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Introduction
Throughout each stage of  life, males and females differ on multiple levels as a consequence of  differences 
in sex chromosome complement, as well as the organizational and activational effects of  sex hormones (1). 
Net sex differences in phenotype arise through the combined effects of  genetics, epigenetics, and metabo-
lism from the time of  fertilization. Multiple studies have demonstrated that male embryos grow signifi-
cantly faster than female embryos (2, 3). Among the mechanisms that underlie these sex differences in 
growth rates are enhanced central carbon and amino acid metabolism in males and X-linked drivers of  
metabolism including the glycolytic enzyme phosphoglycerate kinase (PGK) (4). These metabolic effects 
may persist into adulthood, as recent evidence suggests that healthy males at rest and in exercise rely more 
on carbohydrate utilization than females who are more reliant on lipid metabolism (5). However, it is cur-
rently unclear whether these differences in metabolic mechanisms contribute to sex differences in human 
disease, specifically cancer.

Numerous epidemiological studies have identified the sex of  the patient as a significant factor that 
impacts cancer incidence and survival. In general, males have a higher incidence and mortality relative 
to females in cancers throughout the body, with the exception of  a few cancers (e.g., gallbladder and 
anorectal cancers) (6–8). Similar patterns are present in intracranial tumors. Although extra-axial menin-
giomas are more commonly diagnosed in females, males have an increased incidence of  parenchymal 
brain tumors relative to females that is independent of  age (9). For example, boys constitute the majority 
of  group 3 and 4 medulloblastomas, with peak incidences less than 5 years of  age and in the peripubertal 
period (10, 11). Moreover, boys with high-grade gliomas have significantly reduced overall and progres-
sion-free survival relative to girls (12). These findings suggest that existing sex disparities, at least in the 
case of  brain cancers, are not completely attributable to the actions of  circulating sex hormones. In fact, 

The molecular bases for sex differences in cancer remain undefined and how to incorporate 
them into risk stratification remains undetermined. Given sex differences in metabolism and the 
inverse correlation between fluorodeoxyglucose (FDG) uptake and survival, we hypothesized that 
glycolytic phenotyping would improve glioma subtyping. Using retrospectively acquired lower-
grade glioma (LGG) transcriptome data from The Cancer Genome Atlas (TCGA), we discovered 
male-specific decreased survival resulting from glycolytic gene overexpression. Patients within this 
high-glycolytic group showed significant differences in the presence of key genomic alterations 
(i.e., 1p/19q codeletion, CIC, EGFR, NF1, PTEN, FUBP1, and IDH mutations) compared with the 
low-glycolytic group. Although glycolytic stratification defined poor prognostic males independent 
of grade, histology, TP53, and ATRX mutation status, we unexpectedly found that females 
with high-glycolytic gene expression and wild-type IDH survived longer than all other wild-type 
patients. Validation with an independent metabolomics dataset from grade 2 gliomas determined 
that glycolytic metabolites selectively stratified males and also uncovered a potential sexual 
dimorphism in pyruvate metabolism. These findings identify a potential synergy between patient 
sex, tumor metabolism, and genomic alterations in determining outcome for glioma patients.
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a recent multidimensional analysis of  molecular differences in cancer between males and females deter-
mined strong sex effects in the presence of  mutations, DNA methylation, transcript, and protein expres-
sion among renal, bladder, liver, lung, head and neck squamous, and thyroid cancers, but a weak sex effect 
in low-grade and high-grade gliomas (13). These findings suggest that there are alternative molecular 
mechanisms, perhaps related to metabolism, that may explain the sex disparity seen in brain cancers that 
are otherwise invisible to global molecular profiling studies.

Metabolism is a critical factor that is required for tumor survival and tumorigenicity. One of  the hall-
marks of  cancer metabolism is enhanced glucose uptake and its conversion to lactate despite the presence of  
available oxygen (i.e., the Warburg effect or aerobic glycolysis) (14). This process not only results in the rapid 
generation of  ATP for cellular energetics through glycolysis, but can also contribute to biosynthetic pathways 
required for proliferation (15, 16). Fluorodeoxyglucose (FDG) PET is a well-established tool for quantifying 
glucose uptake in tumors. Not only does FDG uptake positively correlate with glioma grade, but it inversely 
correlates with survival (17). Together, these findings suggest that sexual dimorphism in nutrient utilization 
may exist in brain cancers and that this might contribute to sex differences in survival, as well as require sex-
specific interpretations of  diagnostic tests like FDG-PET. Therefore, we sought to determine if  the normal 
sex differences in glucose metabolism would have correlates in glioma metabolism and whether there would 
be opportunities for refined risk stratification by incorporating sex-specific analysis of  glycolysis.

Results
Glycolytic gene expression stratifies risk in gliomas. To determine if  there was a sexual dimorphism in glioma 
glycolysis that could explain differences in survival, we investigated the lower-grade glioma (LGG) dataset 
in The Cancer Genome Atlas (TCGA) (18, 19). This dataset included transcriptomic and genomic data 
in a nearly equal number of  male (n = 285) and female (n = 228) patients with grade 2 and 3 gliomas. 
No significant difference in overall survival (OS) between males and females existed in the LGG patients 
(Supplemental Figure 1; supplemental material available online with this article; https://doi.org/10.1172/
jci.insight.92142DS1). Next, we assessed RNA sequencing (RNA-Seq) expression data of  36 transcripts 
encoding hexose transporters, glycolytic enzymes, and monocarboxylate (i.e., lactate and pyruvate) trans-
porters (MCTs) in male versus female LGG samples. Overall, there were minimal but significant differ-
ences in only 2 of  the 36 genes, with lactate dehydrogenase B (LDHB) exhibiting a significant but minimal 
expression increase in males compared with females (1.1-fold, P = 0.02) (Supplemental Figure 2). Hexoki-
nase 1 (HK1), conversely, was slightly increased in females relative to males (1.1-fold, P = 0.02). Together, 
this was consistent with previous findings of  a weak sex effect on transcript expression in the TCGA LGG 
dataset (13). However, we were interested in whether there might be glycolytic subtypes within each sex 
that correlated with survival, specifically. We hypothesized that subgroups within a sex with enhanced gly-
colytic gene expression would manifest decreased OS.

To determine whether there were glycolytic subgroups in males and females, we performed an unsu-
pervised analysis using 36 glycolytic genes. We stratified and Z score–normalized the gene expression 
data by sex, and applied a K-means clustering analysis to separate the male and female LGG samples 
each into 2 clusters (i.e., high versus low glycolytic expression). Thirty-two male and 27 female samples 
were distinguished by their increased glycolytic gene expression. These were denoted as cluster 2, and the 
majority of  male and female samples, which did not overexpress these transcripts, were denoted as clus-
ter 1. Male and female cluster 2 was characterized by a total of  14 transcripts and 10 transcripts, respec-
tively, with a mean expression Z-score value greater than 1 relative to male and female cluster 1 that had 
0 transcripts (Supplemental Table 1). The dissimilarity of  cluster 2 relative to cluster 1 in both males 
and females was further confirmed with multidimensional scaling analysis (MDS) (Figure 1). Despite 
the glycolytic overexpression seen in both male and female cluster 2, survival analyses of  these clusters 
identified a sex difference in survival where cluster 2 males performed poorly compared with cluster 1 
males and all females. Cluster 2 males had a median OS of  41.46 months compared with 98.16 months 
for cluster 1 males (P = 0.0005). No statistically significant glycolytic cluster–specific differences in OS 
were seen for females; cluster 2 had a median OS of  146.02 months compared with a cluster 1 median 
OS of  78.15 months (P = 0.3113) (Figure 1). Unbiased K-means clustering analyses using glycolytic gene 
expression led to 2 potentially significant discoveries: (a) a glycolytic gene expression threshold could 
exist above which males but not females are defined by decreased OS and (b) decreased male OS could 
be driven by a subset of  these 36 glycolytic transcripts.
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To optimally define glycolytic subgroups and determine which glycolytic transcripts contribute to sur-
vival differences, we developed a TCGA data mining algorithm that extracted survival information as a func-
tion of  transcript level on a sex-specific basis using RNA-Seq data (Figure 2). First, we defined the optimal 
glycolytic gene expression threshold for stratifying survival differences in males. We applied an unbiased 
sliding Z-score threshold (range 0–3 in 0.25-unit increments; note that all genes have similar range after 
Z-score normalization regardless of  sex) to glycolytic gene expression in both male and female LGG sam-
ples. Using the log-rank test to assess statistical significance in OS differences between the male subgroups, 
we determined that a Z score of  1.75 maximized male differences in survival (median OS difference = 75.99 
months, hazard ratio [HR] 2.46, P = 0.0018). As expected, no Z-score threshold was able to identify female 
glycolytic subgroups showing a statistically significant OS difference (P = 0.9541) (Supplemental Table 2).

Next, we used this optimized Z-score threshold to identify which of  the 36 glycolytic transcripts were 
driving the survival differences in the male LGG samples. The Z-score threshold of  1.75 included 11 genes 
(GAPDH, LDHA, PGK1, HK3, PFKL, GCK, GPI, PGAM2, SLC2A5, SLC16A3, and SLC16A8) whose overex-
pression was associated with significantly decreased OS in males (Figure 3 and Supplemental Table 3). The 
male high-glycolytic group was defined as any male who overexpressed at least 1 of  the 11 genes that was 
associated with significantly decreased survival, resulting in a total of  63 males. All other males were defined 
as male low-glycolytic. A total of  77 females overexpressed any 1 of  the 11 genes and were assigned to the 
female high-glycolytic group. However, the only gene that was associated with decreased OS in females 
was hexokinase 3 (HK3). It was overexpressed in only 9 of  the 77 high-glycolytic females (Supplemental 
Table 3). Male high-glycolytic patients had significantly decreased median OS relative to male low-glycolytic 

Figure 1. K-means clustering identifies sex differences in glycolysis. (A) Heatmap generated from the K-means (K = 2) clustering analysis identifies a 
cluster of males characterized by high glycolytic gene expression. (B) Multidimensional scaling (MDS) analysis demonstrates dissimilarity of the 2 clusters. 
(C) Survival analysis demonstrates that the cluster of males with glycolytic gene overexpression have significantly shorter survival than the remainder of 
males. (D–F) Same analyses performed for females, but no significant differences in overall survival were present. P values were calculated using the log-
rank test. Numbers in parentheses refer to number of deaths/total patients in that group.
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patients (36.33 months vs. 105.12 months, P < 0.0001). However, there were no differences seen in the 
female patient groups (75.1 months vs. 87.39 months, P = 0.5183). Similarly, male high-glycolytic patients 
had significantly decreased median disease-free survival (DFS) (22.17 months vs. 72.01 months, P < 0.0001) 
and females exhibited no differences (38.9 months vs. 45.14 months, P = 0.7396) (Figure 3).

We questioned whether outliers within the male high-glycolytic group might be skewing the survival 
differences. We investigated the heterogeneity of  the high-glycolytic samples by looking at coexpression 
of  the significant glycolytic transcripts within the male and female high-glycolytic groups. Interestingly, 
no single patient sample was associated with overexpression of  all 11 genes. In fact, the majority of  male 
samples (38 of  63 samples) were associated with overexpression of  only 1 transcript, with a maximum of  8 
coexpressed transcripts. Similar observations were seen with females, with the majority of  samples overex-
pressing a single transcript (38 of  77 samples) (Supplemental Table 4).

To examine if  there was a dose-dependent response of  glycolytic transcripts on patient survival, we 
binned the males and females into 3 subtypes. Metabolic subtype 1 was characterized by overexpression 
of  zero transcripts, subtype 2 by overexpression of  1–3 transcripts, and subtype 3 by overexpression of  
4–8 transcripts. Thus, subtype 1 is analogous to the low-glycolytic group and subtypes 2 and 3 make up 
the high-glycolytic group. Interestingly, males were stratified into 3 groups with distinct survival profiles. 
Male metabolic subtype 3 had a median OS of  16.16 months, male subtype 2 had a median OS of  41.1 
months, and male subtype 1 had a median OS of  105.1 months. These metabolic subtypes, however, 
failed to stratify female patients (Figure 4). Interestingly, comparison of  the male glycolytic subtypes 
with individual glycolytic transcript expression data and the results of  the initial K-means analysis dem-
onstrated that not only was metabolic subtype 3 characterized by a majority of  K-means cluster 2, but 
that subtype 3 was driven by LDHA, GAPDH, PGK1, SLC16A3, PFKL, and GPI expression. These find-
ings were less evident for females (Figure 4). It is noteworthy that 3 individual approaches for detecting 
male-specific sex differences in glycolytic gene expression (unbiased K-means, optimal Z-score threshold, 

Figure 2. Survival-based identification of sex-specific differences in gene expression. RNA-Seq data from lower-
grade gliomas were interrogated for males or females whose overexpression of a specific glycolytic transcript beyond a 
specific Z-score threshold conferred significantly different (P < 0.05) overall survival compared with other individuals 
within that sex. Significance calculated using the log-rank test.
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and dose dependence) did not incorporate any clinical, pathologic, or molecular data other than the sex 
of  the patient and the corresponding gene expression data from that patient’s tumor. Thus, these find-
ings could have immediately translatable applications for clinical practice that could be used to stratify 
patients in addition to conventional methods. This prompted us to investigate the effects of  sex-specific 
glycolytic stratification on conventional glioma classification that uses histopathology and genomics.

Glycolytic subtyping correlates with histopathologic classification of  gliomas. Previous studies have demon-
strated a positive correlation between the WHO histologic grade of  gliomas with FDG uptake as mea-
sured by PET imaging (17, 20). Thus, we wondered if  grade 3 gliomas would be enriched in the high-
glycolytic group. While grade 3 gliomas were enriched in male high-glycolytic gliomas (61%), they were 
not exclusively composed of  them. In fact, 50% of  the male low-glycolytic gliomas were also grade 3 
(Figure 5 and Supplemental Figure 3). Conversely, grade 2 gliomas were enriched in 50% low-glycolytic 
gliomas and in 39% male high-glycolytic gliomas (Figure 5 and Supplemental Figure 3). Although similar 
trends were seen in the female groups, no statistically significant enrichment was present in either males 
or females. Survival analyses demonstrated that glycolytic stratification was more robust in grade 3 males. 
Grade 3 male high-glycolytic gliomas had a median OS of  25.5 months versus low-glycolytic gliomas with 
a median OS of  74.97 months (P < 0.0001, Figure 5). Glycolysis also stratified male grade 2 gliomas but 
with less significance; high-glycolytic males had a median OS of  62.91 months compared with low-gly-
colytic males with a median OS of  144.94 months (P = 0.0011; Figure 5). Females were not significantly 

Figure 3. Male gliomas are uniquely stratified by glycolytic gene overexpression. (A) Glycolytic pathway demonstrating 11 transcripts (red) whose over-
expression confer decreased overall survival within a given sex. (B) Overall survival and (C) disease-free survival analyses reveal male-specific stratification 
based upon expression of 11 glycolytic transcripts. Any sample with overexpression of at least 1 glycolytic transcript was placed in the high-glycolytic group. 
All other samples in that sex were placed in the low-glycolytic group. P values were calculated using the log-rank test. Numbers in parentheses refer to 
number of deaths/total patients in that group.
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stratified. Together, these findings suggested that glycolytic stratification of  males could refine tumor grad-
ing and support the use of  FDG-PET in conjunction with histology for patient stratification.

Although the effect of  tumor histology on glucose uptake is not as well defined compared with the 
glioma grade, we investigated the impact of  glycolytic classification on tumor histology. We determined 
that astrocytomas were significantly enriched in 63% of  male high-glycolytic gliomas, but only 31% of  
male low-glycolytic gliomas (P < 0.0001, Figure 5 and Supplemental Figure 3). Females had a similar dis-
tribution. Conversely, oligodendrogliomas and oligoastrocytomas were significantly enriched in the male 
low-glycolytic group, but not in the female group. Oligodendrogliomas showed a more robust enrichment 
in the male low-glycolytic group, with only 22% enrichment in the male high-glycolytic group versus 41% 
in the low-glycolytic group (P < 0.01, Figure 5 and Supplemental Figure 3). Survival analyses paralleled 
these findings, demonstrating that male high-glycolytic astrocytomas had the poorest median OS of  36.33 
months compared with male low-glycolytic astrocytomas with a median OS of  98.16 months (P < 0.0001, 
Figure 5). Oligodendrogliomas were also characterized by robust glycolysis-based stratification, with a 
median OS of  26.74 months for the high-glycolytic males versus 117.31 months for the low-glycolytic males 
(P < 0.0001, Figure 5). Although patients with astrocytomas typically have shorter OS than patients with 
oligodendrogliomas (21), our glycolytic stratification scheme suggests that males with glycolytic astrocyto-
mas perform equally poorly compared with males with glycolytic oligodendrogliomas.

Glycolytic subtyping correlates with genomic classification of  gliomas. Several genetic alterations that are 
key drivers of  LGGs have the ability to modulate glucose metabolism. We hypothesized that genomic 
alterations known to modulate glycolysis would be enriched in the high-glycolytic group and modulate 
male-specific survival. We focused on a group of  key genomic alterations that have been characterized 
in LGG, specifically TP53, ATRX, IDH1, IDH2, PTEN, EGFR, NF1, CIC, and FUBP1 mutations as 

Figure 4. Metabolic subtyping of glycolytic gene expression further stratifies male lower-grade glioma. (A) Male high-glycolytic and low-glycolytic 
groups were further stratified into 3 metabolic subtypes based upon the number of coexpressed glycolytic transcripts. Metabolic subtype 1 was character-
ized as zero coexpressed transcripts (i.e., the low-glycolytic group), subtype 2 was defined as coexpression of 1–3 transcripts, and subtype 3 was defined as 
coexpression of 4–8 transcripts. No sample coexpressed more than 8 of the 11 transcripts. (B) Metabolic subtyping does not stratify females. (C) Visu-
alization of these metabolic subtypes demonstrate that metabolic subtype 3 has the shortest overall survival (OS) in males and is driven by a cohort of 
glycolytic transcripts including LDHA, GAPDH, PGK1, SLC16A3, PFKL, and GPI. Red boxes indicate patient samples whose overexpression of that transcript 
(Z > 1.75) resulted in significantly decreased survival for that sex. Blue boxes indicate samples whose overexpression of that transcript (Z > 1.75) did not 
result in significantly different survival for that sex. P values were calculated using the log-rank test. Numbers in parentheses refer to number of deaths/
total patients in that group.
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well as 1p/19q codeletion (21, 22). Mutations in TP53 and PTEN tumor suppressors and the epider-
mal growth factor receptor (EGFR) oncogene are known to activate glycolysis (23–27). Mutations of  
isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) and the resultant production of  2-hydroxyglutarate 
(2-HG) can potentially inhibit glucose metabolism (28–30). Mutations in the neurofibromin 1 (NF1) 
tumor suppressor may have the ability to regulate glucose metabolism, at least in part through enhanced 
Akt/mTOR activity and increased expression of  glucose transporters (31–33). The effects of  mutations 
in the Capicua transcriptional repressor (CIC) gene on glucose metabolism are not well characterized; 
however, CIC mutations can cooperatively regulate 2-HG levels with IDH1 mutations in cell lines (34). 
Although the effects of  1p/19q codeletion on glucose metabolism have not been characterized in detail, 
oligodendroglial tumors with this codeletion are characterized by enhanced FDG uptake (35).

To identify mutations that were enriched in the high-glycolytic or low-glycolytic groups, we plotted the 
LGG patient samples as a function of  patient sex, glycolytic classification, and genomic alterations. We also 
incorporated the genomic subtype classification of  the tumors as previously described (21, 22). Genomic 
subtype 1 tumors are classified by the presence of  both IDH mutations and 1p/19q codeletion, subtype 2 
tumors are classified by IDH mutations without 1p/19q codeletion, and subtype 3 tumors are classified as 
IDH wild type. The graphical analysis disclosed multiple important findings. First, our unbiased glycolytic 
subtyping classification correlated with the genomic subtype of  the tumors. Genomic subtype 1, character-
ized by the highest OS, was significantly enriched in both male and female low-glycolytic groups. Only 3% 
of  genomic subtype 1 tumors were classified as male high-glycolytic compared with 42% of  these tumors in 

Figure 5. Glycolytic subtyping correlates with histopathologic classification of gliomas. (A) Visualization of glycolytic groups, metabolic subtypes derived 
from those groups, and relationship to the histologic classification and WHO grade of the tumor. Both male and female high-glycolytic groups are enriched 
for astrocytoma histology, where only male low-glycolytic groups are enriched for oligoastrocytomas and oligodendrogliomas. Survival analysis of (B) grade 
2 and (C) grade 3 gliomas, (D) astrocytomas, and (E) oligodendrogliomas reveal more robust glycolytic stratification for grade 3 versus grade 2 males and 
approximately equivalent survival for male glycolytic astrocytomas and oligodendrogliomas. P values were calculated using the log-rank test. Numbers in 
parentheses refer to number of deaths/total patients in that group.
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the male low-glycolytic category (P < 0.0001, Figure 6 and Supplemental Figure 4). Females demonstrated 
a similar pattern, characterized by 16% in the high-glycolytic group and 41% in the low-glycolytic group (P 
< 0.0001). In contrast, genomic subtype 3 tumors that are characteristically the poorest prognostic group 
were significantly enriched in the male high-glycolytic group. A total of  53% of  genomic subtype 3 tumors 
were categorized as high-glycolytic compared with 9% that were low-glycolytic. (P < 0.0001 Figure 6 and 
Supplemental Figure 4). Similarly, 42% of  female genomic subtype 3 tumors were classified as glycolytic 
compared with 7% that were low-glycolytic (P < 0.0001).

Next, we conducted an analysis of individual genomic alterations comprising the high-glycolytic and low-
glycolytic groups. Based upon the enrichment of these alterations in the high-glycolytic and low-glycolytic 
groups, we defined 3 classes of genomic alterations. The first class consisted of alterations that were signifi-
cantly depleted in the glycolytic group (FUBP1, CIC, and IDH mutations and 1p/19q codeletion). The second 
class consisted of alterations that were significantly enriched in the glycolytic group (PTEN, EGFR, and NF1 
mutations) and the third class consisted of mutations that were not significantly enriched in either group (TP53 

Figure 6. Glycolytic subtyping correlates with genomic classification of gliomas. (A) Visualization of glycolytic groups and metabolic subtypes reveal 3 
classes of genomic alterations: those enriched in the low-glycolytic groups, those enriched in the high-glycolytic groups, and those that are not signifi-
cantly different among groups. Survival analysis of (B) samples with both TP53 and ATRX mutations, (C) samples that are both TP53 and ATRX wild type, 
(D) samples with either an IDH1 or IDH2 mutation, and (E) samples with wild-type IDH1 and IDH2 reveal more robust glycolytic stratification for wild-type 
TP53/ATRX gliomas. Glycolytic classification unexpectedly stratifies wild-type IDH females, but not males. P values were calculated using the log-rank 
test. Numbers in parentheses refer to number of deaths/total patients in that group.
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and ATRX mutations) (Figure 6 and Supplemental Figure 4). The majority of the genomic alterations showed 
significant differences in both males and females (i.e., IDH, CIC, EGFR, and PTEN mutations, and 1p/19q 
codeletion), with only 2 mutations that were significantly enriched only in males (i.e., NF1 and FUBP1). With 
the exception of TP53, our findings not only support previously observed glycolytic effects from these genomic 
alterations but ascribe potentially novel glycolytic effects to alterations including CIC and FUBP1 mutations.

TP53 and ATRX mutations are seen more commonly in astrocytomas compared with wild-type TP53 
and ATRX oligodendrogliomas (21). Prompted by our previous findings that male astrocytomas and oli-
godendrogliomas could be stratified by glycolysis, we performed a survival analysis incorporating these 
mutations. Although our glycolytic classification scheme stratified males with both mutant and wild-type 
ATRX and TP53 tumors, wild-type TP53/ATRX tumors showed the most robust stratification, with high-
glycolytic wild-type males performing even more poorly than those with TP53/ATRX mutations. Male 
high-glycolytic TP53/ATRX–mutant tumors had a median OS of  62.91 months (6 deaths in 46 total 
patients) compared with the low-glycolytic group with a median OS of  105.12 months (19 deaths in 79 
total patients, P = 0.0360, Figure 6). Male high-glycolytic wild-type TP53/ATRX tumors performed even 
worse, with a median OS of  24.38 months (17 deaths in 34 total patients) compared with the median 
OS of  the low-glycolytic group of  134.17 months (19 deaths in 101 total patients, P < 0.0001, Figure 
6). As expected, females in both categories were not stratified by glycolysis. Similar findings were made 
when TP53 and ATRX were analyzed separately (Supplemental Figure 5). Although the role of  TP53 as 
a prognostic biomarker in gliomas remains controversial and no consistent relationship has been found 
between the presence of  TP53 mutations and prognosis (36, 37), loss of  ATRX function is associated 
with better prognosis in gliomas (38, 39). This suggests that ATRX mutations could, in part, be driving 
the better survival seen in male patients with high-glycolytic mutant tumors compared with the male 
patients with the high-glycolytic wild-type tumors.

Because of  the known inhibitory effects of  IDH-mutant activity and its effects on prolonging patient 
survival (28–30), we investigated the effects of  glycolytic stratification as a function of  IDH mutation 
status in males and females. When the OS of  IDH-mutant patients was analyzed, glycolysis signifi-
cantly stratified males but not females. Male high-glycolytic IDH-mutant patients had a median OS of  
44.38 months compared with 117.31 months (P < 0.0045, Figure 6). Females did not stratify. How-
ever, an unexpected discovery was made when wild-type IDH patients were stratified with glycolysis.  

Figure 7. Glycolytic metabolites modulate sex-specific survival in grade 2 gliomas. (A) Pyruvate (Pyr) and (C) lactate/pyruvate (Lac/Pyr) levels stratify 
survival in males, but not in females (panels B and D). Significance calculated with log-rank tests.
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Although the OS of  these patients was expectedly shorter than that seen in the IDH-mutant patient 
population, males did not stratify. Females not only stratified, but the stratification was opposite to the 
findings seen in males. Female wild-type IDH high-glycolytic patients performed significantly better 
than all other patient groups, with a median OS of  51.84 months compared with female low-glycolytic 
patients (median OS 16.82 months, P = 0.0016). Both male groups had a similar median OS of  21.29 
and 19.45 months for high-glycolytic and low-glycolytic groups, respectively (Figure 6). Together, 
these findings suggest a previously uncharacterized phenomenon that could involve the metabolism-
modulating activity of  IDH mutations and the potential for sexually dimorphic preferences in tumor 
nutrient consumption, analogous to what has been documented with carbohydrate utilization in males 
and lipid utilization in females (5).

Metabolomic identification of  sex differences in glycolysis. To validate our transcriptome-based survival 
data, we analyzed quantitative metabolome-level metadata obtained previously (16) as well as a new 
dataset from patients with grade 2 gliomas and correlated metabolite levels to survival (see Methods 
section). We analyzed a total of  26 male and 19 female grade 2 gliomas. We hypothesized that glyco-
lytic metabolite levels would selectively stratify males, similar to the effects we observed with glyco-
lytic transcripts. However, we needed to develop an alternative approach to identify sex differences 
using metabolite data. Metabolite levels represent a snapshot of  metabolism at a single point in time 
and are a complex function of  metabolite synthesis and consumption. Therefore, enhanced glycolytic 
flux can result in both enriched and depleted metabolites within the pathway as has been seen in glio-
blastoma (16). This suggested to us that our K-means and scalable Z-score methods would not be an 
optimal approach here, as these methods assume that poor prognostic patients would be characterized 
by either enrichment or depletion of  all metabolites. Instead, we used a previously published algo-
rithm to measure metabolite-specific thresholds that could selectively stratify males (40). Within the 
metabolomics datasets, we identified 7 glycolytic pathway metabolites (glucose, 3-phosphoglycerate, 
fructose-6-phosphate, dihydroxyacetone phosphate, phosphoenolpyruvate, pyruvate, and lactate). Lev-
els of  these metabolites were statistically similar between males and females, paralleling the similarities 
in overall transcript abundance seen in LGG (Supplemental Figure 6).

Out of  the 7 metabolites, 3 selectively stratified male, but not female grade 2 glioma patients. First, 
we determined that males whose gliomas had lower levels of  pyruvate did worse than males whose 
gliomas had higher pyruvate levels (Figure 7). No such effect was seen in female glioma patients. This 
was especially interesting, as pyruvate is a substrate for 3 proteins whose transcripts were identified as 
prognostic in our analysis. Lactate dehydrogenase A (LDHA) that converts pyruvate to lactate (and an 
important component of  poor prognostic metabolic subtype 3) and the MCTs that transport lactate 
and/or pyruvate (SLC16A3 and SLC16A8) across the plasma membrane were part of  this signature. 
LDHA overexpression in solid tumors including gliomas has been implicated in tumor progression, 
immune evasion, and reduced survival in solid tumors including gliomas (41–44). Intriguingly, there 
is evidence of  a sexual dimorphism in LDHA expression in both serum and tissue samples in healthy 
animals (45, 46). SLC16A3 (MCT4) is widely expressed in glycolytic tissues including tumors. Less is 
known about SLC16A8 (MCT3) that has restricted expression in the eye (47–52). Together, these find-
ings suggested that pyruvate metabolism and transport could represent a clinically measurable and 
actionable component of  sex differences in glioma glycolysis.

These findings prompted us to also investigate an additional metabolic parameter, the lactate/pyruvate 
(lac/pyr) ratio. The lac/pyr ratio is a normalized quantity that is a measure of  the equilibrium between 
the lactate product and pyruvate substrate of  LDH, a surrogate marker for the cellular oxidation-reduction 
state, and a relative measure of  glycolytic activity relative to mitochondrial respiration that is enhanced in 
hypoxia (53, 54). Interestingly, we determined that males with elevated lac/pyr did more poorly (median 
OS = 50 months) than did males with low lac/pyr (undefined median OS, P = 0.0497). Female gliomas 
trended in the opposite direction, as tumors with higher lac/pyr levels did better, although this effect was 
not significant (P = 0.2367, Figure 7). This supported our hypothesis that pyruvate metabolism mediated 
through enhanced LDH activity could potentially drive sex differences in LGG. Other significant metabo-
lites included fructose-6-phosphate, the metabolic product of  GPI (a component of  the 11-gene signature) 
and dihydroxyacetone phosphate that is upstream of  GAPDH (Supplemental Figure 7). These findings 
validated our transcriptomic results, further suggesting that survival risk in males but not females might be 
stratified with measures of  glycolysis such as FDG-PET.
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Discussion
Warburg observed that cancer cells, despite having adequate oxygen, preferentially generate energy 
through enhanced glucose uptake and conversion to lactate instead of  further oxidation of  pyruvate 
in the mitochondria (Warburg effect or aerobic glycolysis) (14). The relevance of  aerobic glycolysis to 
glioma biology and patient outcome is evidenced by the prognostic significance of  FDG-PET, where 
the uptake of  FDG positively correlates with glioma grade and inversely correlates with survival (17, 
55). Sex differences in glucose metabolism are evident immediately after fertilization and throughout 
life under normal circumstances. Here, we demonstrate that sex differences in glucose metabolism are 
also evident in glioma and have sex-specific effects on outcome. Within the male population, there is a 
subset of  males with significantly altered levels of  specific transcripts and metabolites within glycolysis 
who exhibit significantly decreased OS. Thus, while levels of  glycolytic transcript expression are simi-
lar in male and female glioma patients overall, sex-specific glycolytic phenotypes are more completely 
described by both gene expression and metabolite profile. This enhanced glycolytic phenotyping is not 
readily identifiable through transcriptomic analyses alone and is likely to be informative regarding sex 
differences in glioma biology and patient outcome.

Our findings also propose that clinical imaging can be used to noninvasively identify prognostic sex 
differences in metabolism. Although our transcriptome and metabolome data suggest that FDG uptake in 
male and female gliomas will be similar, clinical FDG-PET imaging in glioma care may require different 
reference ranges and interpretations for males versus females. In addition to FDG-PET imaging, there has 
been significant interest in emerging metabolic imaging technologies that measure hyperpolarized (HP) 
[13C]pyruvate uptake and metabolism in tumors with magnetic resonance spectroscopic imaging (MRSI) 
(56, 57). The possibility of  a prognostic sexual dimorphism in pyruvate/lactate transport and LDH activity 
in gliomas also suggests that in vivo quantification of  lactate/pyruvate flux using HP imaging could also be 
used as a complement to FDG-PET to identify prognostic sex differences in glioma metabolism.

How sex exerts its effects on metabolism and glioma biology remains to be defined. Sex differences 
in metabolism in the immediate postfertilization period are driven by the differences in sex chromo-
some complement, sex-specific reprogramming of  imprinted loci, as well as rapidly evolving sexual 
dimorphism in global epigenetics at the level of  histone modification and DNA methylation. These 
processes highlight an interdependency between epigenetics and metabolism in which epigenetics deter-
mines sex-specific expression of  metabolic enzymes and metabolites function as cofactors for epigenetic 
modifications (58).

The presence of  sex differences in epigenetic modifications and metabolic pathways suggest that there 
may also be sex differences in the activity of  signaling and metabolic pathways driven by oncogenes and 
tumor suppressors. Mutations in the PTEN tumor suppressor, for example, not only enhance proliferation 
and glucose metabolism through the upregulation of  downstream Akt and mTOR signaling (24), but there 
is also ample evidence of  sexual dimorphism in the expression and activity of  the PI3K/Akt/mTOR path-
way in brain liver, heart, skeletal muscle, and adipose tissue in both normal and noncancerous pathologic 
states (59–61). Our data showing sex-specific survival differences associated with glycolytic pathway gene 
expression highlight a previously uncharacterized finding that sex differences in metabolism may have a 
role in sex-specific survival. It further suggests that signaling cascades that regulate these metabolic path-
ways may be drivers of  these sex differences that will need to be elucidated in future investigations.

Our findings add to the growing body of  evidence that there are sex differences in the biology of  glio-
mas. Although little is documented with LGG, some intriguing discoveries have been made with glioblasto-
ma multiforme (GBM). In a mouse model of  mesenchymal GBM, combined loss of  Nf1 and Tp53 function 
in male astrocytes resulted in enhanced proliferation, greater induction of  a stem cell–like population, and 
tumorigenesis relative to female transformed astrocytes. Possible mechanisms underlying these sex-specific 
effects include cell-intrinsic differences in RB1 activation, which were greater in females (62). A second 
rodent model of  GBM in which male tumors exhibit higher proliferation, angiogenesis, and metabolic activ-
ity relative to females supports these findings (63). Clinically, there are also recognized phenotypic sex dif-
ferences in GBM. While necrosis is significantly higher in male GBM, females are selectively stratified into 
prognostically significant higher- and lower-necrosis groups (64). Although it is currently unclear as to how 
the female phenotypic variability in GBM relates to the male molecular variability seen in LGG, many fac-
tors may be involved, such as the presence of  specific mutational drivers (e.g., TP53 or MYC) that have been 
suggested to contribute to sex differences in GBM (64).
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Alterations in TP53 function are at the core of  cancer biology. The impact of  TP53 loss of  function 
has previously been described as sex dependent. Deletion of  Tp53 in mice results in disproportionate loss 
of  female embryos from neural tube defects, subsequently ascribed to differences in X chromosome dosage 
and Lyar function (65, 66). The presence of  sexual dimorphism in response to loss of  Tp53 activity has 
also been reported in neurofibromatosis 1–null (Nf1-null) mouse astrocytes. Here, combined loss of  Tp53 
and Nf1 function resulted in significantly enhanced growth rates, clonogenic potential, and in vivo tumori-
genesis in male compared with female astrocytes (62). Despite the lack of  differences in TP53 mutation 
enrichment in either the high-glycolytic or low-glycolytic groups, we found that male TP53/ATRX wild-
type patients actually did worse than the patients with mutant tumors when glycolytic gene overexpression 
was considered. Because the TP53 tumor suppressor has numerous effects on cellular metabolism that can 
be modulated by mutations (23), the etiology for these survival effects are currently unclear. Although these 
survival differences could be attributable to the potentially beneficial effects of  ATRX loss as described 
above, one additional possibility may involve interactions between TP53 and currently uncharacterized 
drivers of  glycolysis. However, this will need to be interrogated in future studies.

Mutations of  IDH were also observed to interact with the glycolytic phenotype. IDH mutations are 
found in gliomas as well as acute myelogenous leukemia (AML) (67). In general, IDH mutations are asso-
ciated with enhanced prognosis in glioma patients (28). The mechanism by which IDH mutations lead 
to improved prognoses is unclear but involvement of  the metabolite 2-HG and its potential inhibition of  
glucose metabolism has been proposed (29, 30). Our data support an interaction between IDH mutations 
and levels of  2-HG as determinants of  survival. However, our data also show a previously uncharacterized, 
discordant effect of  IDH status on survival in males and females when the level of  glycolytic transcription 
is considered. Although increased glycolytic gene expression stratifies males with IDH mutations, as seen 
with the rest of  the comparisons in this study, wild-type IDH patients stratify in the opposite direction 
where glycolysis identifies poor prognostic females but not males. This is a previously uncharacterized find-
ing that must be investigated further and may even reflect the biology behind a potential sexual dimorphism 
in GBM pathogenesis.

Although there are inherent limitations to this data-mining analysis, as it is based upon previously 
acquired genomic, transcriptomic, and metabolomic data, many important questions arise that stress the 
importance of  the sex of  the patient and the metabolism of  the patient’s tumor in both tumor classification 
and patient stratification. Large multicenter prospective trials are needed to further validate and estab-
lish the relevance of  these findings. We propose that imaging studies of  glioma glycolysis with FDG-PET 
should be reevaluated by the oncologic community to incorporate additional factors such as the sex of  
the patient, genomic alterations, gene expression, and biochemical/metabolic markers. Integration of  
these currently clinically available technologies through a new sex-specific lens may pave the way to new 
advancements in precision medicine.

Methods
Datasets. Level 3 RNA-Seq gene expression for TCGA LGG samples were obtained from the NCI Genomic 
Data Commons data portal and Broad GDAC Firehose data portal. The mutation information for the 
LGG samples was obtained from the GDAC firehose Oncotated Calls MAF files. Clinicopathologic data 
for these samples were downloaded from the cBioPortal for cancer genomics (http://www.cbioportal.
org/). Neoplasm histologic type and neoplasm histologic grade were used to define the histology and grade 
of  the LGG samples. Only tumor samples that represented primary tumors were used and all recurrent 
tumor samples were excluded from the analysis. In total, molecular data were available for 228 females and 
285 males and OS data available for 227 females and 283 males.

Inferring 1p/19q codeletions of  LGG samples. Because 1p/19q deletions for samples are not annotated 
in TCGA, we inferred the codeletion status of  the LGG samples using SNP-based loss-of-heterozygosity 
(LOH) analysis based on the copy number variation data (CNV) obtained from the Broad GDAC Firehose 
database (68). In brief, the focal somatic CNV in LGG samples were determined using GISTIC 2.0 (69). The 
segment mean is the log2 ratio of  the tumor intensity to the normal intensity. Conversion to an absolute CN 
value can be done by applying 2segment mean × 2. Similar to a previously published approach using the TCGA 
(21), we further inferred regions of  LOH with an absolute CN value less than 1.8, and aggregated different 
focal CNV into the corresponding chromosome arm positions, and determined the 1p1/19q codeletion by 
assessing whether the 1p and 19q are over 80% deleted. One hundred sixty-eight out of  513 samples were 
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determined to be 1p/19q codeleted, with an average of  94.5% of  1p and 86% of  19q being deleted with a 
standard deviation less than 1%. Comparison with the published TCGA analysis (with 293 samples ana-
lyzed in that publication; see ref. 21) showed that we were able to identify 86 additional samples with 1p/19q 
codeletion apart from their 83 samples. Two of  the samples previously reported as codeleted in TCGA 
(TCGA-CS-5394-01 and TCGA-DU-5870-01) were excluded from this group as they are mostly 1p deleted, 
but only 60% deleted in 19q.

Glycolytic pathway gene expression analyses. Gene expression values from 36 genes that characterize hex-
ose uptake (SLC2A1, SLC2A2, SLC2A3, SLC2A4, and SLC2A5), glycolysis (HK1, HK2, HK3, GCK, GPI, 
PFKM, PFKL, PFKP, ALDOA, ALDOB, ALDOC, GAPDH, GAPDHS, PGK1, PGK2, PGAM1, PGAM2, 
ENO1, ENO2, ENO3, PKM2, PKLR, LDHAL6B, LDHA, LDHB, and LDHC), and monocarboxylate (lactate 
and pyruvate) transport (SLC16A1, SLC16A3, SLC16A7, and SLC16A8) were analyzed.

To identify sex differences in expression level among glycolytic genes, RSEM expression for each gene 
was plotted individually for males and females. A 2-tailed t test was used to determine significant expres-
sion differences between males and females. For all subsequent analyses, the gene expression value was 
transformed into a Z score that was specific to the sex of  the patient.

K-means clustering of  LGG samples. The sex-specific Z scores of  the 36 candidate glycolytic genes were 
input into a K-means clustering analysis using the Hartigan-Wong algorithm. To overcome potentially dif-
ferent cluster assignment using different starting points, 1,000 random starting points were used to assign 
female and male patients each into 2 clusters, while the cluster membership of  male and female patients 
was ultimately defined by the random starting point leading to the optimal separation of  the 2 clusters. 
MDS plots were used to illustrate that the smaller of  the 2 clusters corresponds to the extreme groups in the 
first MDS coordinate. A heatmap of  the glycolytic Z scores of  each sex was generated with samples ordered 
by cluster membership and genes were clustered based on Euclidean distance and average linkage. The 2 
clusters of  each sex were associated with survival endpoints by the Kaplan-Meier method and the log-rank 
test was used to compare survival difference between clusters. The HRs with 95% CIs of  patient groups 
were estimated. All analyses were conducted in R (version 3.3.1).

Survival-based algorithm for sex differences in glycolysis. To determine a Z score for glycolytic gene expres-
sion that could maximally stratify males, the Z-score threshold using all 36 genes simultaneously was scaled 
from 0 to 3 in 0.25-unit increments. The log-rank test was used to calculate the P value indicating statistical 
significance of  survival difference and derive the HR with 95% CI. The Z-score threshold that maximized 
differences in male survival (Z = 1.75) was selected for transcript-specific analyses.

To determine specific glycolytic transcripts whose overexpression (Z > 1.75) resulted in decreased OS, 
each of  the 36 transcripts was analyzed individually among males and females separately. Any patient sam-
ple with a sex-specific Z score for that specific transcript that was over the threshold was labeled as selected. 
Conversely, any sample whose Z score was below the threshold was labeled as unselected.

The OS, DFS, and survival status of  the selected samples were extracted and compared with those from 
the unselected samples by fitting the data by the Kaplan-Meier method to determine the median survival 
times of  both male groups. The log-rank test was also used to calculate P values to determine significance 
of  the survival differences. Genes whose overexpression resulted in a significantly (P ≤ 0.05) decreased 
median OS in the selected samples versus the unselected samples were saved. The same procedures were 
applied for all female samples independently.

Genomic alteration analyses. Genomic alteration data were compiled for all LGG samples. All mutations 
for a given gene were used. IDH-mutant samples were defined as having either IDH1 or IDH2 mutations. To 
determine significant differences in mutation enrichment between groups, a 2-tailed Fisher exact test was 
performed using the total number of  samples with a given mutation versus wild type and high-glycolytic 
versus low-glycolytic classification. Data were plotted as the fraction of  samples with a mutation within 
either the high-glycolytic or low-glycolytic group.

Metabolomic analysis of  patient survival. All glioma samples were obtained retrospectively from the H. 
Lee Moffitt Cancer Center (Tampa, Florida, USA). Quantitative metabolomic datasets of  grade 2 gliomas 
(9 females and 8 males) performed at Metabolon Inc. were published previously (16). An additional 10 
female and 18 male grade 2 glioma datasets that were also generated by Metabolon Inc. using the same 
methods published previously (16). For statistical analyses, missing values (usually due to detection limit) 
were imputed with the compound minimum value (16, 70–72). Glycolysis metabolites (glucose, 3-phos-
phoglycerate, fructose-6-phosphate, dihydroxyacetone phosphate, phosphoenolpyruvate, pyruvate, and 
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lactate) were isolated from the datasets. The lac/pyr ratio was calculated by dividing the lactate quantity 
by the pyruvate quantity. Metabolite quantities were converted to sex-specific Z scores and datasets were 
merged. A 2-tailed Mann-Whitney-Wilcoxon test was performed to establish significance in metabolite lev-
els between males and females. For survival analyses, a biomarker cutoff  optimization algorithm was used 
to determine metabolite levels that can maximally stratify male gliomas (40). The OS and survival status 
of  the patient samples were fitted to a Kaplan-Meier model. The log-rank test was used to determine the 
P value and significance of  the differences. Optimal Z-score thresholds used for the significant metabolites 
were as follows: fructose-6-phosphate (Z = –0.6113), dihydroxyacetone phosphate (Z = 0.1054), pyruvate 
(Z = –0.01736), and lac/pyr ratio (Z = –0.2818).

Statistics. Statistics involved with transcriptome and metabolome profiling are detailed in the sections 
above. All Student’s t tests and Fisher exact tests were performed 2-tailed. All survival analyses were per-
formed using the Kaplan-Meier method and log-rank test using GraphPad Prism. A P value less than 0.05 
was considered significant for all tests.

Study approval. All transcriptome data were obtained from TCGA. For metabolome data, Institutional 
Review Board/Human Subjects approval from H. Lee Moffitt Cancer Center was obtained prior to the study.
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