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Introduction
Nonalcoholic fatty liver disease (NAFLD) encompasses a progressive disease spectrum characterized by 
excessive accumulation of  lipid within the liver and has emerged as the most prevalent liver disease, affect-
ing ~30% of  Western populations (1). Development of  NAFLD can progress from simple fatty liver (steato-
sis) to more serious forms of  the disease, including nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, 
and cancer. Hepatic lipid accumulation occurs in response to uptake of  circulating free fatty acids (FFAs), 
de novo lipogenesis in the liver, or dietary fats (2) and presents as intracellular hepatocyte lipid droplet 
formation. Increasing triglyceride deposition with ensuing insulin resistance can lead to NASH, which is 
characterized by hepatic injury, which drives inflammation, oxidative stress, and apoptosis. Despite the 
recognition of  this disease as a public health crisis affecting up to 75% of  type 2 diabetics and 95% of  obese 
individuals (3), there is currently no approved therapy for NAFL or NASH.

While there are currently more than 20 distinct therapeutics in various stages of  clinical development 
(4), the therapeutic landscape includes no clear consensus on target strategy, illustrating a lack of  mecha-
nistic clarity with respect to the pivotal drivers of  this disease spectrum. There is also limited consensus 
regarding the utility of  animal models, as demonstrated by the array of  different models (>25) currently 
in use. Further, in vitro liver systems typically use supraphysiologic concentrations of  insulin/glucose and 
drug concentrations, and lack key elements of  the liver microenvironment, including hemodynamics, trans-
port, and multicellularity (5). The relevance of  these models to humans is questionable because they most 
often essentialize isolated aspects of  the human pathophysiology (6).

We previously described an approach that applies liver sinusoidal hemodynamics and interstitial 
fluid transport parameters to restore a mature, differentiated, in vivo hepatocyte phenotype and function 

A barrier to drug development for nonalcoholic steatohepatitis (NASH) is the absence of 
translational preclinical human-relevant systems. An in vitro liver model was engineered 
to incorporate hepatic sinusoidal flow, transport, and lipotoxic stress risk factors (glucose, 
insulin, free fatty acids) with cocultured primary human hepatocytes, hepatic stellate cells 
(HSCs), and macrophages. Transcriptomic, lipidomic, and functional endpoints were evaluated 
and compared with clinical data from NASH patient biopsies. The lipotoxic milieu promoted 
hepatocyte lipid accumulation (4-fold increase, P < 0.01) and a lipidomics signature similar 
to NASH biopsies. Hepatocyte glucose output increased with decreased insulin sensitivity. 
These changes were accompanied by increased inflammatory analyte secretion (e.g., IL-6, IL-8, 
alanine aminotransferase). Fibrogenic activation markers increased with lipotoxic conditions, 
including secreted TGF-β (>5-fold increase, P < 0.05), extracellular matrix gene expression, and 
HSC activation. Significant pathway correlation existed between this in vitro model and human 
biopsies. Consistent with clinical trial data, 0.5 μM obeticholic acid in this model promoted a 
healthy lipidomic signature, reduced inflammatory and fibrotic secreted factors, but also increased 
ApoB secretion, suggesting a potential adverse effect on lipoprotein metabolism. Lipotoxic stress 
activates similar biological signatures observed in NASH patients in this system, which may be 
relevant for interrogating novel therapeutic approaches to treat NASH.
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(7, 8). Herein, we adapted this system to model human fatty liver disease with lipotoxic stress. Primary 
human hepatocytes were cocultured with primary human hepatic stellate cells (HSCs) and macrophages 
(MΦs) and perfused with media containing higher levels of  NASH-associated risk factors (glucose, insu-
lin, and FFA) (9). Activation of  liver-resident MΦs (i.e., Kupffer cells) and HSCs significantly contribute 
to the pathogenesis of  NASH by promoting inflammation and fibrosis locally in the liver and systemi-
cally via the secretome (10). We demonstrate that lipotoxic stress similar to that seen in NASH patients 
was recapitulated and we measured its impact on hepatocyte morphology and function. Obeticholic 
acid, a promising therapeutic for NASH in phase III clinical trials, was used to further validate this 
system and corroborate clinical findings in vitro. The utilization of  this lipotoxic liver system provides a 
new translational tool for understanding the complex disease progression in NAFLD and a platform to 
evaluate the impact of  new therapies.

Results
Recapitulation of  liver tissue architecture. To mimic the liver microenvironment and multicellularity, pri-
mary human hepatocytes were cocultured in a collagen sandwich with primary human MΦs and HSCs, 
separated by a synthetic membrane (Figure 1A) under conditions of  hemodynamics and transport (7, 
8, 11). In addition to hepatocytes, MΦs and HSCs have been shown to be critical to the signaling and 
progression of  NAFL/NASH; thus, it was important that these additional cell types be present in the 
system (1, 12, 13). These 3 cell types communicate through direct cell-cell contact via the porous tran-
swell membrane (11) and/or through secreted factors. Under healthy-milieu conditions (i.e., containing 
physiological levels of  hormones) and lacking lipotoxic risk factors, hepatocytes maintain their polar-
ized morphology as previously described (7, 8). At the conclusion of  each experiment, the hepatocytes 
were separated and analyzed independently from the nonparenchymal cells (NPCs). Representative 
images of  NPCs and hepatocytes exposed to hemodynamics (Figure 1B) demonstrate that CD68 and 
reelin, markers for MΦs and HSCs, respectively (12, 13), were expressed in our system at the end of  the 
experiment, reflecting the maintenance of  the cell types in a differentiated state. E-cadherin, a marker 
of  cell-cell junctions, depicts the retention of  polarized morphology by differentiated hepatocytes in 
our system.

Recapitulation of  signaling pathways. In order to understand the impact of  NAFL/NASH risk factors 
on liver cells, the system was exposed to a lipotoxic milieu composed of  elevated glucose (25 mM), 
insulin (6,900 pM), and FFAs including oleic (65 μM) and palmitic (45 μM) acid, at concentrations 
derived from the differences between the plasma levels of  healthy and NASH patients (14, 15). These 
factors were present for the duration of  the experiment (10 days). To gain a high-level understanding of  
key differences between hepatocytes in healthy or a lipotoxic milieu, RNA-seq transcriptomic data were 
evaluated for repeatability and pathway analyses using gene ontology and a protein-protein interaction 
(PPI) analysis (16). For this study, only hepatocytes were interrogated using transcriptomics, owing to 
challenges inherent with the mixed-cell population of  NPCs. To gain confidence in the response, the 
study was repeated and reproducibility was evaluated using a gene correlation plot, where the correla-
tion was highly significant (Pearson correlation = 0.90, P value < 2.2 × 10–16, Supplemental Figure 1; 
supplemental material available online with this article; doi:10.1172/jci.insight.90954DS1). Next, the 
transcriptomic data were utilized for pathway analysis across multiple gene ontology databases (see 
Methods). Using this approach, 639 pathways were significantly regulated (complete list in Supplemen-
tal Materials), spanning a broad range of  metabolic functions. To further distill this transcriptomic data 
down to their fundamental biological processes, we utilized a PPI analysis. The goal of  the PPI network 
is to identify biological centers of  dysregulation induced by the lipotoxic milieu. Figure 1C shows that 
the data organized into multiple protein communities that represent coordinated changes in activity and 
are color-coded for visualization. Pathway analysis was performed for each protein community to better 
understand the biological functions associated with each, which are summarized in Figure 1C. Most 
communities detected are associated with NAFLD. Community 3, one of  the largest regulated groups, 
represents PI3K/Akt signaling that is important for glucose/insulin signaling and is associated with 
lipotoxicity in the liver. PKA activation (community 4) and glucose signaling (community 5) are regu-
lated and support the above finding. Furthermore, communities associated with altered lipid metab-
olism were also detected and include lipid/lipoprotein metabolism (community 1) and cytochrome 
p450 (CYP) enzymes (community 2). Finally, inflammatory processes were regulated as reflected by the 



3insight.jci.org   doi:10.1172/jci.insight.90954

T E C H N I C A L  A D V A N C E

NF-κB pathway (community 6), ER stress (community 7), and mitochondrial activity (community 8).  
In addition to these lipotoxic-associated communities, basic cell biological pathways (e.g., mitosis, pro-
tein modifications) were regulated as seen in communities 10–13.

The relative directionality of  these pathways was explored by calculating the average fold change for 
key pathways identified above, which was visualized as a radar plot relative to the healthy baseline condi-
tion (Figure 1D). The average gene expression for each of  these pathways (with the exception of  cholesterol 
biosynthesis) was significantly elevated (FDR < 5%). Using these same methods, 2 independent studies 
that evaluated gene expression changes in NASH patients (17, 18) were analyzed to benchmark the in vitro 
transcriptomic signature. Table 1 shows pathway analysis results, including directional pathway regulation 
in patient biopsies and this in vitro lipotoxic model. Strong agreement was observed across all 3 datasets for 
these key pathways associated with NASH, particularly with the fatty acid synthesis, gluconeogenesis, and 
inflammatory signaling pathways. Therefore, an unbiased analysis showed that the lipotoxic model acti-
vated key signaling pathways associated with NASH and these signaling communities were further investi-
gated using both functional endpoint assays and transcriptomic pathway analysis, as described below.

Hepatic steatosis. In the pathogenesis of  NAFLD, lipid accumulates in hepatocytes due to both increased 
FFA load in the circulation and de novo lipogenesis stemming from elevated glucose and insulin levels (2). 
To assess lipid accumulation within hepatocytes, neutral lipids were stained with Nile red (Figure 2A). 
Under healthy conditions, a limited amount of  lipid was visible within the cell, while distinct lipid droplets 

Figure 1. Adaptation of the in vitro human liver system to mimic human nonalcoholic fatty liver under lipotoxic stress. (A) Liver sinusoidal hemody-
namics were applied to the human liver system using a cone-and-plate viscometer incorporated into a transwell multiculture model of nonparenchymal 
cells (NPCs) (top of transwell) and hepatocytes (bottom of the transwell). Rotation of the cone (orange triangle) imparts shear stress onto the transwell. 
Medium is continually perfused to recapitulate interstitial flow, as indicated by the inflow and outflow ports. (B) Representative photomicrographs (origi-
nal magnification, ×20) of NPCs and hepatocytes are shown. NPCs include hepatic stellate cells (reelin+, green) and macrophages (CD68+, red). Hepatocytes 
are stained for E-cadherin (green). Nuclei stained with DAPI (blue). Scale bars: 100 μm and 50 μm for NPCs and hepatocytes, respectively. (C) Hepatocyte 
protein-protein interaction network was visualized and colored according to signaling community. (D) The relative directionality of many pathways identi-
fied in C were explored by calculating the FDR-scaled fold change for each, revealing key signaling pathways perturbed at the RNA level by lipotoxic stress. 
*Rotation gene set tests (ROAST), FDR < 5%.
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were observed in hepatocytes under lipotoxic stress. The lipid droplet–cytoplasm interface is stabilized by 
amphiphilic proteins (19) such as adipophilin, which was clearly observed in lipotoxic conditions (Figure 
2B). These changes were quantified across multiple hepatocyte cell donors, where a 4-fold increase in ste-
atosis was observed in lipotoxic conditions relative to healthy conditions (Figure 2C). Thus, this system is 
amendable to modulating lipogenesis via exposure to disease physiological levels of  factors.

To further explore lipid accumulation, lipidomics was utilized to evaluate concentrations of  specific 
lipid classes within the cells (Figure 3). Lipotoxic conditions had a profound impact on the metabolite 
signature. Out of  767 detectable lipid species, 449 were significantly regulated (FDR ≤ 5%). Significant 
increases in triacylglycerol (TAG), diacylglycerol (DAG), and cholesterol ester (CE) species were mecha-
nistically linked to de novo lipogenesis pathways, including fatty acid and cholesterol synthesis pathways, 
which were significantly increased in hepatocytes in lipotoxic conditions relative to healthy conditions 
(Figure 1D and Figure 2, D and E, and pathway visualizations in Supplemental Figures 2 and 3). Compar-
ing our in vitro data with previously published lipidomics performed on NAFL/NASH patient livers (20) 
revealed significant similarity (Pearson correlation P values < 0.002 compared with NAFL and NASH 
biopsies) between lipidomic signatures (Figure 3). Therefore, lipid imaging, lipidomics, and transcriptomic 
pathway analysis show evidence for the promotion of  a steatotic phenotype in hepatocytes under lipotoxic 
stress, a hallmark of  human NAFL and NASH.

Dysregulation of  glucose/insulin signaling. Progression of  NAFLD often coincides with elevated sys-
temic glucose levels by increasing gluconeogenesis and decreasing glycolysis, largely by ensuing insulin 
resistance (21). Thus, we measured glucose regulation in hepatocytes exposed to the lipotoxic milieu 
and found that these hepatocytes produced 3-fold more glucose than those exposed to a healthy milieu 
(Figure 4A). This result was corroborated by upregulation of  genes in the glycolysis/gluconeogenesis 
pathway (Figure 4B and Supplemental Figure 4). Insulin normally inhibits gluconeogenesis by inhibit-
ing transcription of  phosphoenolpyruvate carboxykinase 1 (PCK1), which is important in catalyzing the 
first committed step in gluconeogenesis (22). However, PCK1 was upregulated by the lipotoxic milieu 
(Figure 4B), suggesting that the cells have become unresponsive to insulin. To determine if  altered glu-
cose regulation was due to reduced insulin sensitivity, we measured glucose output following an insulin 
challenge, as insulin should inhibit gluconeogenesis and promote glycolysis (22). Hepatocytes exposed 
to a lipotoxic milieu were unable to reduce their glucose secretion with an insulin challenge, while the 
hepatocytes exposed to a healthy milieu exhibited a 4-fold reduction in glucose secretion (Figure 4C). 
This was further confirmed by measuring phosphorylated Akt, a downstream marker for intact insulin 
signaling. Akt exhibited a significant reduction in phosphorylation in hepatocytes exposed to the lipo-
toxic compared with the healthy milieu (12-fold versus 4-fold, respectively, Figure 4D), indicating that 
insulin signaling was compromised. Thus, these lipotoxic hepatocytes exhibit altered glucose signaling, a 
well-established risk factor for NAFL and NASH.

Increased cell stress and inflammation. As NAFL progresses to NASH, a distinguishing feature is increased 
markers of  cell stress and subsequent inflammation. While there are no approved biomarkers for NASH, 
several clinical studies have shown the release of  alanine aminotransferase (ALT) and caspase-generated 
cytokeratin 18 (CK18) fragments to positively correlate with inflammation and the NAFLD activity score  

Table 1. Pathway activation in human biopsies and the in vitro human liver lipotoxic system

López-Vicario et al. (2014) Ahrens et al. (2013) Lipotoxic System
Direction FDR Direction FDR Direction FDR

Fatty Acid Synthesis ↑ 0.014 ↑ 0.001 ↑ 0.026
Cholesterol 
Biosynthesis

↑ 0.019 ↑ 0.016 - 0.242

Gluconeogenesis ↑ 0.008 ↑ <0.001 ↑ 0.003
Inflammatory 
Signaling

- 0.102 ↑ 0.028 ↑ <0.001

Apoptosis - 0.576 ↑ 0.019 ↑ <0.001
Collagen Formation - 0.576 ↑ 0.002 ↑ <0.001
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(23, 24). In our in vitro system, we observed small, but significant increases in both ALT (1.4-fold, Figure 
5A) and CK18 (2.6-fold, Figure 5B) with the lipotoxic milieu compared with the healthy condition on day 
10. These conditions corresponded with activation of  gene expression associated with apoptotic signaling 
and oxidative stress (Supplemental Figure 5).

One possible cause of  increased apoptotic and oxidative stress gene expression could be increased mito-
chondrial activity due to elevated FFA load and β-oxidation. Since the end product of  increased mitochon-
drial activity is ATP production, we measured ATP levels at the conclusion of  the experiment and observed 
that lipotoxic conditions promoted a significant 4-fold increase (Figure 5C). Indeed, elevated ATP levels 
correlated with an upregulation of  the β-oxidation gene expression pathway (Supplemental Figure 5). Col-
lectively, these data suggest increased hepatic oxidation and cell stress in response to the lipotoxic milieu.

Increased cell and oxidative stress are key factors in eliciting an inflammatory response in the pro-
gression of  NAFLD (25). The secretome, which represents contributions from both hepatocytes and 
NPCs, was interrogated for multiple secreted protein analytes linked to an inflammatory response and 
the progression of  NASH. We compared the secretome from our system with hepatocytes alone or in 
combination with NPCs when exposed to 65 μM oleic acid and 0.1 ng/ml TNF-α. We observed that the 

Figure 2. De novo lipogenesis and cholesterol synthesis are increased in the human liver lipotoxic system. (A) Representative photomicrographs (origi-
nal magnification, ×20) of hepatocytes exposed to the healthy or lipotoxic milieu are shown. Hepatocytes are stained for E-cadherin (green), lipid (Nile 
red+, red), and nuclei (DAPI+, blue). Insets have been magnified to provide greater clarity of lipid droplets. Scale bars: 50 μm. (B) Representative photo-
micrograph (original magnification, ×100) of hepatocytes exposed to the lipotoxic milieu reveals adipophilin staining (green) around lipid droplets (Nile 
red+, red). Nuclei stained with DAPI (blue). Scale bar: 100 μm. (C) Nile red staining intensity from hepatocyte images were quantified and represented as 
fold change relative to healthy controls. n ≥ 11 experiments, 3 donors. ***P < 0.01, Student’s 2-tailed t test. (D and E) Hepatocyte expression of genes of 
the fatty acid (D) and cholesterol (E) biosynthesis pathways are represented as log2-fold change of lipotoxic vs. healthy milieu (red = upregulation, blue = 
downregulation). n = 6 experiments, 3 donors.
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NPC presence significantly impacted the hepatocyte pheno-
type and composition of  the secretome. Supplemental Figure 
6 shows that by day 10 NPCs increased the basal concen-
trations of  several proteins (e.g., monocyte chemoattractant 
protein 1 [MCP1] by 3.6-fold, IL-6 by 26-fold), while also 
increasing sensitivity to detect treatment-specific differences 

(e.g., IL-8 and VEGF were 3.6-fold and 2.3-fold more responsive, respectively, to the lipotoxic milieu in 
the presence of  NPCs than without).

To further support the importance of  the NPCs to the overall phenotype, Supplemental Figure 7 shows 
a principle component analysis (PCA) of  hepatocyte transcriptomic data from the studies mentioned above 
that compared multi- versus monocultured hepatocytes. As expected, milieu effects (i.e., healthy vs. lipo-
toxic) clearly separates the data along principle component 1 (PC1) in both multi- and monocultured cells, 
showing that NPCs are not required for hepatocytes to respond to the lipotoxic milieu. However, along 
PC2, multiculture conditions clearly separate from monoculture conditions, creating 4 distinct phenotypes. 
This shows at a high/unbiased level that the hepatocyte phenotypes are fundamentally different when 
NPCs are present compared with hepatocytes alone. Thus, NPCs are substantial contributors to the overall 
phenotype of  the tissue and the secretome measurements best represent a composite response of  all liver 
cells in the system, including the NPCs.

In this study, each of  the tested analytes showed various temporal responses to the lipotoxic milieu 
(Figure 5D). Over the tested time course, several proinflammatory cytokines increased, including IL-8, 
IL-6, and CXCL10, all of  which have established chemoattractant properties and are upregulated in 
NAFL/NASH patients or mouse models (Figure 5D) (26, 27). Studies have found that angiogenic fac-
tors, such as VEGF, are increased and contribute to the progression of  NASH in animal models (28). 
In agreement, we found levels of  VEGF to be increased at day 5. Plasma levels of  YKL40 (also called 
chitinase-3-like protein 1 [CHI3L1]) are increased in several inflammatory diseases, including rheumatoid 
arthritis and NASH (29–32). YKL40 increased 6- and 4-fold at days 7 and 10, respectively, in the lipotoxic 
milieu over the healthy milieu conditions (Figure 5D). Transcriptomic data support an increased inflam-
matory response triggered by the lipotoxic milieu in hepatocytes, where gene expression changes in inflam-
mation and inflammasome (33) signaling pathways were increased (Supplemental Figure 5). Specifically, 
Toll-like receptors (e.g., TLR1, TLR2, and TLR4), chemokines (CXCL6, -8, -12, -13, and -16), and STATs 
were significantly upregulated, all of  which have specific roles in the inflammatory response. Collectively, 
gene expression and protein analyses reveal elevated levels of  inflammatory signaling in these liver cells in 
response to lipotoxic stress, a hallmark feature in the progression from NAFL to NASH.

Modulation of  extracellular matrix signaling. One of the distinct protein communities identified through the 
unbiased PPI analysis was regulation of extracellular matrix (ECM) signaling proteins (Figure 1C). It is well 
defined that the NAFL-to-NASH progression includes ECM deposition and can ultimately lead to liver fibrosis 
(34). Owing to the cell plating within a collagen sandwich, direct measurements of collagen deposition were 
not possible and thus secreted regulators of ECM deposition were explored. Perhaps the best-studied regulator 
of fibrosis is TGF-β, which potently regulates gene expression of collagens and matrix-modifying enzymes 
(34). TGF-β was significantly increased at both tested time points (Figure 6A). Further, there was a high degree 
of coordinated gene expression activation of collagen-formation genes downstream of this pathway in hepa-
tocytes, further supporting that TGF-β may be an activated upstream regulator in conditions of lipotoxic stress 
(Figure 6B). In addition to TGF-β, osteopontin (OPN) is a biomarker that has been shown to positively cor-
relate with liver fibrosis and participates in neutrophil recruitment (12). OPN concentrations in the media 

Figure 3. Hepatic lipid changes in lipotoxic stress and clinical 
nonalcoholic fatty liver disease. All values are log2-fold changes in 
lipid concentrations relative to controls. Red indicates upregulated 
and blue indicates downregulated expression. Abbreviations: FC, fold 
change; NAFL, nonalcoholic fatty liver; NASH, nonalcoholic steato-
hepatitis; SFA, saturated fatty acid; MUFA, mono-unsaturated fatty 
acid; PUFA, polyunsaturated fatty acid; n-6/n-3, omega-6 fatty acids/
omega-3 fatty acids; FFA, free fatty acid; DAG, diacylglycerol; TAG, 
triacylglycerol; CE, cholesterol ester; PC, phosphatidylcholine; PE, 
phosphatidylethanolamine; SM, sphingomyelin.
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were higher at each of the tested time points, most significantly at day 5 (Figure 6C). Secreted procollagen 1α1 
showed no significant changes at the tested time points between healthy and lipotoxic conditions (Figure 6D).

With the progression of  NAFLD, HSCs are well documented to dedifferentiate from quiescent cells 
to activated myofibroblasts and contribute to the fibrotic response (12). One marker of  HSC activation 
is the presence of  smooth muscle α-actin (SMAA), which is accompanied by a change in cell morphol-
ogy (12). We explored HSC activation via immunofluorescence staining to allow us to simultaneously 
evaluate cell morphology and quantify levels of  SMAA. In healthy milieu conditions, HSCs were more 
quiescent, displaying a rounder cell morphology (Figure 1B) and lower levels of  SMAA (Figure 6E). 
In contrast, HSCs in the lipotoxic conditions had significantly higher levels of  SMAA (3.6-fold) with a 
more fibroblastic morphology (Figure 6E).

Exploration of  obeticholic acid response in the lipotoxic system. Lastly, having observed recapitulation of  
pathway (Table 1), lipidomic (Figure 3), and functional (Figures 2 and 4–6) responses compared with 
human clinical samples, we sought to utilize this system to further validate and better understand the 
potential impact of  a promising new drug for treatment of  NASH, obeticholic acid (OCA). OCA is a 
semisynthetic bile acid analogue that improved histological features of  NASH and fibrosis in phase IIb 
clinical trials (35). OCA was added to the lipotoxic system throughout the duration of  the experiment 

Figure 4. Glucose utilization and synthesis is altered in the human liver lipotoxic sys-
tem. (A) Baseline levels of secreted glucose were measured from hepatocytes exposed 
to the healthy or lipotoxic milieu for 10 days and represented as fold change relative to 
healthy controls. n ≥ 12 experiments, 5 donors. (B) Hepatocyte expression of genes of 
the glycolysis and gluconeogenesis pathways are represented as log2-fold change of 
lipotoxic vs. healthy milieu (red = upregulation, blue = downregulation). n = 6 experi-
ments, 3 donors. (C) Hepatocytes exposed to the healthy or lipotoxic milieu for 10 days 
were serum starved with or without 100 nM insulin for 3 hours and secreted glucose was 
measured and represented as fold change relative to baseline healthy controls. n ≥ 9 
experiments, 5 donors. (D) Hepatocytes exposed to the healthy or lipotoxic milieu for 10 
days were serum starved and then stimulated with or without 10 nM insulin for 10 min-
utes to measure Akt phosphorylation. Levels of phosphorylated Akt induced by insulin 
are represented as fold change relative to baseline phosphorylated Akt in the absence of 
insulin challenge. n = 5 experiments, 3 donors. *P < 0.05, **P < 0.01, Student’s 2-tailed t 
test. NS, not significant.
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at a concentration of  0.5 μM, which approximates the steady-state blood serum concentration of  OCA 
observed in clinical trials (36). At the conclusion of  the experiment, OCA responses were compared with 
the vehicle control (0.1% DMSO).

On-target effects of farnesoid x receptor (FXR) activation are mediated in part through the secretion of  
FGF19 primarily by the ileum, but we have previously found that hepatocytes can also secrete FGF19 (Dash et 
al., unpublished data). When FGF19 was measured in the media, OCA was found to potently induce secretion 
by 25-fold (Figure 7A). Thus, this evidence confirms on-target impact of FXR signaling due to OCA.

Next, the impact of  OCA on NASH-related functional endpoints was assessed. Lipid accumulation 
was decreased by 25% with OCA treatment relative to the vehicle (Figure 7B), confirming the positive 
effects seen clinically for the improvement in steatosis. The lipidomic profile within the cells was further 
explored using the response similarity index (RSI) based on lipidomics data. As previously described (37), 

Figure 5. Cellular stress and inflammation are induced in the human liver lipotoxic system. (A and B) Secreted alanine aminotransferase (ALT) (A) and 
caspase-cleaved cytokeratin 18 (CK18) (B) were measured in the media effluent from devices at day 10. n ≥ 4 experiments, 4 donors. (C) ATP was measured 
from hepatocytes exposed to the healthy or lipotoxic milieu for 10 days and represented as fold change relative to healthy controls. n ≥ 13 experiments, 5 
donors. *P < 0.05, **P < 0.01, Student’s 2-tailed t test. (D) Secreted analytes were measured in the media effluent at days 5, 7, and 10. n ≥ 4 experiments, 
4 donors. Triangles indicate samples that were below the lower limit of quantification. *P < 0.05, **P < 0.01, 2-way ANOVA.
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correlation plots compare responses of  the healthy and OCA treatments relative to the lipotoxic control on 
the x and y axes, respectively, where the RSI determines the degree to which the 2 conditions alter expres-
sion in the same (RSI > 0, purple) or opposite (RSI < 0, green) manner. Figure 7C shows a high degree 
of  similarity between the healthy milieu and OCA response, meaning that OCA treatment in the lipotoxic 
milieu promotes a change in lipid profile towards that of  the healthy controls (see Supplemental Figure 8 
for individual plots of  lipid species). Most profoundly, TAG species were elevated in lipotoxic conditions 
(Figure 3) and mostly repressed by OCA (lower left-hand quadrant of  Figure 7C). Thus, OCA treatment 
abrogated aspects of  steatosis and lipid signaling.

Clinically, patients treated with OCA showed marked improvement in ALT, lobular inflammation, and 
fibrosis (35). We found that circulating cell stress and inflammatory factors were reduced at the conclusion 

Figure 6. Evidence for extracellular matrix remodeling in the human liver lipotoxic system. (A, C, and D) Secreted TGF-β (A), osteopontin (OPN) (C), and 
procollagen 1α1 (D) were measured in the media effluent from devices at the indicated days. n ≥ 4 experiments, 4 donors. (B) Hepatocyte expression of 
genes of the collagen formation pathway are represented as log2-fold change of lipotoxic vs. healthy milieu (red = upregulation, blue = downregulation). 
n = 6 experiments, 3 donors. (E) Representative photomicrographs (original magnification, ×20) of nonparenchymal cells (NPCs) are shown. Macrophages 
(CD68+, red), nuclei (DAPI+, blue), and hepatic stellate cells (smooth muscle α-actin+ (SMAA+), green). Scale bars: 100 μm. SMAA staining intensity from 
immunofluorescent NPCs images were quantified and represented as fold change relative to healthy controls. n ≥ 4 experiments, 3 donors. Triangles indi-
cate samples that were below the lower limit of quantification. *P < 0.05, **P < 0.01, Student’s 2-tailed t test.
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Figure 7. Obeticholic acid restores homeostasis in the human liver lipotoxic system. Nonparenchymal cells (NPCs) and hepatocytes on device were 
exposed to the lipotoxic milieu containing 0.5 μM obeticholic acid (OCA) or DMSO vehicle control (Veh) for 10 days. (A) Secreted FGF19 was measured 
in the media effluent from devices at day 10. n = 3 experiments, 1 donor. (B) Nile red staining intensity from hepatocyte images were quantified and 
represented as fold change relative to healthy controls. n = 4 experiments, 1 donor. (C) Lipids from hepatocytes from device exposed to the healthy 
or lipotoxic milieu with 0.5 μM OCA or vehicle control were measured by metabolomics. Scatterplot representation of differentially expressed lipids 
in these hepatocytes are shown as log2-fold change and colored by response similarity index (RSI). Triacyglycerols (○), cholesterol esters (×), all other 
lipids (•). n = 4 experiments, 2 donors. (D and E) Secreted analytes were measured in the media effluent from devices at day 10. n ≥ 5 experiments, 
3 donors. (F) Secreted apolipoproteins were measured in the media effluent from devices at day 10. n = 4 experiments, 2 donors. Triangles indicate 
samples that were below the lower limit of quantification. *P < 0.05, **P < 0.01, Student’s 2-tailed t test.
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of  the experiment, including ALT (16% reduced, P = 0.10), MCP1 (66% reduced), IL-6 (48% reduced), 
and IL-8 (25% reduced) (Figure 7D). Previously mentioned markers associated with NASH, VEGF (60% 
reduced) and YKL40 (58% reduced), were also suppressed by OCA. In addition to proinflammatory secret-
ed factors, regulators of  fibrosis, TGF-β (45% reduced) and OPN (37% reduced), were reduced, but did not 
reach statistical significance (Figure 7E). However, procollagen 1α1 levels were significantly reduced (59% 
reduced) with OCA treatment in lipotoxic conditions relative to the vehicle (Figure 7E). These reductions 
in profibrotic factors align with the reduced fibrosis observed clinically.

Overall, while OCA treatment had several beneficial effects on steatosis and inflammatory endpoints, 
we did observe that total intracellular levels of  cholesterol were increased with OCA treatment (Supple-
mental Figure 9). Several species of  CEs were regulated in the opposite direction (RSI < 0, green) of  the 
healthy response (i.e., increased) as seen in the RSI plot (Figure 7C), with none being significantly regulated 
in the same direction as the healthy controls (i.e., RSI > 0). Further, several apolipoproteins were measured 
from the secreted media, where ApoB, primarily found in LDL, was increased 2-fold (Figure 7F). Other 
apolipoproteins, including ApoCII and ApoE were also increased (Figure 7F).

Discussion
The major focus of  this study was to develop an in vitro model of  lipotoxic stress that incorporates key 
physiological aspects of  NAFLD and to validate it by comparing it with clinical data. Despite the high 
prevalence of  NAFLD, there are currently no approved therapies, little consensus on disease targets, and 
few representative investigative models. Thus, there is a strong unmet need for human-relevant systems 
that are able to recapitulate key elements of  this disease for preclinical studies prior to costly clinical trials.

Various chip-based models have attempted to recreate a physiologically relevant liver sinusoidal micro-
environment by adopting approaches designed to generate three-dimensional (3D) aggregates or spheroids, 
micropatterning and bioprinting liver cell types into specific spatial configurations and some introducing 
fluid flow via microfluidics (38–42). For our lipotoxic system, we chose to use a larger-scale 3D system (7, 
8) that utilizes more cells, which enables simultaneous collection of  multiple endpoints (e.g., transcrip-
tomics, lipidomics, and imaging) from the same experiment, allowing for interassay comparison within 
a single experiment. This 3D system design incorporates both perfusion and hemodynamic shear forces 
while recapitulating elements of  sinusoidal spatial architecture. Like hepatocytes in the sinusoid, the hepa-
tocytes in our system are not directly exposed to shear force of  fluid movement, an aspect that distinguishes 
it from various other systems that directly expose the hepatocytes to shear stress and is often outside the 
physiological range found in the liver sinusoids (40). In addition, we previously reported that our liver sys-
tem restores an in vivo–like liver phenotype, as evidenced by restoration of  a stable polarized morphology, 
in vivo–like transcriptomic signatures distinct from static cultures, and higher liver-specific biochemical 
function (e.g., increased albumin and urea production as well as drug and xenobiotic metabolizing enzyme 
activity) (7, 8). Importantly, hepatocytes in this system exhibit induction and toxicity responses to drugs 
at levels that match therapeutic concentrations (7, 43). In general, while chip systems are currently used in 
drug toxicity studies, none comprise all the necessary features and validation required for studying NAFL/
NASH, as outlined below.

The lipotoxic system developed in this study preserved and recapitulated key aspects of  the lipotoxic 
state of  NAFL/NASH and differentiated itself  from other models. First, our system better represents a 
healthy liver compared with conventional in vitro systems, as we use near-physiological levels of  glucose 
and insulin (generally 10- to 10,000-times lower than other in vitro systems; see ref. 44). This is important to 
ensure that glucose- and insulin-regulated de novo lipogenesis is not compromised and serves as a meaning-
ful control. Second, our system is human relevant, utilizing human primary cells versus hepatic immortal-
ized cell lines or animal models (5). Third, our multicellular system is composed of  primary human hepa-
tocytes, HSCs, and MΦs, which are all key players in the progression of  NAFL/NASH (9). Additionally, 
in other multicellular in vitro systems, e.g., spheroids, 3D bioprinting, liver slices, and organ-on-chips, the 
signals from individual cell types cannot be separated (5). Fourth, in this system, the liver microenviron-
ment is recapitulated by applying physiologically relevant hemodynamics and biological transport, which 
is absent in traditional static cultures (including many multicellular systems) (5, 7, 8). Finally, the lipotoxic 
state is predicated upon FFA concentrations derived from clinical plasma concentrations in NASH patients 
(14). As we show in this study, the sum of  all these differentiators provides phenotypic responses that are 
more representative of  the human NAFL/NAFLD response.
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The model demonstrated key clinical aspects of  NAFL/NASH not described before in an in vitro NAFL/
NASH system. This includes the onset of  hepatic injury as evidenced by increased ALT levels. In addition, 
our ability to examine cell type–specific phenotypic responses in a complex system enabled us to identify 
potential fibrosis-inducing roles for both hepatocytes and HSCs. While activated HSCs have been widely stud-
ied and accepted to be the primary modulators of  fibrosis, animal studies suggest a role for both cell types in 
fibrosis (12, 45) — roles that are difficult to uncouple in an in vivo setting. Finally, our data demonstrate that 
we have a system that is fluid and amendable to creating various stages along the NAFL/NASH spectrum.

This model best falls into the early stages of  NASH progression, supported by the presence of  steatosis 
and inflammation. Elevated levels of  ATP and β-oxidation were also observed, consistent with animal 
studies that found that ATP and β-oxidation were increased in early stages of  NASH before falling below 
normal levels in long-term NASH (46). While there was evidence for early fibrotic signaling, later-stage 
NASH/fibrosis also includes increased levels of  collagen, which were not detected in this study. Therefore, 
this model system captures many key aspects of  early-stage NASH, and preliminary data suggest that addi-
tional factors, such as TNF-α, push the phenotype further along the spectrum by enhancing inflammation, 
apoptosis, and fibrosis (Feaver et al., unpublished data).

To further validate the lipotoxic system for human NASH disease relevance, transcriptomic and metab-
olomic responses were benchmarked using previously published data from clinical biopsies. Despite the 
challenges of  the samples being reflective of  a single time point and inherent differences between material 
collected from an in vitro system compared with a liver biopsy (e.g., cellular composition, disease dura-
tion, isolation techniques), direct comparison with our results showed striking similarities across studies. 
Specifically, transcriptomic pathway results demonstrated that the in vitro lipotoxic system was equally or 
more similar to tissue biopsy studies versus comparisons between the 2 independent tissue biopsy studies. 
Metabolomic signatures also showed striking similarities for the various lipid classes in response to the 
lipotoxic milieu. To the best of  our knowledge no other preclinical system, in vitro or in vivo, has rigorously 
validated both transcriptomic and metabolomic responses in addition to the functional readouts as were 
presented in this study. These comparisons provide clinical validation that our in vitro lipotoxic system 
mimics important signaling aspects of  NAFL and early NASH, as outlined in Supplemental Table 1, with 
the exception of  late-stage fibrosis, cirrhosis, and oncogenesis.

Lastly, we challenged the system with OCA, a drug that is currently in phase III clinical trials (4) with 
published phase II clinical trial data (35). Similar to the results seen in the phase II clinical trial, OCA reduced 
steatosis, inflammatory cytokines, and fibrotic mediators. Furthermore, we believe that this is the first study to 
show metabolomics analysis evaluating OCA effects, and we found that OCA reversed the NASH-associated 
lipidomic signature towards a healthy state. Thus, the reversal of  steatosis in OCA-treated patients may occur 
from the coordinated shift of  several specific classes/species of  lipids. Defining NAFL/NASH-associated 
lipid signatures for use in noninvasively benchmarking therapeutic responses will be invaluable (47). The 
exception to this finding was CEs, which were regulated in an opposite manner to those of  the healthy con-
trols for several species (i.e., further increased with OCA). This result may provide additional insight into the 
most controversial outcome observed with OCA-treated patients in the clinic, which is the increased levels of  
total cholesterol and LDL (35). We found that hepatic total cholesterol and secreted ApoB were increased, 
further suggesting dysregulation of  this pathway. Outside of  clinical trials, to the best of  our knowledge this 
result has never been published before, in vitro or in animal studies. Overall, the response to OCA in the 
lipotoxic system correlated to outcomes observed in clinical trials that have not been recapitulated in other 
in vitro systems, validating the system for evaluation of  new therapeutic targets in the future. We are cur-
rently evaluating head-to-head more than 20 compounds that constitute the bulk of  the therapeutic landscape 
for NAFL/NASH, including on/off-target pharmacodynamic effects and the ability of  each to regress the 
lipotoxic phenotype. These future studies will provide insight regarding the strengths/weaknesses of  the com-
pounds currently in development and identify potential novel therapeutic targets for the treatment of  NASH.

In conclusion, we demonstrate that lipotoxic stress and therapeutic drug response similar to that seen in 
NASH patients can be recapitulated in vitro in primary human liver cells. Collectively, we have found that 
by placing isolated cells into a configuration that better resembles their native microenvironment, the cells 
begin to regain many aspects of  their normal function. This lipotoxic liver system shows responsiveness to 
in vivo–relevant concentrations of  risk factors and drugs, providing a promising new tool for investigating 
disease mechanisms and interventions. Such systems may prove beneficial in translational preclinical drug 
discovery in NASH.
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Methods
Cell isolation and culture. Human cryopreserved hepatocytes from various healthy donors were screened 
and tested to select donors that met the following quality control criteria: (a) postthaw viability greater 
than 85%, (b) plating efficiency greater than 75%, (c) polarized morphology, and (d) albumin secretion 
rates greater than 10 mg/million cells/day. The sourcing details and demographics of  these donors are 
included in Supplemental Table 2. Human HSCs were purchased from Triangle Research Labs, maintained 
in DMEM/F-12 supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin and used at 
passages 1–5 for all experiments. MΦs were isolated from human blood. In brief, peripheral mononuclear 
blood cells were isolated from whole blood (Virginia Blood Services) by density gradient centrifugation. 
Magnetic isolation of  MΦs from this pool was then performed using a Human CD14 Positive Selection 
Kit (STEMCELL Technologies, 18058). Cells were then incubated with human granulocyte-macrophage 
colony-stimulating factor (GM-CSF, Peprotech, 300-03) for 10 to 12 days. MΦ phenotype was confirmed 
by expression of  MΦ-specific markers, CD68 and CD163 (BD Pharmingen, 556059 and Abcam, ab174867, 
respectively). Cells were cryopreserved and stored in liquid nitrogen until ready for experimental plating as 
described below. No human fetal–derived biomaterial was used in these studies.

Transwell coculture plating conditions and hemodynamic exposure. On day 1, primary hepatocytes were 
thawed and plated in a collagen gel sandwich configuration at 220,000 cells/cm2 on the undersurface 
of  the membranes of  75-mm polycarbonate transwells (Corning Inc.) using previously described proto-
cols (7). The cultures were left overnight in maintenance medium (MM) that consisted of  DMEM/F-12 
supplemented with 10% fetal bovine serum, 50 mg/ml gentamycin, 0.2% ITS (Fisher/MediaTech, MT-
25e800CR), and dexamethasone (Sigma-Aldrich, D4902; 1 mM at plating and 250 nM thereafter). The 
following day, HSCs and MΦs (collectively called NPCs) were plated in the top surface of  the transwell in 
a collagen gel sandwich at 22,000 cell/cm2 and 44,000 cells/cm2, respectively, in MM. NPCs were shielded 
from direct shear forces with a layer of  collagen in the absence of  a sinusoidal endothelium. Transwells 
were then set up within HemoShear devices in a configuration to allow for control of  hemodynamics and 
transport as described previously (see Figure 1A) (7–8, 11). A proprietary hepatocyte flow medium (HFM), 
modified from MM, was continuously perfused on both sides while shear stress was applied on the top 
surface based on the calculations described previously (8). Hepatocytes and NPCs were cultured under 
controlled hemodynamics and terminated on day 10. HFM was supplemented with normal physiologi-
cal levels of  insulin (690 pM) and glucose (5.6 mM) to mimic healthy conditions or high levels of  insulin 
(6,900 pM), glucose (25 mM), FFAs (65 μM sodium oleate [Sigma-Aldrich, O7501] and 45 μM palmitic 
acid [Cayman, 10006627]) to mimic plasma concentrations of  these factors in a NASH patient (14, 15).

Measurement of  secreted analytes. Media effluent was collected from the experimental devices at days 5, 
7, and 10. Various human cytokines were measured via ELISA and Magpix kits, according to the manu-
facturer’s instructions. Kits include: TGF-β1 (R&D Systems, DB100B), OPN (R&D Systems, DOST00), 
procollagen 1α1 (R&D Systems, DY6220-05), chitinase 3-like protein 1 (YKL40; R&D Systems, DC3L10), 
M30 CytoDEATH Kit (CK18; diPharma, P10900), ALT (Neo Scientific, HA0395), Magpix Human Cyto-
kine/Chemokine Panel I (VEGF, IL-6, IL-8, CCL2 [MCP1], CXCL10; EMD Millipore, HCYTOMAG-
60K), Magpix Apolipoprotein Panel (Apo AI, AII, B, CII, CIII, and E; EMD Millipore, APOMAG-62K).

Metabolic activity assays: glucose output and ATP assay. For measurement of basal levels of total glucose pro-
duced by hepatocytes, NPCs were scraped from the transwell on day 10 and punches of the remaining tran-
swell containing only hepatocytes were collected, washed briefly 3 times in PBS, and incubated at 37°C for 3 
hours in glucose-free starvation media (Gibco, A14430-01). Media were then collected and glucose levels in 
media measured using a Glucose Detection Kit (Abcam, 102517) according to the manufacturer’s instructions. 
For insulin-mediated glucose response, hepatocytes from the device were washed as above, incubated with 
media containing high glucose (25 mM) for 1 hour, and then incubated at 37°C for 3 hours in glucose-free star-
vation media with or without 100 nM insulin. Media were collected and glucose measured as described above.

For measurement of  intracellular ATP levels from hepatocytes, these cells were collected as described 
above and washed with PBS before incubating in 96-well plates. The intracellular ATP levels were mea-
sured using the CellTiter-Glo Luminescent Cell Viability Assay Kit (Promega, G7571) according to the 
manufacturer’s instructions.

Immunofluorescence and microscopy. Hepatocytes and NPCs plated on transwells and exposed to hemody-
namics were fixed in 4% paraformaldehyde for 15 minutes, permeabilized in 0.2% Triton X-100 in PBS for 
5 minutes, and incubated with primary antibody for 2 hours at room temperature. After 3 washes in PBS, 
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they were incubated with secondary antibodies for 1 hour at room temperature. Anti-human primary anti-
bodies were against adipophilin (Abcam, ab108323), E-cadherin (Santa Cruz Biotechnology, sc-71009), 
reelin (Abcam, ab78540), CD68 (BD Pharmingen, 556059), and SMAA (Sigma-Aldrich C6198). Goat 
anti-mouse or goat anti-rabbit conjugated to Alexa Fluor 488 or 546 (Life Technologies; A11001, A11003, 
A11008, and A11010) were used as secondary antibodies. Lipids were stained with Nile red (Sigma-
Aldrich, 19123) and nuclei were stained with DAPI (Thermo Fisher Scientific, D1306) or TO-PRO-3 (Life 
Technologies, T3605). Images of  immunofluorescently labeled cells were acquired with a Nikon 20× or 
100× objective lens on a Nikon C1 confocal microscope with EZ-C1 v3.9 software or a Nikon 20× objective 
extra-long working distance lens on the ImageXpress Micro XLS Widefield High-Content Analysis System 
(Molecular Devices). Nile red quantification was performed as total Nile red intensity normalized to nuclei 
counts and then presented as fold change relative to healthy control.

Cholesterol measurements. Hepatocytes exposed to hemodynamics were collected and lysed to extract 
and measure total intracellular cholesterol using the Total Cholesterol Assay Kit (Colorimetric) (Cell Bio-
labs, STA-384), according to the manufacturer’s instructions.

Metabolomics. Complex lipids, including TAGs, DAGs, FFAs, CEs, phospholipids, lysophospholipids, 
sphingomyelins, and ceramides, were measured from 1.2 million hepatocytes using the TrueMass Complex 
Lipid Panel service through Metabolon.

Differential abundance of  individual lipid species was assessed using empirical Bayes variance-moder-
ated linear models with the limma package in R (48). Prior to modeling, lipid abundance was normalized 
to total protein concentration. Models included experimental treatment and donor as fixed effects, where 
donor was treated as a nuisance variable. P values for parameter contrasts were adjusted for multiple com-
parisons using the Benjamini-Hochberg method (49).

Western blot analysis. Following cessation of  experiments at day 10, hepatocytes were collect-
ed from transwells and cell pellets lysed in 2× Laemmli sample buffer (Bio-Rad, 161-0737) containing 
β-mercaptoethanol. Total protein lysates were resolved in a 10% SDS-PAGE gel and transferred to nitro-
cellulose. For phosphorylated-Akt signaling experiments, hepatocytes were removed from the device at 
day 10, serum starved at 37°C for 2 hours in media containing low glucose (5.6 mM), and then either left 
untreated or treated with 10 nM insulin for 10 minutes at 37°C prior to lysing in sample buffer. Blots were 
probed overnight with primary antibody and 30 minutes at room temperature with secondary antibody in 
blocking buffer (LI-COR, 927-40000). Primary antibodies used were RPS11 (Bethyl Laboratories, A303-
936A-M), phospho-Akt (Ser473) (Cell Signaling Technology, 4060), and Akt (Cell Signaling Technology, 
9272). Secondary antibodies (diluted 1:15,000) used were IRDye 680LT donkey anti-mouse (LI-COR, 926-
68022), IRDye 800CW donkey anti-mouse (LI-COR, 926-32212), IRDye 680LT donkey anti-rabbit (LI-
COR, 926-68023), and IRDye 800CW donkey anti-rabbit (LI-COR, 926-32213). The LI-COR Odyssey 
infrared imager was used for image acquisition and the LI-COR Odyssey Image Studio software used for 
densitometry analysis.

Drug treatments. For drug experiments, hepatocytes and NPCs were exposed to DMSO vehicle control 
(Sigma-Aldrich, D2650), 0.5 μM OCA (AdipoGen, AG-CR1-3560-M025), or 300 nM atorvastatin (Cay-
man, 10493) in the lipotoxic milieu with hemodynamics for 10 days.

RNA preparation and RNA deep sequencing. Hepatocyte cell pellets were collected following cessation 
of  experiments at day 10, and RNA isolated using the Purelink RNA Mini kit (Invitrogen, 12183018A) 
according to the manufacturer’s instructions. RNA concentration was determined with the Nanodrop and 
RNA integrity was determined using the Agilent 2100 Bioanalyzer and the RNA 6000 kit (Agilent, 5067-
1511) according to the manufacturer’s instructions. Samples with a minimum RNA integrity number of  7.0 
were used for further transcriptomics processing. RNA (250 ng per sample) was submitted to Expression 
Analysis, Inc. for Illumina-based RNA deep sequencing. Approximately 20 million 50-bp paired-end reads 
were generated per sample. For each treatment, 6 experiments were run using 3 unique hepatocyte donors.

Transcriptomic data analysis. Following RNA deep sequencing, reads were pseudoaligned to the human 
transcriptome (GRCh38), and transcripts were quantified using kallisto (50, 51). Transcript abundances 
were pooled into gene-level estimates using the tximport package in R (52). Three RNA deep sequencing 
quality control measurements were performed to detect outliers and batch effects associated with the data-
set: (a) L1 distance between samples, (b) PCAs, and (c) similarity of  density estimates of  abundance values 
(53). The RNA sequencing data has been deposited into an MINSEQE-compliant public database and the 
accession number is GSE89063.



1 5insight.jci.org   doi:10.1172/jci.insight.90954

T E C H N I C A L  A D V A N C E

The gene-level RNA-seq counts were then analyzed to determine differentially expressed genes (DEGs). 
Only genes that passed our minimum abundance threshold of  more than 2 counts per million in at least 3 
samples (the minimum number of  biological replicates) were used for further analysis. Methods for DEG 
determination were implemented using the open source R/BioConductor software (http://www.biocon-
ductor.org) and the edgeR package (54). The model for this analysis included treatment and donor as pre-
dictor variables, and read count as the response variable. We estimated additional relevant variables using 
surrogate variable analysis (SVA), which were also included as predictors in the model design (55). A gene 
was determined to be a DEG by passing an FDR threshold of  10% (49). Select genes of  relevant biological 
processes were chosen to build response heatmaps that depict log2-fold changes in gene expression: blue = 
downregulation, red = upregulation, white = no change; the intensity of  the color reflects the magnitude of  
change; a white dot indicates a statistically significant change in the expression of  the corresponding gene 
(FDR < 10%). EdgeR-calculated fold changes, raw P values, and FDRs were used as input for downstream 
pathway analyses with IPA, metacore, SPIA, topGO, and GSEA pathway enrichment algorithms, which 
included known pathway gene lists from KEGG, Reactome, Biocarta, and Gene Ontology databases (41, 
56–62). Pathways found enriched for responses with an FDR of  20% or better were kept for consideration; 
redundant pathway enrichments were identified and merged based on strongly connected pathway-to-path-
way gene overlaps, using the Louvain method for network community detection (63).

For selected pathways, the directionality of  the pathway was determined by calculating the average 
FDR-adjusted fold change for each gene panel/pathway. To do this, for each gene within the specified 
pathway, the fold change was scaled by (1 – FDR) to provide greater weight to more significant genes. The 
scaled fold change was then averaged across all genes within the pathway to determine the directionality 
and magnitude of  regulation. The significance of  the directional change was determined using rotation 
gene set tests (ROAST) (64).

PPI networks. The transcriptomic data were integrated into a global PPI network, composed of  high-
confidence interactions defined by the STRING database (65). The goal of  the PPI network analysis was to 
identify protein-level centers of  dysregulation in response to experimental treatments. Edges in the network 
were weighted by the joint posterior probability that their incident nodes were differentially expressed (see 
Calculation of  Bayesian posterior probabilities and RSI below). Connections with low weight were filtered, 
substantially reducing the size of  the network. The resulting network of  interactions reflects connected por-
tions of  the network with the strongest evidence of  regulation. The size of  any given node is proportional to 
its eigenvector centrality in the weighted network; thus, node size is an indicator of  the relative importance 
of  each node in the context of  the treatment response. Communities, which are represented as color in the 
network figures, are regions of  the network comprised of  more densely connected nodes, and thus likely 
represent sets of  proteins involved in coordinated biological activities such as signaling pathways. Commu-
nity partitions were identified using the Louvain algorithm, and the functional themes of  the communities 
were determined by identifying Reactome gene sets with significant overlap via the hypergeometric test 
(63). The PPI network was spatially organized and viewed using the continuous graphing layout, Force 
Atlas 2, in GEPHI (66).

Calculation of  Bayesian posterior probabilities and RSI. For tests of  differential abundance applied to 
metabolomic and transcriptomic data sets, we calculated the Bayesian posterior probability of  the alterna-
tive hypothesis being true for each measured species (i.e., the posterior probability that any given species 
is differentially abundant). To compute this value, we fit a mixture of  1 uniform distribution and zero or 
more monotonically decreasing beta distributions to the distribution of  P values corresponding to multiple 
hypothesis tests in a given contrast; this method is described in detail by Allison et al. (67). Then, for a given 
P value, the probability that it was drawn from a nonuniform component of  the mixture was computed 
using Bayes’ rule. This probability is the posterior probability that the metabolite or transcript species is 
differentially abundant in the given contrast.

For pairs of  contrasts, the posterior probabilities were combined to quantify similarity of  treatment 
response. This quantification, termed the RSI, is based on the composite hypothesis testing procedure 
described by Erikson et al. (68). The RSI of  a given species in 2 contrasts is simply the product of  each 
individual posterior probability signed by the sign of  the product of  the log2-fold changes. Thus, species 
demonstrating differential abundance in the same direction will have RSI values approaching 1, species 
that are differentially abundant in opposite directions will have RSI values approaching –1, and species 
lacking evidence for differential abundance in one or both contrasts will have RSI values near 0.
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Statistics. Transcriptomic data and pathway analysis were analyzed as stated above. All other data are 
represented as dot plots that include the mean ± SEM of  all data points. The data points represent either 
raw or normalized data depending on the plot. Various statistical tests were employed including Student’s 
2-tailed t test, 1- and 2-way ANOVAs as specified in each figure legend. A Pearson correlation value was 
used in correlation plots. A P value less than 0.05 was considered significant.

Study approval. No human or animal studies were performed in this study and thus no approval and/or 
informed consent was required.
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