih.gov/Blast.cgi).

Data availability
Raw gene expression microarray data is available in Gene Expression Omnibus (GEO), series 
GSE85383. Raw RNA-seq data is available in GEO, series GSE87581. Raw aCGH+SNP data is avail-
able in GEO, series GSE85382. Raw WES data is available in the Sequence Read Archive (SRA), study 
accession number SRP090691. 

Statistics
Microarray gene expression data analysis. Expression values from different probes mapped to the same gene 
were collapsed using avereps function from limma package. Exploratory and differential expression anal-
yses of  microarray data were performed in R Studio (build: R 3.0.2). For the exploratory analysis, raw 
signal values were normalized to median equal 0 and loge transformed. PCA was performed using prcomp 
function (“stats” R package, version 3.0.2) and visualized using ClustVis (71). Unsupervised hierarchi-
cal clustering was performed using Euclidean distance and complete linkage rule on genes with SD > 1 
(function hclust in “stats” R package, version 3.0.2). Differential expression analysis was performed using 
SAM (21) on quantile-normalized expression values filtered for SD > 100 and loge transformed (with seed 
value 1234567 and adjusted P value cut-off  0.05). SAM output was filtered for genes with fold change < 
–2 and > 2. CIBERSORT analysis was performed on quantile-normalized raw signal values with num-
ber of  permutations set to 500 using CIBERSORT web interface (https://cibersort.stanford.edu) (22). 
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Functional enrichment/gene set analysis of  differentially expressed genes was performed using Gene Set 
Enrichment Analysis (GSEA) (MSigDB, Molecular Signatures Database v5.1) (72, 73), ToppGene Suite 
(74), and TSGene database (75). Hypergeometric distribution was calculated using n = 45,956 genes in 
gene universe, following the GSEA methodology. Representation factor was calculated as x / [(n * D) / 
N] where x is a number of  overlapping genes, n is a number of  genes in group 1, D is a number of  genes 
in group 2, and N is a number all genes in gene universe.

RNA-seq gene expression analysis. Differential expression analysis and exploratory analysis of  RNA-seq 
data was performed in R Studio (built: R 3.0.2), using read counts quantified by featureCounts (28–67.4 
million reads per sample, median 43.2 million reads per sample).

Exploratory analysis was performed on genes with mean read counts > 10. Filtered read counts were 
median centered and loge transformed after adding 1 to each read count, and the unsupervised hierarchical 
clustering was performed using Euclidean distance and ward.D linkage rule.

Differential gene expression analysis of  RNA-seq data was performed using parametric methods 
DESeq2 (package version 1.2.10) (18) and edgeR (package version 3.4.2) (19), which were applied to genes 
with mean raw read counts > 10. SAMseq (samr package version 3.4.2) (20), a nonparametric method, was 
performed with the number of  permutations set to 100 and seed value 1234567. The outputs of  DESeq2, 
edgeR, and SAMseq were filtered for adjusted P value < 0.05 and fold change < –2 and > 2.

Supervised hierarchical clustering based on loge(TPM+1) expression values for 406 genes differen-
tially expressed between UUS and ESS was performed on genes and samples using Euclidean distance 
and complete linkage rule.

qRT-PCR data analysis. qPCR data were analyzed using Ct values with the SDS 2.1 software (Applied 
Biosystems). Normalization was performed based on the mean values of  2 housekeeping genes, APP (amy-
loid β [A4] precursor, NM_000484) and HPRT1 (hypoxanthine phosphoribosyltransferase 1, NM_000194), 
and the relative amounts of  RNA for each gene were calculated by the 2−ΔΔCT method using DataAssist 
software v. 3.0 (Applied Biosystems) and compared between UUS and ESS using 2-tailed Student’s t test. P 
< 0.05 was considered statistically significant.

In the box and whisker plots, the middle line represents median, the bounds of  the boxes represent 
first and third quartiles, the whiskers above and below the box represent data range, and the circles above 
or below whiskers identify outliers. All statistical tests were 2-tailed. P < 0.05 was considered significant.
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