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Introduction
Lipids are a large heterogenous class of  hydrophobic molecules important in health, development, and 
metabolic disorders, including cardiovascular disease, arthritis, and diabetes (1–4). They account for 
30% of  most organs but 60% of  the brain (w/w). Their analysis, termed lipidomics, increasingly utilizes 
high-resolution mass spectrometry (MS) and thus requires bespoke informatics tools to process the large 
volumes of  data generated. Lipids comprise up to a third of  metabolomic database entries; however, 
informatics workflows tailored specifically to their analysis, and in particular to discovery of  new lipids 
using high-resolution MS, are not well represented or are only commercially available and cannot be user 
modified. Currently available lipid-focused workflows — for example Greazy, LipidBlast, LipidView 
(Sciex), and LipidSearch (Thermo Fisher Scientific) — have been generated primarily for analysis of  
known lipids, with Greazy, LipidView, and LipidBlast using MS/MS data (5, 6). While LipidSearch can 
be applied to high-resolution MS analysis as well as MS/MS, it is not designed to mine for novel lipids. 
Both LipidView and LipidSearch are only available commercially and cannot be modified or improved 
by addition of  code by subsequent users.

Lipids exhibit enormous structural and functional diversity and include many isobaric species, greatly 
increasing the complexity of  their analysis (7, 8). We are only beginning to explore how they change on a 
global scale in humans, including both known and unknown lipids in individuals over time, and how they 
are influenced by environmental conditions including diet, health, and time of  day, as well as genetic/racial 
background. Fundamental questions such as the total number and diversity of  lipids in mammalian cells 
remain largely unanswered.

We recently defined the global lipidome in human platelets and how this changes on thrombin acti-
vation (9). Significant variation was seen in a small group of  healthy donor platelets, with a mean of  
approximately 5,500 individual species per isolate. Importantly, up to 50% of  the detected ions were absent 
from online databases, indicating significant potential for discovery. In that study, an analytical method 
that facilitated detection of  low-abundance species, often the most biologically important, using long chro-

Accurate and high-quality curation of lipidomic datasets generated from plasma, cells, or tissues 
is becoming essential for cell biology investigations and biomarker discovery for personalized 
medicine. However, a major challenge lies in removing artifacts otherwise mistakenly interpreted 
as real lipids from large mass spectrometry files (>60 K features), while retaining genuine ions in 
the dataset. This requires powerful informatics tools; however, available workflows have not been 
tailored specifically for lipidomics, particularly discovery research. We designed LipidFinder, an 
open-source Python workflow. An algorithm is included that optimizes analysis based on users’ 
own data, and outputs are screened against online databases and categorized into LIPID MAPS 
classes. LipidFinder outperformed three widely used metabolomics packages using data from 
human platelets. We show a family of three 12-hydroxyeicosatetraenoic acid phosphoinositides 
(16:0/, 18:1/, 18:0/12-HETE-PI) generated by thrombin-activated platelets, indicating crosstalk 
between eicosanoid and phosphoinositide pathways in human cells. The software is available on 
GitHub (https://github.com/cjbrasher/LipidFinder), with full userguides.
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matographic analyses combined with high-resolution MS was used. This was needed to minimize ion sup-
pression and matrix effects, and to enable distinction of  ions with extremely close molecular masses. An 
immense volume of  data was generated, with subsequent processing being the major rate-limiting step.

A number of  freeware and commercial processing tools — for example, XCMS, MZmine, MS-Dial, 
MetAlign, OpenMS/TOPP, and Progenesis (Nonlinear Dynamics) — are available to process metabolo-
mics high-resolution datasets (10–16). Although sometimes used in lipidomics studies, they were devel-
oped for proteomics and metabolomics (17–22). Due to the complexity and size of  the lipidomic datasets 
(typically > 200 MB) these were unable to process them satisfactorily. Many low-abundance but crucial 
biologically important lipids were not detected, and numerous artifacts remained. Thus, we established 
an Orbitrap-based workflow, first using SIEVE (Thermo Fisher Scientific) for chromatographic alignment 
and framing, followed by an in-house–developed Excel tool to better extract peak components, remove 
adduct ions and contamination, and correct retention times (RTs) (9). This early version was then fol-
lowed by extensive manual verification. This was extremely labor intensive and not suitable for long-term, 
high-throughput use. To solve this, we developed LipidFinder in Python, which automates the Excel/man-
ual process, searches three independent online databases to obtain putative identification of  lipids, and 
assigns them to a class based on the LIPID MAPS system. This represents a significant advance, and 
herein, we compare this with other commonly used approaches, as well as show identification of  new lipids 
in human platelets. The LipidFinder source code is available on GitHub (https://github.com/cjbrasher/
LipidFinder), with a full userguide available (Supplemental Userguide). An email address for users to input 
comments or suggestions is also available (lipidfinder@cardiff.ac.uk).

Results
The following sections give detailed overviews of  the approach used by the separate programs that com-
prise the LipidFinder workflow. We also compare this with three other commonly used metabolomics 
packages in terms of  finding a reference list of  lipids and supporting data cleanup. Full details on how to 
use LipidFinder are provided in Supplemental Userguides; supplemental material available online with this 
article; https://doi.org/10.1172/jci.insight.91634DS1.

LipidFinder workflow overview. LipidFinder is an open source, platform-independent, Python workflow, 
developed initially for use with SIEVE to process MS data from lipidomic experiments. SIEVE can align 
chromatograms, correcting for RT shifts, and can pick out signals, assigning m/z and time brackets called 
frames. Its output, in comma-separated values format (CSV format), is used as input to LipidFinder. Five 
separate programs make up the LipidFinder workflow, as shown in Figure 1: (i) Optimiser, an optional 
parameter optimization step using heuristics that analyzes the users’ own data to find optimum values 
for processing; (ii) PeakFilter, the main peak-finding algorithm, also incorporating contaminant/adduct/
isotope removal and RT correction; (iii) Amalgamator, an optional program used to combine data sets 
from positive and negative runs, where applicable; (iv) WebSearch, used to interrogate online databases to 
putatively identify lipid species; and (v) FileProcessing, used to merge database results and further clean up 
the resulting data.

As described in the Methods, data from the open source and platform-independent XCMS may also be 
integrated into the LipidFinder workflow as an alternative to SIEVE.

Since XCMS currently only uses centroid data, and also because profile mode data is substantially 
larger (leading to substantial processing and storage issues), we have herein used centroid for analysis with 
LipidFinder.

Optimiser overview. Optimiser allows users to choose the most appropriate parameter values for their 
dataset. The success of  MS data analysis relies on the correct choice of  settings for the various algorithms 
used. These are often only determined through repeat analysis, adding considerable time and effort, or 
are chosen manually by ad hoc rules of  thumb, lessening the quality of  results. With PeakFilter, the peak 
finding process has the largest impact on data quality. In this, four user-defined parameters govern how the 
heuristics are applied; peak width, frame proximity, m/z tolerance, and intensity fold difference between 
adjacent frames. Depending on the lipidomics dataset, optimum settings for these can vary widely. Owing 
to its rapid processing time, PeakFilter lends itself  to automatic parameter selection, and to exploit this, 
we implemented a “hill climbing” algorithm. This iterative optimization technique involves selection of  
an arbitrary initial parameter set that is then scored for fitness (Figure 2). Optimized parameter sets are 
sought by incrementally changing individual parameters and rescoring until further changes do not pro-
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duce improvement. To test 
the performance of  parame-
ters, a representative subset 
of  lipids for a single replicate 
is curated manually. The suit-
ability of  the parameters is 
then scored against PeakFil-
ter’s resulting ability to find 
them at the correct RT, m/z, 
and intensity. This optional 
functionality is a significant 
enhancement over other 
available data processing 
tools. Our results that follow 
below show that incorporat-
ing Optimiser into the work-
flow substantially increases 
the number of  actual/real 
lipids found. The heuristics 
are described in more detail 
in Methods.

PeakFilter overview. Peak-
Filter can be run with minimal 
input, with an associated file 
used to store processing param-
eters that can be user-modified 
(Supplemental Data: parame-
ters.csv tab for default values 
used for this study). These 
include on/off toggles for a 
number of optional steps, such 
as contamination and adduct 

removal. The mass tolerance value, column type, polarity, and various threshold values can also be recorded.
With long chromatography analyses, small changes in RT between samples often render SIEVE (or 

other platforms) unable to align peak intensities appropriately. To compensate, PeakFilter corrects for dif-
ferences between multiple runs, aligning ions with matching m/z but slightly different RTs to the time with 
the highest intensity. This markedly improves alignment and is essential where multiple replicates from 
different datasets are to be compared for differences in lipidome composition.

A major issue with electrospray ionization (ESI), the commonest mode used for lipids, is the gen-
eration of  ions arising from either common contaminating ions, in-source fragments of  lipids, multiple 
noncovalent adducts, or solvent background (23–26). To remove these, PeakFilter includes several optional 
processing steps to clean the data. Unique to our approach, lipid stacks and contamination stacks are 

Figure 1. Schematic of the 
LipidFinder data processing 
workflow (using SIEVE). Data 
is first analyzed using UPLC/
FTMS, and SIEVE is then fed 
into the LipidFinder workflow, 
which incorporates Optimiser, 
PeakFilter, Amalgamator, Web-
Search, and FileProcessing. Data 
files that retain m/z, peak area, 
retention time, and putative 
identifications are outputted at 
the end.

https://doi.org/10.1172/jci.insight.91634


4insight.jci.org   https://doi.org/10.1172/jci.insight.91634

T E C H N I C A L  A D V A N C E

removed, where a stack is defined as a series of  ions each differing in m/z from the next by a fixed mass, a 
common feature of  contaminating ions and adducts in ESI. Lipid stacks elute at the same RT and include 
noncovalent adducts and in-source fragments. Noncovalent adducts are particularly prevalent in positive 
ion mode — for example, glycerides, which are commonly detected as both Na+ or NH4

+ adducts. In-source 
fragment ions typical of  lipids include loss of  water from molecular ions and neutral loss of  phospholipid 
headgroups, especially in positive ion mode. Contaminant stacks are visible as diagonally spaced ions (dif-
fering by both RT and m/z by defined gaps), often as multiples of  the same mass difference. We included 
published m/z values for many known contamination adduct ions but also identified in our dataset by 
manual interrogation of  additional families that were subsequently incorporated into our analysis (Supple-
mental Data: contaminants.csv and stacks.csv tabs) (23–26). One further new clean-up step is the removal 
of  broad RT contamination, where the same m/z values appear across the whole chromatogram, with 
similar intensities. A detailed description of  methods used in these processing steps is provided in Methods 
and Supplemental Userguides.

Amalgamator overview. If  aiming to estimate total number or diversity of  lipids in a cell or tissue sam-
ple, data from both positive and negative liquid chromatography/ mass spectrometry (LC/MS) analyses 
needs to be combined. However, many lipids ionize in both modes. To compensate, positive and negative 
ion mode datasets are processed separately through PeakFilter, then combined using an additional Python 

Figure 2. Overview of Optimiser. A range file (max and min list) is inputted, and the module then chooses random starting parameters. These are inputted 
and tested, then rescored using Optimiser’s PeakFilter functionality, until further changes do not produce improvement in peak detection (RT, m/z, and 
intensity). The process uses a representative subset of lipids that has been manually curated from raw data.

https://doi.org/10.1172/jci.insight.91634
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program, Amalgamator. Where positive and negative records match on both m/z and RT, the ion with 
highest intensity is retained. There is also an option to record only the intensity from this ion or the sum of  
the positive and negative ions together. We use two separate mass differences to compare the positive and 
negative m/z values: 2.014552 amu, for [M-H]– vs. [M+H]+ for most lipid classes, and 16.030751 amu for 
[M-CH3]

– vs. [M+H]+ for phosphatidylcholine (PC) lipids. As this may not correct for all lipids, more may 
need to be added as we refine the methodology. This step can be omitted if  not required.

WebSearch and FileProcessing overview. Once lists of  m/z values have been collated, putative identifica-
tion using online databases is required. High-resolution MS without fragmentation allows putative (as in 
proposed) identification only, and when dealing with several thousands of  ions, fully validated (with 100% 
confidence) identification is not possible as a first step. Thus, we typically putatively identify all ions in 
our samples and then select a smaller group for MS/MS and structural identification based on biological 
considerations that could include (i) functional relevance, (ii) generation during cell activation/present in 
disease, and/or (iii) membership of  a family of  lipids based on m/z differences that indicate fatty acid sub-
stitutions or oxidation motifs (9). WebSearch automates searches from three primary online repositories 
— HMDB, LIPID MAPS, and LipidHome — using m/z and retains RT and intensity information (27–29). 
Both LipidHome and LIPID MAPS allow an automated query by WebSearch. Specifically, LipidHome 
provides a “webservice,” while LIPID MAPS allows command line access. In contrast, HMDB is searched 
using standard web-scraping methods. Similar to LipidFinder, WebSearch uses a parameters file that can be 
updated as required and allows input of  separate m/z tolerance values for each database query (Supplemen-
tal Data: webSearch_parameters.csv tab). The format of  search results is not consistent between databases; 
thus, FileProcessing combines these into a single results file with lipids automatically categorized into one 
of  the LIPID MAPS classes (30) according to the category map spreadsheet (Supplemental Data: catego-
ries_map.csv tab). Additional mappings can be added by the user. Molecules lacking an associated lipid 
class are categorized as other metabolites. Adduct names are also standardized, and only those listed are 
retained (Supplemental Data: standardized_adduct_names tab). Duplicate records between databases and 
records where the mass error is greater than a user-specified tolerance are removed. Online databases com-
prise a mix of  curated and computationally generated lipids, which can give vastly different search results. 
Advantages and disadvantages of  each are covered later under platelet lipid identification.

LipidFinder workflow analysis of  platelet lipids. Lipids were isolated from platelets and then analyzed using 
untargeted LC/Fourier Transform MS (Orbitrap) in negative and positive ion mode (see Methods). In this 
experiment, two columns were used: one optimized for more lipophilic species (nonpolar, e.g., glycerides, 
phospholipids, sterol esters) and one for less lipophilic (polar, e.g., fatty acids, eicosanoids). Solvent gradi-
ents ran from 30–50 min with full scan (100–900 amu) at 60K resolution. The data was analyzed using the 
SIEVE/LipidFinder workflow and a CSV output file generated after each step. Optimiser was used to set 
parameter values. Scatter plots (m/z vs. RT) illustrate how PeakFilter cleans and finds real ions for negative 
ion mode chromatographic data (Figure 3). The entire data set after SIEVE — but before PeakFilter — is 
shown, followed by sequential cleanup steps, where blue ions remain following each successive cleanup, 
with black being removed. We note that the number of  ions is reduced from 82,853 before PeakFilter to 
only 3,957 after PeakFilter: a reduction of  95%. This illustrates the utility of  our approach to clean up and 
remove unwanted nonlipid contaminant ions from the dataset.

Comparison of  LipidFinder program with XCMS, MZmine, and Progenesis. To determine the effectiveness 
of  LipidFinder’s PeakFilter program at cleaning up untargeted datasets, we compared it with three of  the 
most commonly used tools: XCMS, MZmine, and Progenesis. We manually set parameters to achieve the 
best possible outcomes, although for SIEVE/LipidFinder, we used our hill climbing algorithm (Optimiser). 
Scatter diagrams of  final outputs from each show differences, in particular regarding removal of  contam-
inant ions (Figure 3B). Horizontal rows of  ions appear across several plots (same m/z value appearing 
across the time spectrum) but are especially evident in MZmine. Similar “lines” are visible in the XCMS 
plots. In our LipidFinder workflow, these are mostly eliminated by the broad contamination removal step. 
Users should manually inspect their data by plotting m/z vs. time and visually screening for vertical (lipid 
stacks), horizontal (RT contaminants), or diagonal (contamination stacks) sets of  ions in their dataset. 
Some diagonal sets will be true lipids — e.g., triglycerides that differ in defined fatty acid chain length and 
saturation elute in this manner — so careful inspection is needed before routine removal is implemented.

Although each program uses different algorithms, all aim to limit the number of  false-positive peaks, 
while retaining true lipids, a major and complex challenge with large high-resolution lipidomic datasets. 

https://doi.org/10.1172/jci.insight.91634
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Figure 3. Detection of a list of putatively identified positively and negatively charged lipids by LipidFinder and three commonly used processing 
packages. (A) Table of reference lipids identified by lipid species and category and whether they were detected (green)/undetected (red) by each 
of the four programs. A series of platelet lipids was manually verified to be present in the Orbitrap dataset, using Xcalibur, and then interrogated 
for detection using each of the programs, as shown. (B) Bar chart summary of A results. Data shows the % of lipids in positive/negative ion mode 
detected by each program, calculated from A.

https://doi.org/10.1172/jci.insight.91634
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Although the same raw data was used, very different numbers of  ions were detected overall using each pro-
gram. Apart from the polar positive column, where low numbers of  ions were found, PeakFilter retained 
more than each of  the other programs (Figure 4). Changing parameter settings would affect these overall 
numbers, but decreasing the number of  ions risks removing potentially important lipids. Crucially, this 
reflects PeakFilter’s ability to mine deep into the data, an important consideration for discovery lipidomics. 
Currently, LipidFinder is not able to estimate the FDR. In metabolomics, FDR typically uses a target and 
decoy database where the decoy is made up of  scrambled MS/MS spectra (31–33). As we use MS data for 
LipidFinder, this approach would not be feasible. In late 2017, a second release incorporating fully validat-
ed identifications, with MS/MS for up to 500 lipids in plasma, is planned; at that point, we will include 
FDR in our workflow (34).

To determine the ability of  PeakFilter to retain real lipids, relative to other available tools, a refer-
ence list of  409 putatively identified lipids, manually verified as present in the raw data, was compared 
using outputs from each program (Figure 3, A and B). This included both low-abundance lipids (e.g., 
eicosanoids, prostanoids, and lysophospholipids) present at very low amounts in our platelet extracts and 
higher-abundance structural species (e.g., phospholipids). PeakFilter (with Optimiser) detected 88% of  the 
reference lipids in positive mode and 84% in negative mode. This was higher than the other programs, with 
XCMS coming closest (Figure 3B). Overall, this equates to an average detection rate of  86% for PeakFilter, 
compared with 75%, 57%, and 53% for XCMS, Progenesis, and MZmine, respectively. We note that 4% 
of  the lipids remained undetected by any program, whereas 31% were found by all four. PeakFilter found 
44 (11%) of  the lipids that were not detected by any other program, while 95% of  lipids were found using 
the combination of  PeakFilter and XCMS. Importantly, if  Optimiser was not used and parameters were set 
manually, the PeakFilter detection rate dropped from 86%–68%. This represents a significant advantage of  
using Optimiser to improve data quality that is unique to our LipidFinder workflow.

Putative identification of  platelet lipids using WebSearch/FileProcessing. Before putative identification, pos-
itive and negative datasets from PeakFilter were combined using Amalgamator. WebSearch queried these 
against HMDB, LIPID MAPS, and LipidHome. Results were merged and filtered into lipid groups, and 
duplicate names were removed using FileProcessing. Using the polar or nonpolar columns for a list of  
3,603 or 10,018 m/z values, approximately 45%–57% were putatively identified, respectively. For many 
ions, multiple lipids were identified for a single m/z value, in some cases up to several hundred. Thus, the 
most commonly observed lipid category is used by the program as the category designation. Using this, the 
majority of  polar lipids in human platelets were categorized as fatty acyls or glycerophospholipids, whereas 
most nonpolar lipids were identified as glycerophospholipids (Figure 5A).

Scatter diagrams, color-coded according to lipid class, are shown to illustrate the range of  lipids found 
in platelets using this approach (Figure 5B). Only 32% polar and 27% nonpolar species were assigned 
a putative match using all three databases, and there were substantial differences in how each database 
assigned matches (Figure 5C). This highlights the usefulness of  including several databases to gain maxi-
mum putative coverage of  the lipidome. It also shows that large numbers of  ions are not represented. Our 
recent study on platelet lipids using Excel/manual curation estimated this to be around 50%, somewhat 
less than that seen here using our Python-based workflow (9). This is likely due to the greater ability of  
LipidFinder to deep mine and thus uncover more unknown ions.

Online databases comprise a mix of  curated and computationally generated lipids. For example, LIPID 
MAPS includes both, but functionality was recently added that enables the user to search each separately. 
Similarly, LipidHome contains in silico “theoretical” lipid structures, thus “lipids” that may not exist in 
mammalian or biological systems are included. HMDB contains all types of  small molecule metabolites, 
including lipids, but these include both detected (measured and confirmed existence) and expected metab-
olites (known pathways and human intake, but not yet detected in humans) (26). In addition to human 
intake, the microbiome is another source of  potential non–human-derived lipids that could be expected to 
be detected in analysis of  human samples (35). These caveats need to be considered when interpreting data-
base results. As shown herein, the number of  hits returned will be considerably greater if  computational 
data is included, and while this increases the likelihood of  a match, more inaccurate assignments will also 
result. The LIPID MAPS curated data only includes mammalian lipids; thus, it may be preferable for ini-
tial searches, especially when working with plasma/serum or other human/murine tissues. However, only 
[M+H]+ or [M-H]– can be searched using WebSearch. If  wishing to focus on known lipids only, using the 
LIPID MAPS curated list substantially reduces the hits per lipid species. For example, m/z value 885.7872 

https://doi.org/10.1172/jci.insight.91634
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Figure 4. Demonstration of LipidFinder analysis of a dataset of platelet lipids and comparison of performance between LipidFinder and three 
commonly used metabolomics processing packages. (A) Sequential cleanup steps implemented in PeakFilter, after Optimiser parameter setting 
show removal of large numbers of artifact ions. Scatter diagrams of the PeakFilter output after a selection of steps in the workflow for one sample 
in nonpolar negative ionization mode. Blue dots indicate m/z ions remaining from current step; black dots indicate m/z ions from previous step. (B) 
Scatter diagrams of the final outputs from each of the four programs tested, showing the elution of lipids from polar or nonpolar columns, in either 
negative or positive ionization mode. Red values in bottom right of plots indicate the total lipids plotted. Note the numerous horizontal groups of 
artifact ions visible in nonpolar negative plots for XCMS, MZmine, and Progenesis.

https://doi.org/10.1172/jci.insight.91634
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returned 64 hits when the LIPID MAPS search included curated and computational results, but it returned 
2 hits when limited to curated. Additionally, numerous m/z values return hits that comprise solely com-
putational data, such as m/z 897.7889, which has 65 computational matches. For our nonpolar negative 
data set of  5,471 ions, 878 had curated LIPID MAPS matches (each with numerous potential IDs), but this 
almost doubled to 1,624 when computational data was included. Although HMDB stores whether a com-
pound is detected or expected, it is not possible to restrict searches to “detected” data, and this information 
is not provided in the results file. For example, a search of  m/z 885.7872 returns 94 hits from HMDB. By 
manually delving further into each hit separately, “expected” data can be filtered out; however, this is a 
mammoth and unfeasible task when dealing with very large numbers of  potential lipids. For WebSearch, 
we included three search options, CUR (LIPID MAPS curated only), COM (computational data from 
LIPID MAPS, HMDB, and LipidHome), and ALL (curated and computational from all three databases).

Structural identification of  new families of  platelet lipids as eicosanoid-esterifed phosphoinositides. We apply 
deep-mining, high-resolution approaches to discover lipids likely to be relevant in inflammation and 
vascular function. Thus, we inspected MS data from lipids extracted from thrombin-activated platelets 
analyzed as described above and noted a group of  ions with m/z and RT suggestive of  a fatty acid–con-
taining family, e.g., differing by fatty acid chain length and/or saturation (m/z 901.5448, 899.5291, 
and 873.5135). Initial searches suggested these to be phosphoinositides (PI), containing an additional 
oxygen (38:4, 38:5, and 36:4) (Figure 6, A and B). They were further analyzed using LC/MS/MS 
and identified as 12-hydroxyeicosatetraenoic acid–PIs (HETE-PIs), with diagnostic daughter ions: m/z 
179.2 (12-HETE), 319.2 (HETE), and m/z 315.2, 241.0, and 153.1 for the PI headgroup, and 255, 281 
and 283 for sn1 fatty acids 16:0, 18:1, and 18:0 for parent m/z 873, 899, and 901, respectively (Figure 
6C). They were not detected in resting platelets and elevated robustly on thrombin activation (Figure 6, 
D and E). The absence of  internal daughter ions for other HETE positional isomers and the presence 
of  single peak for each on LC/MS/MS confirms that they are enzymatically generated via the platelet 
12-LOX isoform from endogenous substrate on pathophysiological activation of  platelets (Figure 6). PI 
is a low-abundance but critically important signaling lipid, and molecular convergence between PIs and 
eicosanoid pathways has not been observed before. We previously reported that platelets acutely esterify 
12-HETE to the highly abundant phosphoethanolamine (PE) and PC phospholipids, generating pro-
coagulant species through changing the interaction of  the headgroup with membrane-binding proteins 
(36). Similarly, the presence of  HETE in PI may alter the orientation of  the inositol headgroup in the 
cell membrane, leading to changes in how this critically important signaling lipid interaction becomes 
phosphorylated to PI and subsequent interactions with kinases or PH domain–containing proteins. 
Indeed, PIs are well-known mediators of  platelet function (37–39). Next, PI can become glycosylated 
to form glycosylphosphatidylinositol (GPI), which — via covalent reactions — forms anchors for pro-
teins in membranes (40). In both cases, the presence of  HETE in PIs or GPIs could alter their biology 
through changing their physical interactions with membrane hydrophobic compartments.

Summary. Fundamental questions remain unanswered regarding the diversity and overall number of  
lipids in mammalian cells and tissues, and informatics tools to specifically analyze datasets generated 
from lipidomics of  healthy and diseased tissues are lacking. Existing informatics tools were not developed 
specifically for lipids, nor do they attempt to remove artifacts sufficiently for robust estimates of  global 
cellular lipidomes to be undertaken. To this end, we developed a new Python workflow, LipidFinder, to 
automate data cleanup and peak finding for lipidomics and to putatively identify the resulting ions. We 
compared LipidFinder with three widely used metabolomics tools and showed it was superior at deep 
mining, specifically detecting a reference list of  lipids and returning more genuine hits, while removing 
contaminating/artifact ions. LipidFinder detected both low- and high-abundance ions, reflecting its utility 
for discovery lipidomics. WebSearch highlighted the differences between available online databases and 
the importance of  searching several for complete coverage of  available data, while taking care with com-
putational datasets to ensure data quality.

Despite the improvements, several caveats remain. A single workflow will not provide a perfect solu-
tion in terms of  robust cleanup of  all lipidomic datasets, due to the inherent complexity and diversity 
of  these datasets. Thus, researchers should consider specific needs and how to interpret outputs. Testing 
data quality using curated lists of  predicted lipids is essential. Furthermore, analysis of  low-abundance 
and often highly biologically important ions requires a high degree of  MS sensitivity, as well as robust 
and reproducible chromatographic separation. Herein, two columns were used; however, molecules 
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detected on both then needed to be identified and removed. In our previous study, this was done manu-
ally — an extremely time consuming activity (9). Recently, we implemented a single 60-min separation 
using a C18 Accucore column (fused core material 2.7 μm, 2.1 mm x 150 mm), removing the need for 
duplicate removal (unpublished data).

Lipidomics increasingly aims to compare large numbers of  cellular or disease cohort samples in 
order to identify differences that describe sample sets. This focuses on discovery of  biomarkers either 
for diagnostic use in personalized medicine or for further mechanistic study. High-throughput analysis 
either using no or shorter chromatography runs is often preferred in order to enable large sample num-
bers to be analyzed and thus increase statistical power. While designed primarily for discovering new 
lipids, the LipidFinder workflow can also be applied in a high-throughput context, increasing cleanup 
in order to decrease the likelihood of  false positives. Future releases will incorporate additional features 

Figure 5. Putative identification of LipidFinder results and comparison of database searches. (A) Bar charts showing 
predominant lipid molecular species in platelets are phospholipids. Each ion was classed using FileProcessing according 
to the most prevalent hits from three databases into LIPID MAPS categories. (B) Scatter diagrams of the LipidFinder 
output showing elution of lipids from polar or nonpolar columns, in either negative or positive ionization mode and col-
or-coded by lipid category. (C) Venn diagrams showing the utility of using several databases for putative identifications. 
Distribution of hits across three different databases found using WebSearch is shown. The number in yellow represents 
the number of lipids not given any putative match. Computational and curated data from all databases was used.
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Figure 6. MS identification of eicosanoid-phosphoinositide lipids generated by platelets. (A) Orbitrap MS of HETE-PIs in platelet lipid extracts at 
60,000 resolution (at m/z 400) showing elution of ions with m/z values corresponding to 18:0, 18:1, and 16:0/12-HETE-PIs. (B) MS of the putative 
HETE-PI ions. Single ions are shown at expected m/z values, circled, for the corresponding lipids in A. (C) MS/MS of the two most abundant HETE-
PIs. Ions from 12-HETE (m/z 179, 319), PI headgroup (153,241, 315), and sn1 fatty acids (283 and 281 for 18:0 and 18:1, respectively) are seen. (D and E) 
LC/MS/MS separation of thrombin-activated (D) or basal (E) platelet lipid extracts monitoring MRM transitions corresponding to HETE-PEs. HETE-
PIs are only detected following activation of platelets.
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to ensure that LipidFinder remains a cutting-edge informatics tool for lipidomics. We point out that, 
as our code is deposited on GitHub, others can freely download, use, and modify without restriction, 
including adding new modules.

We show using platelets that many more mammalian lipids (and likely metabolites) remain to be iden-
tified, in particular low-abundance species of  likely biological importance. Thus, the new workflow fills an 
identified gap in existing tools required for discovery of  new lipids. The major challenge now lies in decid-
ing which lipids to invest effort in structurally characterizing, and this needs to be based on biological con-
siderations, e.g., potential to act as biomarkers of  disease or signaling mediators. Structural identification 
of  new lipids is an immense task, since many are present at very low levels, complicating their purification 
and analysis by biophysical methods such as NMR. Further tools and improvements to existing workflows 
will be required to facilitate this enormous challenge.

Methods

Human platelet isolation
Blood was collected from three genetically unrelated donors that were free from nonsteroidal antiinflam-
matory drugs for at least 14 days. Blood was collected into acid-citrate-dextrose (ACD; 85 mM trisodium 
citrate, 65 mM citric acid, and 100 mM glucose) at a blood/ACD ratio of  8.1:1.9 (v/v) and centrifuged at 
250 g for 10 minutes at room temperature (22°C). Platelet-rich plasma was collected and centrifuged at 900 
g for 10 minutes, and the pellet resuspended in Tyrode’s buffer (134 mM NaCl, 12 mM NaHCO3, 2.9 mM 
KCl, 0.34 mM Na2HPO4, 1.0 mM MgCl2, 10 mM HEPES, and 5 mM glucose, pH 7.4) containing ACD 
(9:1, v/v). Platelets were washed by centrifuging at 800 g for 10 minutes and then resuspended in Tyrode’s 
buffer at a concentration of  2 × 108 cells/ml. Where activated, they were prewarmed for 1 min at 37°C, 
with 1 mM CaCl2, before addition of  0.2 U/ml thrombin for 30 min.

Lipid extraction
Lipids were extracted by adding a solvent mixture (1 M acetic acid/propan-2-ol/hexane; 2:20:30, v/v) to 
platelets at a ratio of  2.5 ml of  solvent mixture/ml platelets in 10 ml extraction vial and vortexed for 30 
seconds. Hexane (2.5 ml) was added and then vortexed and centrifuged (500 g for 5 minutes at 4°C) to 
recover lipids in the upper hexane layer. Aqueous samples were reextracted by addition of  2.5 ml hexane. 
The combined hexane layers were dried in a RapidVap (Labconco) at room temperature.

LC/MS of lipids
Two methods for untargeted global analysis of  lipids were used: one for lipophilic (nonpolar) species and 
the other for nonlipophilic (polar) species. All analyses were at 25°C. Polar-LC used a Spherisorb ODS2 
column (150 × 2.1 mm, 3 μm particle size) with solvent gradient of  mobile phase A (water/acetonitrile, 
75:25, v/v, 1 mM ammonium acetate and 0.1% glacial acetic acid) and B (methanol/acetonitrile, 60:40, 
v/v, 1mM ammonium acetate and 0.1% glacial acetic acid) at 0.4 ml/min over 30 min. The elution gradi-
ent of  B (%) was: 50%–90% for 20 min, held at 90% for 5.1 min and equilibrated at 50% for 4.9 min. Non-
polar-LC used a Hypersil GOLD C18 RP UPLC column (150 × 2.1 mm I.D., 1.9 μm particle size) was used 
with mobile phase A (acetonitrile/water, 50:50 v/v, 1 mM ammonium acetate, 0.1% glacial acetic acid) 
and B (iso-propanol/acetonitrile, 70:30 v/v, 1 mM ammonium acetate, 0.1% glacial acetic acid) at 0.4 ml/
min over 55 min. The elution gradient of  B (%) over time was: 35%–50% for 10 min, 50%–66% for 6 min, 
66%–76% for 22 min, and 76%–96% for 10 min, held at 96% for 4.5 min and then equilibrated at 35% for 
2.5 min. MS conditions were as follows: HESI-II temperature 350°C, N2 as drying gas, sheath gas flow 52 
arbitrary units, auxiliary gas flow 17 units, capillary temperature 320°C, spray voltage ± 3.5 kV and S-lens 
RF level 69.8% or 65.60%, respectively, for positive and negative ion mode. MS spectra were acquired 
using a high-resolution Orbitrap Elite (60,000 at 400 amu) in full-scan Fourier transform mass spectrometry 
(FTMS) mode over 100–900 m/z (for both lipid separation and ion polarity methods) in centroid mode. 
Mass spectra were acquired in centroid mode. Samples were analyzed using multiple chromatographic runs 
over a mass range of  100–900 m/z to incorporate polar and nonpolar species in both positive and negative 
ionization modes. Four sets of  spectral data (Thermo RAW file format) were generated: nonpolar positive, 
nonpolar negative, polar positive, and polar negative. Samples were analyzed in random order, using a 
blank solvent injection every fifth or sixth sample. At the start, a one-off  column conditioning was done 
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with two runs of  solvent blank followed by five runs of  unrelated platelet extract and then two runs of  sol-
vent blank using the same solvent gradient. We used four technical replicates per sample.

LC/MS/MS of PIs
Lipids were separated on a C18 Luna, 3 μm, 150 mm × 2mm column (Phenomenex) gradient of  50%–100% 
B over 10 min followed by 30 min at 100% B (Solvent A: methanol/acetonitrile/water, 1 mM ammonium 
acetate, 60:20:20. Solvent B: methanol, 1 mM ammonium acetate) with a flow rate of  200 μl/min. Electro-
spray mass spectra were obtained on a Q-Trap instrument (Applied Biosystems 6500 Q-Trap) operating in 
the negative mode. Products were analyzed in the MRM mode monitoring transitions from the parent to 
daughter ion of  m/z 319.2 (HETE [M-H]–) every 75 ms with a collision energy of  –50 V.

Data processing
Data was input to each of  the four programs: SIEVE (version 2.2)/LipidFinder (version 1.0), MZmine (ver-
sion 2.14.2), XCMS (version 1.44.0), and Progenesis QI (version 2.2). Parameter settings used with each 
program are given in the program_parameters tab of  Supplemental Data. Although each uses different 
methods, similar values were used where parameters were comparable. Resulting peak lists were obtained 
from each of  the programs.

SIEVE/LipidFinder
The raw data was first processed using SIEVE for peak alignment, isotope removal, and data extraction. 
The SIEVE parameters were optimized separately for each column, i.e., for lipophilic or nonlipophilic 
lipid species, and the results were exported as a CSV file. Parameter optimization was run to determine 
the most optimal parameter settings for use with LipidFinder. This required an input file of  manually 
curated lipids to the Optimiser program. The output from SIEVE was then processed through PeakFilter. 
Positive and negative ion mode chromatograms were analyzed separately for comparison with the other 
programs, but also combined using the separate Amalgamator program for use with WebSearch, which 
was used to putatively identify m/z values. This resulted in one large data file per database, with multiple 
matches per m/z value. The results were last processed through FileProcessing, merging the database 
results, standardizing category and adduct names, and removing duplicate records between databases. 
Each step is described in detail below.

Optimiser
The PeakFilter process quickly distinguishes and quantifies lipid-like features from contaminants in 

LC/MS datasets that have been prealigned and processed using SIEVE and is a major component that 
significantly improves data quality. Underpinning this process is the Peak Finding step. This uses a heuristic 
approach to determine which frames are to be included in each peak and if  the peak’s profile qualifies it as 
a lipid-like peak. The peak-finding algorithm uses just four parameters, and depending on the experiment, 
the optimal values can vary greatly. Therefore, sensible parameter selection is crucial, as these parameters 
have a huge impact on the quality and validity of  the lipid profile generated downstream. Supplemental 
Figure 1 illustrates how three of  these parameters; namely peakAdjacentFrameMaxRT, peakMinFoldCutOff, 
and peakMaxRTWidth provide a peak shape template. The other parameter, mzSizeErrorPPM governs the 
maximum intra-peak mass tolerance allowed.

The peak-finding process in PeakFilter is rapid (<3 seconds for single replicate of  60,000 frames), 
making it suitable for local search optimization where peak finding will need to be performed repeatedly. 
Here, we implemented a hill climbing algorithm with random restarts. Although relatively simple, hill 
climbing has several requirements to enable iterative progression to the optimum parameter set for the 
experiment. Firstly, the peaks produced by a particular parameter set need to be scored. Next, new, previ-
ously unscored parameter sets that represent an incremental change in the current best-scoring parameter 
set need to be generated. Finally, the process should stop when it is not possible to make a previously 
unscored incremental change to the current best parameter set (top of  the hill). Detailed information on 
Optimiser steps are provided below.

Scoring mechanism. A representative subset of  lipids for a single replicate is curated from the SIEVE data 
into a target set on an individual basis by manual inspection of  chromatograms and spectra. The lipid peaks 
in this target file are described by their intensity, m/z, and RT. The suitability of  a parameter set is scored 
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against its ability, when passed into PeakFilter, to find the lipids in the target set at the correct intensity, m/z, 
and RT. The scoring mechanism works by representing the curated peak (CP) geometrically as the center 
point of  a cuboid in 3-dimensional space (Supplemental Figure 2). The CP’s m/z tolerance range is the m/z 
± the maximum m/z error. The RT tolerance range is CP’s RT ± the inter frame distance. The intensity tol-
erance is the CP’s intensity ± its intensity. If  a peak is found within the cuboid, then this is regarded as a hit 
and is scored according to its vector distance from the CP; the closer to the CP the nearer to 100% the score. 
The distance of  each side of  the cuboid is normalized to 2; thus, the maximum distance from the center 
to a corner is Ö3. Subtracting the vector distance of  the found feature from the center away from Ö3 gives 
the score for that particular target. This can be formally represented by the equation: Individual Score = √ 3 – 
√([% proximity RT]2 + [% proximity m/z]2 + [% proximity intensity]2). The total score for a candidate parameter 
set is found by performing this scoring for each target and then averaging the all the target scores. This gives 
a score between 0 and 1 for the candidate parameter set. Formally: (Σ[i = 1]

N × Scorei)/N.
Deciding manually if  a peak in a lipidomic dataset is a feature of  interest is a straightforward 

process for an experienced researcher. Conversely, manually identifying every lipid peak from chro-
matograms and spectra in a typical lipidomic dataset would be prohibitively time consuming. Thus, we 
manually identify a small representative subset of  lipid peaks (~100) for a single replicate and use this 
as a target list whereby different combinations of  peak-finding parameters can be compared by scoring 
their ability to find the targets

Hill Climbing algorithm. The range and granularity of  each parameter (known as parameter dimensions) 
to be tested by the hill climbing algorithm can be specified for each run and are stored in an input file that 
is imported at run time along with target file, SIEVE-processed file, and PeakFilter general parameters. The 
algorithm progresses as follows: a list of  candidate parameter values (CPV) is generated from the parameter 
dimensions’ list (PDL). An initial, random starting parameter set is selected from the CPV and set as the 
best current parameters (BPC); this parameter set is scored. The first parameter is now set to the lowest can-
didate value for this parameter in the CPV, v1 (provided it was not set to this initially); the other parameters 
remain at their current values (BPC), and this new parameter set is scored. If  it is higher than the BPC, 
then it is set to be the new BPC and the next parameter, v2, is processed in the same manner (provided it 
was not set to this initially). This is continued until all candidate values have been tried and scored. At this 
point, the second parameter is assigned its v1 (again, provided it was not assigned this value initially). The 
algorithm proceeds as for the first parameter for this and all the subsequent parameters. We define the set of  
parameter sets produced for a parameter as its 1opt parameter set, and we define a complete pass through 
each parameter in this manner as a 1opt cycle. The procedure continues repeating 1opt cycles until one 
is completed with no improvement in score for any parameter. A parameters-visited list is maintained to 
provide a record of  the process and is also used throughout the process to ensure previously seen parameter 
sets are not rescored (41). When hill climbing completes, the parameter set that provided the best score 
against the target set should be used as the input for the PeakFilter run. Supplemental Figure 3 illustrates 
this process in a flow chart.

PeakFilter
Program parameters (LipidFinderData.py). PeakFilter reads parameter values from the parameters.csv file 

(provided in Supplemental Data), generated using Optimiser when data is preprocessed with SIEVE.
Raw data import (LipidFinderData.py). XCMS or SIEVE CSV files are inputted. In the case of  this exam-

ple, we used SIEVE. Where there are multiple files per dataset (e.g., several chromatography runs), Peak-
Filter combines these into one overall file. This situation can arise if  a large dataset is being analyzed, and 
SIEVE analysis needs to be broken down into discreet RT windows. In the case of  SIEVE, the raw data has 
been aligned and split into frames, which are discreet windows of  RT and m/z derived for the sample set. 
Peaks of  interest in SIEVE-derived data are made up of  both single and multiple frame lipids (lipid peaks 
that span two or more SIEVE frames). When the raw data has been processed with XCMS, the concept 
of  frames is retained, but each lipid-like peak is made up of  a single frame only. Either all positive or all 
negative ion mode runs from one dataset can be processed at one time.

Quality control (QC) samples (qcCalcs.py). This provides the user with information on the reproducibil-
ity of  the chromatography and MS in datasets where QC samples are used. In the parameters.csv file 
(Supplemental Code File), two parameters can be set a lower relative standard deviation (RSD) cut off  
(QCLowRSD) and a higher RSD cut off  (QCHighRSD). The mean and RSD of  QC samples for each frame 
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are calculated, the number of  frames lower than each of  these cut offs is counted, and the ratio between 
them calculated (QCLowRSD:QCHighRSD). This is reported on screen for the user.

Solvent removal (solventsCalcs.py). If  there are three or more solvent sample replicates, they undergo out-
lier correction at the frame level to eliminate intensity outliers (as per sample replicate outlier corrections 
section). The mean intensity of  the remaining solvent replicates (after outlier correction) for each frame is 
calculated. Frames where every replicate of  every sample replicate is not at least a specific fold level above 
the mean solvent level (solventFoldCutOff) are removed in their entirety. Remaining frames have their corre-
sponding mean solvent intensities removed from their replicate intensities. Solvent removal can be toggled 
on or off  with the parameter removeSolvent.

Low-intensity removal (solvent.py). Replicate intensities below the threshold value (intensitySignificanceCutOff) 
are set to zero. If  all replicates for all samples in a frame are zero, then this frame is removed. Mass clustering, 
feature clustering, and feature cluster peak analysis steps are only performed on SIEVE data, since peaks have 
already been integrated at this point in XCMS data.

Mass clustering (clustering.py). Lipid peaks may be seen to elute over several SIEVE frames (e.g., isobaric 
lipids), with these frames having the same m/z. However, there are often small differences in the m/z report-
ed. Here, we use hierarchical clustering to group similar m/z values (within a specified tolerance) into iso-
baric groups, called mass clusters. The tolerance is the sum of  a variable ppm mass error based on the m/z 
(mzSizeErrorPPM), plus a fixed error determined by mass accuracy of  the machine (mzFixedError). Frames 
within a mass cluster are now considered to be of  the same m/z but are not necessarily the same isomer or 
even compound (note that below, separate compounds will subsequently be identified and labeled as such).

Feature clustering (clustering.py). SIEVE frames within each mass cluster are then sorted by RT. Contig-
uous frames, separated by a user-defined RT difference (peakAdjacentFrameMaxRT), are then grouped and 
regarded as the same feature cluster. Thus, a mass cluster may have many feature clusters. Supplemental 
Figure 4A shows the relationship between mass and feature clusters.

Feature cluster peak analysis (peakFinder.py). An algorithm was developed that identifies lipid peaks from 
the frames within each feature cluster, where each can contain more than one lipid peak. Starting with the 
most intense frame within a feature cluster, the intensity fold differences (peakMinFoldCutOff) and RT dis-
tances (peakMaxRTWidth) of  adjacent frames are compared to build a profile of  the peak. This is repeated 
until all lipid peaks within each feature cluster have been found. Sharper, narrower peaks are classed as 
lipid-like features; wider flatter peaks are discarded as contamination (Supplemental Figure 1).

Mass contaminant removal (contaminantRemoval.py). Common, well-known electrospray contaminating 
m/z ions are removed in this step. Frames are removed from the dataset that match (within a tolerance) the 
list of  contaminant masses found in the file contaminants.csv (Supplemental Data: contaminants.csv tab). RT 
is not considered; if  a mass match is found at all it is removed. Mass contaminant removal can be toggled on 
or off  with the parameter removeContaminant.

Adduct ion removal (contaminantRemoval.py). A user-maintained list of  noncovalent adducts and their 
mass differences are listed in the adducts.csv file (Supplemental Data: adducts.csv tab). Where an adduct 
is found and the RT matches that of  the parent ion (e.g., [M+H]+, the m/z with the highest intensity is 
retained as the feature of  interest and the other m/z intensity set to zero). Adduct removal can be toggled 
on or off  with the parameter removeAdduct.

Stack removal (contaminantRemoval.py). We define a stack as a series of  ions, each differing in 
m/z from the next by multiples of  a fixed mass. There are two types of  stacks: lipid stacks and con-
taminant stacks. Lipid stacks typically elute at the same RT, while the RT of  contaminant stacks 
increases with increasing m/z. The mass differences for both lipid and contamination stacks are 
stored in the file stacks.csv (Supplemental Data: stacks.csv tab). Stacks may contain a number of  
gaps between multiples, these are governed by maxStackGap. Stack removal can be toggled on or off  
with the parameter removeStack.

Replicate RT correction (rtCorrect.py). In our experience, despite the use of  SIEVE, frame intensities 
can still be commonly misaligned. PeakFilter automatically corrects for differences in RT between 
multiple runs. Specifically, sample replicates with the same m/z but slightly different RTs are aligned 
to the time with the highest intensity. This alignment can only happen if  intensities are moving from a 
sparse to a more populous frame with respect to zero intensity count, and the intensity that is moving 
must be within a user-defined number of  standard deviations (rtCorrectStDev) of  the destination frame 
(Supplemental Figure 4B).

https://doi.org/10.1172/jci.insight.91634
https://insight.jci.org/articles/view/91634#sd
https://insight.jci.org/articles/view/91634#sd
https://insight.jci.org/articles/view/91634#sd
https://insight.jci.org/articles/view/91634#sd


1 6insight.jci.org   https://doi.org/10.1172/jci.insight.91634

T E C H N I C A L  A D V A N C E

Sample replicate outlier correction (outlierCorrect.py). The RSD of  the technical replicates within a sample 
an individual frame is calculated. If  the variation is too high, then an attempt to reduce below the threshold 
is made by considering the highest deviation intensity. If  this falls outside 2 standard deviations of  the other 
replicates, it is removed and the process repeated with the remaining replicates. If  the RSD still exceeds the 
threshold, then the variation cannot be attributed to any individual value, and as such, all the replicates for 
the sample are set to zero for that frame. The number of  replicates that can be set to zero is fixed and varies 
on the replicate count per sample: zero if  less than 4 replicates, 1 for 4 or 5 replicates, and 2 for 6 or greater. 
If  no more corrections are allowed and the RSD is still too high, then again the whole replicate set for a 
sample is set to zero (Supplemental Figure 4C).

Sample mean calculation (sampleMeansCalc.py). The non-zero means of  each frame’s sample replicates are 
calculated and inserted as a new column for each sample.

Mean RT correction (rtCorrect.py). This works in exactly the same way as Replicate RT correction (from 
replicate retention time correction section) but corrects misaligned RTs for the sample means (from sample 
mean calculation section) only. This function should be used where there are no sample technical replicates.

Mass reassignment (reassignMass.py). Following Step F, each mass cluster contains several SIEVE frames 
with near identical m/z values. Next, a single m/z is assigned per mass or feature cluster (depending on user 
preference), using the m/z value of  the highest intensity SIEVE frame. Note that multiple feature clusters 
may occur within the same mass cluster, where feature clusters are separated by different RTs(Supplemen-
tal Figure 4A). Mass reassignment in feature clusters can be toggled on by using featureLevelMassAssignment, 
the default is mass cluster assignment.

Broad RT contaminant removal (broadContaminant.py). An additional source of  contamination occurs 
where a contaminant elutes at similar intensities continuously across the chromatogram at the same m/z. 
Multiple peaks within the same mass cluster that have similar intensities are automatically removed. 
However, high statistical outliers are considered to be genuine lipid-like peaks and are retained (indi-
vidual higher-intensity peaks in a sea of  lower-intensity peaks). Starting with the largest statistical out-
liers (broadContRSDCutOff and broadContrtSDCutOff), intensities are removed recursively in an attempt 
to find the set with least variance; a minimum number of  intensities must remain (broadContminPoints), 
otherwise no correction can take place (Supplemental Figure 4D). XCMS already includes algorithms 
for finding and identifying features of  interest and reporting them as peaks, and so cannot be used with 
Optimiser. When used with XCMS data, feature clustering and feature cluster peak analysis steps in 
Peakfilter should use parameters that coincide with the XCMS parameters such that they do not interfere 
with the XCMS peak assignment. Depending on the report format, similar approaches could be used for 
integrating other platforms, adding in or disabling elements of  the workflow as appropriate.

MZmine
The standard data processing workflow from the MZmine 2 manual was used (http://mzmine.github.
io/documentation.html). First, imported files were filtered using baseline correction and a mass list of  
detected ions for each scan generated. This was used to build a chromatogram for each mass, and individ-
ual peaks were then separated with the deconvolution algorithm. Isotopes were removed and adduct ions 
identified. RTs were normalized between peak lists, and the peaks in different samples were then aligned. 
Finally, gap filling was carried out (gaps in peak list rows are filled in by generating a new peak using the 
largest data point of  each scan within the m/z and RT range for that row), and the resulting peak list was 
exported as a CSV file. Parameters used are listed in Supplemental Data: program_parameters.

XCMS 
The raw data was filtered and peaks identified using the centWave algorithm, considered the most suitable 
for high-resolution data in centroid mode (42). Matching peaks across samples were then grouped, so that 
RT drifts between runs could be corrected. The peaks were regrouped after RT correction, as the original 
groups were no longer valid, before missing peaks in samples were then filled in. Parameter settings were 
used that enabled both wide and narrow peaks to be found. Parameters used are listed in Supplemental 
Data: program_parameters. The resulting data was saved as the peak list output.

Progenesis
Raw data was imported, and automatic processing was selected. We manually selected the most suitable 
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run as the alignment reference and performed automated peak picking. Parameters used are listed in Sup-
plemental Data: program_parameters. We then checked that the alignment was appropriate both visually 
and by reviewing the alignment scores. The resulting peak list was exported as a CSV file.

Comparing outputs from all 4 workflows. Using our data, a reference list of  532 ions, corresponding to puta-
tive lipids detected in human platelets, was compiled, covering a range of  m/z values (129.0924–896.6382 
Da) in both positive and negative ionization modes, and including both low abundance (eicosanoids) and 
high abundance (phospholipids) lipids (34). All were manually verified as genuine peaks in raw data chro-
matograms and RTs recorded. These were then compared against the output peak lists from each program. 
To be considered a match, m/z values had to be within a combined ppm mass error (20 ppm), plus fixed 
error (0.0005) of  the reference value RTs also had to match within a tolerance of  1 minute of  the reference 
RT for inclusion.
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School of  Medicine Ethics (SMREC 12/13).
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