Supplemental information

Hsp90 Regulation of Fibroblast Activation in Pulmonary Fibrosis

Vishwaraj Sontake^{1, 4}, Yunguan Wang², Rajesh K. Kasam^{1, 4}, Debora Sinner³, Geereddy B. Reddy⁴, Anjaparavanda P. Naren¹, Francis X. McCormack⁵, Eric S. White⁶, Anil G. Jegga^{2, *}, and Satish K. Madala^{1, *}

 ¹Division of Pulmonary Medicine, ²Division of Biomedical Informatics and ³Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio USA.
 ⁴Department of Biochemistry, National Institute of Nutrition, Hyderabad, Telangana, India.
 ⁵Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Cincinnati, Ohio USA.

⁶Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA.

* Corresponding authors: Dr. Satish K. Madala, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 2021, Cincinnati, OH, 45229, USA Telephone: 513-636-9852 FAX:
513-636-3723. E-mail: <u>satish.madala@cchmc.org</u>

Dr. Anil G. Jegga, Division of Biomedical informatics, Cincinnati Children's Hospital Medical Center, 240 Albert Sabin Way, MLC 7024, Cincinnati, OH, 45229, USA Telephone: 513-636-0261 FAX: 513-636-2056. E-mail: <u>anil.jegga@cchmc.org</u>

Authorship note: A.G.J and A.K. M. are co-senior authors.

Conflict of interest: The authors have declared that no conflict of interest exists.

Methods

Human and mouse primary lung fibroblasts cultures. Human primary lung fibroblast cell cultures were prepared as previously described (1, 2). Lung tissue was collected into DMEM supplemented to contain 10% FBS and 1% each of penicillin, streptomycin, and amphotericin. Each lung-tissue sample was cut into 2 x 2 cm pieces, and each piece was finely minced and digested in 5 ml DMEM containing collagenase (2 mg/ml), incubated at 37° C for 1h. Digested tissues were passed through a 100-mm filter, washed twice by centrifugation at 1000 x g for 5 min, plated onto 100-mm tissue culture plates in 10 ml DMEM, and incubated at 37° C, 5% CO₂ to allow the cells to adhere and migrate away from the larger remaining tissue pieces. Unbound cells were removed on Day 2 of culture by washing cells with fresh DMEM. Adherent lung fibroblasts were cultured until confluent (1–2 wk). Similarly, mouse lung tissues were minced and cultured in IMDM supplemented with 5% FBS and 1% each of penicillin, streptomycin as previously described (1).

Myofibroblast transformation. To assess the effects of 17-AAG on fibroblast to myofibroblast transformation, primary mouse lung fibroblasts isolated from SMAcreER/ROSA mTmG/+ mice were seeded on to chamber slides at density of 1×10^5 for 24h. Cells were serum starved (0.5% FBS) at 70–80% confluency for overnight and then treated with 2µM 4-hydroxytamoxifen (Cat# H7904, sigma-Aldrich, ST. Louis. MO, USA) for 72 h in presence or absence of TGFβ (20 ng/ml) or 17-AAG (0.2µM). For genetic knockdown studies cells grown on chamber slides were transfected with control or Hsp90AA or Hsp90AB siRNA for 24h, post transfection cells were treated with 2µM 4-hydroxytamoxifen in presence and absence of TGFβ for additional 72h. After 72h, cells were fixed with 4% paraformaldehyde and the nucleus was stained using prolong gold DAPI. Fluorescence images were collected using a Nikon AIR-A1 laser-scanning confocal microscope (Melville, NY, USA). For quantitation of SMAcreER induced green positive cells, 5-6 random images were taken for each condition (DMSO or TGFβ or TGFβ and 17-AAG) with the 10X or 20X objective. Cell quantitation was performed using Metamorph imaging software.

TGF β stimulation and 17-AAG treatment. To assess the effects of 17-AAG on TGF β -induced ECM expression, primary fibroblasts from non-IPF controls were plated in 24-well plates at a density of 1.5×10^5

cells/well and cultured to reach 70–80% confluency. Cells were then serum starved (0.5% FBS) for 24h, pretreated with 17-AAG for 2h, and then stimulated with recombinant human TGF β (20 ng/ml; R&D Systems) in the presence or absence of 17-AAG for 24h. After 24h of stimulation, cells were lysed in RLT lysis buffer supplemented with β -mercaptoethanol for RNA isolation and cDNA synthesis. Quantitative PCR analyzed ECM gene expression.

Fibroblast and fibrocyte invasion and migration. In vitro invasion and migration assays were performed using human or mouse primary lung-resident fibroblasts (CD45⁻Col1⁺) or fibrocytes (CD45⁺Col1⁻), isolated as described previously (1, 3). 96-well Image Lock plates (Essen Biosciences) were used for all experiments. Invasion assay plates were coated with BD matrigel (50 µl/well; 100 µg/ml in IMDM) and incubated at 37°C, 5% CO₂ for overnight. Day 2 wells were washed twice with media (0.5% FCS) (2x100 µl/well). Lung-resident fibroblasts or fibrocytes (50k/well) were seeded and grown to form a confluent monolayer (37°C, 5% CO₂, one day). Scratch wounds were made on Day 3 using a 96-well pin wound-maker according to the manufacturer instructions (Essen Biosciences, Ann Arbor, Michigan, USA). Plates were washed twice with media (0.5% FCS) (2x100 µl/well). Matrigel containing 17-AAG or DMSO (50 µl/well; 3 mg/ml) was added on top of the cell layer to fill in the wound area with matrigel and incubated at 37°C, 5% CO₂ for 30 min. Invasion through matrigel is used to mimic the invasion process through ECM that is similar in composition to lung basement membrane. Additional (100 µl/well) media with or without 17-AAG was added and placed in IncuCyte ZOOM for heighcontent imaging. For migration assay, plates were precoated with fibronectin (50 µl/well; 10 µg/ml in PBS) for 2h. Lung resident fibroblasts or fibrocytes (50 k/well) were seeded and grown to form a confluent monolayer (37°C, 5% CO₂, one day). Scratch wounds were made on Day 2, and plates were washed twice with media (0.5% FCS) (2x100 µl/well). Migration was assessed in the presence and absence of 17-AAG or by genetic knockdown of Hsp90AA or Hsp90AB siRNA using the IncuCyte ZOOM height-content imaging system as previously described (3).

Immunoprecipitation and Hsp90 ATPase assay. Lung tissue lysates from control or TGFα mice were prepared in HEPES lysis buffer (20 mM HEPES, pH 7.3, 1 mM EDTA, 5 mM Mg Cl₂, 100 mM KCl) supplemented with

protease inhibitors and cleared by centrifugation at 10,000 rpm. Pre-conjugated anti-Hsp90 protein-A/G agarose beads were incubated with 50 µl of tissue lysates (tissue lysates were pre-cleared with 50 µl of protein-A/G agarose beads; 50% slurry). The ATPase activity of the immunoprecipitated Hsp90 was measured by detection of free inorganic phosphate (Pi) release using a PiPer Phosphate Assay Kit (Molecular Probes, Cat# P22061). The assay measures an increase in absorption at 565 nm of an Amplex Red reagent, which is proportional to the amount of Pi in the sample, and activity of Hsp90 was represented as an increase in absorbance at 3h.

Hsp90 affinity binding assay. Primary fibroblasts cell lysates from control or TGFα mice were prepared in HEPES lysis buffer (20 mM HEPES, pH 7.3, 1 mM EDTA, 5 mM MgCl², 100mM KCl) supplemented with protease inhibitors. The competitive binding assay was performed as described previously, with minor modifications (4). Protein lysates (50 µg) were incubated with increasing concentrations of 17-AAG or without 17-AAG for 1h at 4°C, and then incubated with biotin-GM linked to BioMag streptavidin magnetic beads (Cat # 311711; Qiagen) for 1hr at 4°C. Tubes were placed on a magnetic rack, and the unbound supernatant was removed. The magnetic beads were then washed three times with lysis buffer containing protease inhibitor and once with PBS. Samples were eluted in LDS sample buffer containing DTT, a reducing agent. Beads along with LDS were incubated at 70°C for 10 min. Samples were then analyzed on LDS protein gels, and immunoblots were probed for Hsp90. Bands in the Western blots were quantified using the volume-integration function on Phosphor Imager software Image Quant 5.2 (Molecular Dynamics, Piscataway, NJ), and the percentage inhibition of binding of Hsp90 to the biotin-GM was calculated by assigning control as 100%.

Immunofluorescence. For the actin polymerization assay or PCNA immunostaining, lung-resident fibroblasts isolated from mouse or human primary lung-cell cultures were grown on glass coverslips overnight and treated with 17-AAG (1µM) or DMSO for 24h; then cells were fixed in 4% paraformaldehyde. Nonspecific protein binding was blocked with 3% BSA in PBS, followed by incubation with primary antibodies in blocking solution and subsequent incubation with secondary antibodies. Finally, the coverslips were washed and mounted on glass slides with Prolong gold DAPI. Confocal images were collected using a Nikon AIR-A1 laser-scanning confocal microscope (Melville, NY, USA). A z-stack of optical sections, 10 µm in total thickness, was captured from

DMSO- or 17-AAG-treated coverslips, and five 3D images were obtained per condition. Imaris (version 7.2.0; Bitplane, South Windsor, CT, USA) was used for colocalization analysis for Hsp90 and actin. For quantitative analysis of PCNA, 7-8 random images were taken for each condition (DMSO or 17-AAG) with the 10X objective. Cell quantitation was performed using Metamorph imaging software. PCNA levels were represented as percent proliferating cells in a given condition. Representative images were taken with the 60X oil objective, and data were reported as \pm SEM of cell number for each experimental condition.

Hsp90 small interfering RNA transfection. Primary human or mouse lung-resident fibroblasts were transfected with Silencer Hsp90AA or Hsp90AB small interfering RNA (siRNA) (Cat # 4390771, Id # s67900 or s67899; Ambion) or silencer control siRNA (Cat # AM4611; Ambion) using the Lipofectamine 3000 Transfection kit (Invitrogen) according to the manufacturer's instructions. Primary lung-resident fibroblasts were separated from fibrocytes using anti-CD45 magnetic beads as described previously (1) and grown on 12-well plates to 90% confluence. Cells were transfected with siRNA using OptiMEM media containing no antibiotics. Transfected cells were harvested 72h post transfection and used for RNA isolation and gene-expression analysis.

BrdU incorporation. Primary lung-resident fibroblast proliferation was examined in the presence of 17-AAG or Hsp90AA or Hsp90AB siRNA using a colorimetric immunoassay based on BrdU incorporation using a BrdU Cell Proliferation Assay Kit (#6813, Cell Signaling Technology, Denver, USA) according to the manufacturer's instruction. In brief, CD45- Col+ primary resident fibroblasts (20,000 cells/well) were seeded in 96-well plates. Cells were incubated with different concentrations of 17-AAG (0.01, 0.05, 0.1, 0.5, and 1 μM) for 24h or transfected with Hsp90 siRNA for 48h, then 10 μl of 10X BrdU labeling solution was added in 100 μl of media per well and cells were incubated for an additional 24h. Post 24h BrdU labeling, cells were fixed and denatured using kit components, and immunodetection was performed as per the protocol recommended by manufacturer. Absorbance was taken at 450 nm, and proliferation was calculated as fold difference in proliferation over control. **RNA preparation and RT-PCR.** Total RNA was extracted using the RNAeasy Mini Kit (Qiagen Sciences, Valencia, CA, USA) as previously described (1). cDNA synthesis was carried out using SuperScript® III Reverse Transcriptase (Invitrogen), gRT-PCR assays were performed with the CFX384 Touch Real-Time PCR Detection system (Bio-Rad, Hercules, California, USA). The relative quantities of mRNA for several genes were determined using iTaqTM universal SYBR green supermix (Bio-Rad). Target-gene transcripts in each sample were normalized to hypoxanthine guanine phosphoribosyl transferase or HPRT and expressed as a relative increase or decrease compared with control. All real-time primer sequences used are shown in Supplemental Tables 2 and 3.

Western blot. Purified lung resident fibroblasts (CD45⁻Col1⁺) were isolated as described, grown on 12-well plates to 90% confluence and treated with 17-AAG or DMSO for 48h. Cells were lysed in RIPA lysis buffer, and protein estimation was performed using the BCA method according to manufactures instructions (manufacturer information). Immunoblotting and quantification were performed using the volume-integration function of Phosphor Imager software Image Quant 5.2, as previously described (2). Primary antibodies and dilutions used are described in Supplemental Table 5, and the appropriate secondary antibodies conjugated with peroxidase (1:1000) were used for blot development.

Supplemental figure legends:

Supplemental Figure S1. <u>17-AAG attenuates migration and invasion.</u> Primary Lung Fibroblast (CD45⁻ Col1⁺) and fibrocytes (CD45⁺ Col1⁺) were isolated from lung cultures of IPF lungs or TGF- α mice on Dox for 4wk. Scratch wound migration and invasion assay was performed in the presence and absence of 17-AAG (1 μ M) for 24h. (**A**) Quantitation of migration and invasion of fibroblasts isolated from lung cultures of TGF- α mice on Dox for 4wk and treated with vehicle of 17-AAG for 24h. (**B**) Quantitation of migration and invasion of fibroblasts isolated form lung cultures of fibrocytes isolated from lung cultures of IPF lungs and treated with vehicle of 17AAG for 24h. (**B**) Quantitation of migration and invasion of fibrocytes isolated from lung cultures of IPF lungs and treated with vehicle of 17AAG for 24h. Data shown are mean ± SEM values. *p<0.05, **p<0.005, ***p<0.0005.

Supplemental Figure S2. <u>Hsp90AA and HSP90AB isoform-specific knockdown using siRNA.</u> Primary lung fibroblasts (CD45⁻Col1⁺) were isolated from lung cultures of TGF- α mice on Dox for 4wk using anti-CD45 magnetic beads and transfected with either control- or Hsp90 isoform-specific siRNA for 72h. (**A**, **B**) Quantitation of Hsp90AA and Hsp90AB gene transcripts relative to Hprt in the lung fibroblasts of treated with control,

Hsp90AA or Hsp90AB-specific siRNA for 72h. Data represents two independent experiments with similar results. Data shown are mean \pm SEM values (N = 3-6/group). **p<0.005 and ****p<0.00005.

Supplemental Figure S3. Limited or no effect of 17-AAG on genes involved in fibroblast migration. Primary lung fibroblasts (CD45⁻Col1⁺) were isolated from lung cultures of TGF- α mice on Dox for 4wk using anti-CD45 magnetic beads and treated with either vehicle or 17-AAG for 24h. The levels of Mmp2, Mmp9, and Timp2 gene transcripts relative to Hprt were quantified using qRT-PCR. Data is a representative of two independent experiments with similar results. Data shown are mean ± SEM values (N = 6/group).

Supplemental Figure S4. The effect of HSP90AA Knock down on Hsp90-driven genes involved in <u>fibroproliferation in IPF.</u> Primary lung fibroblasts (CD45⁻Col1⁺) were isolated from lung cultures of TGF- α mice on Dox for 4wk using anti-CD45 magnetic beads and transfected with either control- or Hsp90AA isoform-specific siRNA for 72h. The levels of Cdk4, Igf1, Mycn and Sphk1 gene transcripts relative to Hprt are quantified using qRT-PCR. Data is a representative of two independent experiments with similar results. Data shown are mean ± SEM values (N = 3-6/group).

Supplemental Figure S5. The effect of HSP90AA Knock down on Hsp90-driven ECM genes in IPF. Primary lung fibroblasts (CD45⁻Col1⁺) were isolated from lung cultures of TGF- α mice on Dox for 4wk using anti-CD45 magnetic beads and transfected with either control- or Hsp90AA isoform-specific siRNA for 72 hr. The levels of α SMA, Col1 α , Col5 α and FN1 gene transcripts relative to HPRT were quantified using qRT-PCR. Data is a representative of two independent experiments with similar results. Data shown are mean ± SEM (N = 3-6/group). **Supplemental Figure S6.** The progressive expansion of fibrotic lesions during TGF α -induced pulmonary fibrosis. (A) Images of Masson's trichrome stained lung sections from control and TGF α mice on Dox for 3 or 6 wk. Scale bar, 200µm. Images are representative of each group with (N = 6-10/group). (B) Quantitation of the right lung weight of control and TGF α mice on Dox for 3 or 6 wk (N = 6-10/group). (C) Quantitation of total lung hydroxyproline levels in control and TGF α mice on Dox for 3 or 6 wk (N = 6-10/group). Statistical significance was measured using one-way ANNOVA with Sidak's multiple comparison test for all the experiments. ***p<0.0005 and ****p<0.00005.

Genes Upregulated in IPF and Downregulated by 17-AAG	Genes Downregulated in IPF and Upregulated by 17-AAG	
Gene Symbol	Gene Symbol	
ABCC3	ABCC6	
ADORA2B	ABHD6	
AEN	ABL1	
AK4	ACSM3	
ALDH1A3	ACYP1	
ANK2	ADD1	
AQP3	ADRB2	
ARL4C	AGTR1	
ATP10B	AKAP9	
BASP1	AKR1C1	
BCL2A1	ALDH6A1	
BCL3	ANG	
BDKRB2	ARHGAP29	
BIRC3	ARHGEF10	
CCL2	ASL	
CCL20	B3GNT2	
CD24	BCL2L2	
CD28	CALCOCO2	
CDCP1	CCNB1IP1	
CDKN1A	CDK19	
CEMIP	CERS2	
CFI	CES1	
СОСН	CIT	
COL14A1	CLDN18	
COL17A1	CLIC3	
COL5A2	COBLL1	
COL6A3	CYP3A5	
CROT	DAPK1	
CST1	DENND3	
CTSG	DNM2	
CTSK	DUSP8	
CXCL12	EFNB2	
CXCL13	EGFR	
CXCL8	EMP2	

Supplemental Table 1. The list of IPF genes regulated by 17-AAG.

DACT1	ENOSF1	
DFNA5	ESRP2	
DIO2	FAH	
DIRAS3	FAM63A	
DNM1	FASTKD1	
DUSP4	FGGY	
DUSP5	FLVCR2	
DZIP1	GFOD1	
EGR3	GGT1	
ELF3	GL01	
EREG	GLUL	
FAM102A	GNAQ	
FAM69A	GPC3	
FERMT1	GPM6B	
FHL2	GPX3	
FOSB	GSTM1	
FOSL1	GTF3C3	
FUT8	HBS1L	
GALNT6	HIST1H4A	
GATM	HMBOX1	
GCNT3	HOXA5	
GDF15	HTATIP2	
GEM	IL1R2	
GJB3	IL6ST	
GM2A	IRS2	
GNB5	IVD	
GNL3	KAT6B	
HIF1A	KIAA1109	
HIST1H4J	KIF1C	
HLA-DPB1	KLF9	
HOMER3	KLHL24	
HRH1	LAMA3	
IER3	LAMA5	
IGF1	MAN2A2	
IL13RA2	MAP2K5	
IL6	MAPK13	
ITGA7	MAPK14	
ITGB4	MAPT	
JUNB	MAVS	

KCNMA1	MFGE8	
KCNN4	MKL2	
KRT14	MKLN1	
KRT6B	MT1E	
KRT81	MT1H	
LCN2	NDUFA10	
LIF	NEDD4L	
MEOX1	NPR3	
MEX3C	OLFML2A	
MMP11	PACSIN3	
MMP7	PGC	
МҮС	PIR	
NAMPT	PLCE1	
NT5E	PPP1R13B	
NTS	PPP3R1	
OSBPL10	PRKAG2	
PCSK1N	PRKCD	
PDE1A	PRRG4	
PFKP	PXMP4	
PHLDA1	RAB11FIP1	
PHLDA2	RAB11FIP2	
PHTF2	RAB17	
PLAU	RAD21	
PLAUR	RAPGEF2	
PLEK2	RASSF7	
PMEPA1	RDX	
POF1B	REPS2	
PRKACB	RHOT1	
PRR7	SACM1L	
PRSS2	SAP30	
PSD3	SCEL	
PTGER4	SERPINA3	
PTGS2	SESN1	
RAB3B	SH3BP5	
RND3	SHANK2	
RNF19B	SLC26A2	
SDC1	SLC27A3	
SEMA3C	SLC35D2	
SERPINB5	SLCO4A1	

SFN	SMAGP	
SLC7A5	SMARCA5	
SLC9A3R1	SORBS2	
SOCS3	SORT1	
SPHK1	SPTBN1	
SPRR1A	SULT1A1	
SPRR1B	SYF2	
STMN2	TACC2	
STX1A	TAOK2	
TFPI2	TGFBR2	
TGFB2	TIMP3	
TGFBI	TLR4	
TIMP1	TMEM100	
TMEM132A	TMEM106C	
TNFRSF21	TMEM97	
TPBG	TNS3	
TRIB1	TOM1L1	
TRIM29	TSPAN13	
TSPAN5	TTC39A	
TUBB2B	VAMP3	
TUBB3	VPS13D	
UCHL1	WASF3	
ZFP36	WFS1	
	YEATS2	
	ZHX3	
	ZNF185	
	ZNF589	
	ZNF75D	

Supplemental Table 2. Sequences of gene-specific primers used for quantitative RT-PCR in murine samples.

Gene	Forward	Reverse	
mHprt	GCCCTTGACTATAATGAGTACTTCAGG	TTCAACTTGCGCTCATCTTAGG	
mIl-10	CAGAGCCACATGCTCCTAGA	GTCCAGCTGGTCCTTTGTTT	
mCcr5	GAGACATCCGTTCCCCCTAC	GTCGGAACTGACCCTTGAAA	
mCd44	CTCCTTCTTTATCCGGAGCAC	TGGCTTTTTGAGTGCACAGT	
mCol1a1	AGACATGTTCAGCTTTGTGGAC	GCAGCTGACTTCAGGGATG	
mCol5a	CTACATCCGTGCCCTGGT	CCAGCACCGTCTTCTGGTAG	
mFn1	CGGAGAGAGTGCCCCTACTA	CGATATTGGTGAATCGCAGA	
mαSma	TGACGCTGAAGTATCCGATAGA	CGAAGCTCGTTATAGAAAGAGTGG	
mMmp-12	AATGCTGCAGCCCCAAGGAAT	CTGGGCAACTGGACAACTCAACTC	
mHas2	GGCGGAGGACGAGTCTATG	ACACATAGAAACCTCTCACAATGC	
mTimp1	GCAAAGAGCTTTCTCAAAGACC	AGGGATAGATAAACAGGGAAACAC T	
mCcl3	TGCCCTTGCTGTTCTTCTCT	GTGGAATCTTCCGGCTGTAG	
mCcl20	GGTACTGCTGGCTCACCTCT	TGTACGAGAGGCAACAGTCG	
mCdk4	AGAGCTCTTAGCCGAGCGTA	TTCAGCCACGGGTTCATATC	
mIgf1	TCGGCCTCATAGTACCCACT	ACGACATGATGTGTGTATCTTTATTGC	
mMycn	AGCACCTCCGGAGAGGATAC	CCACATCGATTTCCTCCTCT	
mSphk1	ACAGTGGGCACCTTCTTTC	CTTCTGCACCAGTGTAGAGGC	
mHsp90AA	GTCTCGTGCGTGTTCATTCA	CATTAACTGGGCAATTTCTGC	
mHsp90AB	TACTCGGCTTTCCCGTCA	GCCTGAAAGGCAAAGGTCT	
mMmp2	GGTGCTCCACCACATACAACT	CCCATGGTAAACAAGGCTTC	
mMmp9	ACGACATAGACGGCATCCA	GCTGTGGTTCAGTTGTGGTG	
mTimp2	CGTTTTGCAATGCAGACGTA	GGAATCCACCTCCTTCTCG	

Gene	Forward	Reverse
hβ-actin	CCAACCGCGAGAAGATGA	CCAGAGGCGTACAGGGATAG
hCol1a	GGGATTCCCTGGACCTAAAG	GGAACACCTCGCTCTCCA
hFN1	CTGGCCGAAAATACATTGTAAA	CCACAGTCGGGTCAGGAG
hCol5a	CCTGGATGAGGAGGTGTTTG	CGGTGGTCCGAGACAAAG
hCD44	CAACAACACAAATGGCTGGT	CTGAGGTGTCTGTCTCTTTCATCT
hCCR5	GCCTCTGAATATGAACGGTGA	ACATTTCCCTTCGTTGCTTC
hMMP-12	AGTTTTGATGCTGTCACTACCG	CACTGGTCTTTGGTCTCTCAGAA
hCDK4	GTGCAGTCGGTGGTACCTG	TTCGCTTGTGTGGGGTTAAAA
hIGF1	TGTGGAGACAGGGGCTTTTA	ATCCACGATGCCTGTCTGA
hSPHK1	TGAACCATTATGCTGGATATGA	TGTGCAGAGACAGCAGGTTC

Supplemental Table 3. Sequences of gene-specific primers used for quantitative RT-PCR in human samples.

Supplemental Table 4. Antibodies used for Immunostainings

Antibody	Dilution	Catlog#.	Company
HSP90	1:100	SC-7947	Santa Cruz Biotechnology
Vimentin	1:500	ab137321	Abcam
PCNA	1:2000	2586S	Cell signaling technology
Phalloidin-488	1:1000	12935S	Cell signaling technology
αSMA	1:20000	A5228	Sigma
Ki67	1:400	12202	Cell signaling technology

Supplemental Table 5. Antibodies used for Western blot

Antibody	Dilution	Catlog#.	Company
αSMA	1:20000	A5228	Sigma
FN1	1:500	SC-9068	Santa Cruz Biotechnology
FAK	1:1000	3285S	Cell signaling technology
pFAK	1:1000	3281S	Cell signaling technology

CDC42	1:1000	2466P	Cell signaling technology
RhoA	1:1000	2117P	Cell signaling technology
ERK	1:1000	SC-94	Santa Cruz Biotechnology
pERK	1:1000	SC-7383	Santa Cruz Biotechnology
HSP90*	1:1000	ADI-SPA-845-F	Enzo life sciences
GAPDH	1:5000	A300-641	Bethyl laboratories

References

- 1. Madala SK, Edukulla R, Schmidt S, Davidson C, Ikegami M, Hardie WD. Bone marrow-derived stromal cells are invasive and hyperproliferative and alter transforming growth factor-alpha-induced pulmonary fibrosis. *Am J Respir Cell Mol Biol* 2014; 50: 777-786.
- 2. Sontake V, Shanmukhappa SK, DiPasquale BA, Reddy GB, Medvedovic M, Hardie WD, White ES, Madala SK. Fibrocytes Regulate Wilms Tumor 1-Positive Cell Accumulation in Severe Fibrotic Lung Disease. *J Immunol* 2015; 195: 3978-3991.
- 3. Madala SK, Sontake V, Edukulla R, Davidson CR, Schmidt S, Hardie WD. Unique and Redundant Functions of P70S6K Isoforms Regulate Mesenchymal Cell Proliferation and Migration in Pulmonary Fibrosis. *Am J Respir Cell Mol Biol* 2016.
- 4. Kamal A, Thao L, Sensintaffar J, Zhang L, Boehm MF, Fritz LC, Burrows FJ. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. *Nature* 2003; 425: 407-410.