Supplemental Figure 1

Supplemental Figure 1. $K L_{\text {Lenti }}$ mice develop adenocarcinoma, metastasis to the mediastinal lymph nodes and $K P$ mice lack high pYFAK staining and collagen levels in high-grade lung tumors.
(A) Representative images of H\&E stained primary mouse lung adenocarcinoma in the LV-Cre induced LSL-Kras ${ }^{\text {G12D }}$; $L k b I^{\mathrm{fl} / \mathrm{fl}}\left(K L_{\text {Lenti }}\right)$ model $(\mathrm{n}=96$ mice) of the indicated histologic subtypes $(400 \mathrm{X})$, and H\&E stained normal and metastatic mediastinal lymph nodes (Scale bar $=100 \mathrm{um})(\mathrm{n}=33$ mice). (B) Representative images of immunohistochemistry (IHC) of pYFAK ${ }^{397}$ in $K_{r a s}{ }^{\mathrm{G} 12 \mathrm{D}}, p 53^{\mathrm{fl} / \mathrm{fl}}(K P)$ adenocarcinoma in situ (AIS) (top) and invasive adenocarcinoma (Inv Adc) (bottom) (200X). Black arrows mark pYFAK positive immune cells ($\mathrm{n}=5$ mice). (C) Representative images of SHG detection of collagen (top) in $K P$ Inv Adc. Cell structure is visualized by H\&E autofluorescence (bottom; pseudo-colored blue) (200X).

Supplemental Figure 2

Supplemental Figure 2. Kras, Lkb1-mutant collective invasion packs (CIPs) maintain junctional E-Cadherin in vivo and in vitro. (A) (Top) 3D reconstruction of z-stack confocal images of a CIP expressing both SP-C (red) and ECadherin (green). (Bottom) A YZ cross-section was generated to highlight junctional E-Cadherin. (B) Number of pYFAK ${ }^{397}$ sites at the invasive front in Lkb1 WT and Lkb1 null spheroids after 48 hours of invasion into a collagen matrix (each box represents an independent spheroid). Data are represented as mean (SD). P values were calculated using a 2tailed Student's t-test. ${ }^{* * * P<.001 \text {. Confocal images of the invasive front of Lkb1 WT (C) or Lkb1 null (D) spheroids }}$ embedded in a collagen matrix and stained for E-Cad (red in merge) and Vimentin (Vim, green in merge).White arrows mark the direction of invasion. Scale bar $=50 \mu \mathrm{~m}$. Data are representative images from 3 independent experiments.

Supplemental Figure 3

Supplemental Figure 3. Efficacy of FAK inhibitors on 3D mouse tumor spheroids (A) Western analysis of Lkb1 pathway signaling in Lkb1 WT and Lkb1 null mouse tumor cells. (B) Western showing efficacy of the FAK inhibitor PF562,271 over time on Lkb1 null mouse tumor cells (C) Western showing efficacy of GSK2256098 in Lkb1 WT and Lkb1 null tumor cells. (D) Immunofluorescence for pYFAK ${ }^{397}$ on Lkb1 WT and Lkb1 null spheroids embedded in collagen in the presence of either DMSO control or 250 nM of PF-562,271. Immunofluorescence analysis was performed on pYFAK ${ }^{397} 48$ hours post-embedding. Scale bar $=50 \mathrm{um}$. (\mathbf{E}) Representative images of Lkb1 WT (top) and Lkb1 null (bottom) tumor spheroids treated with either DMSO or GSK6098 (GSK) and embedded into collagen. Invasion was measured after 48 hrs . Scale bar $=50 \mathrm{um}$.

Supplemental Figure 4

Supplemental Fig. 4. Bioluminescent output is proportional to tumor burden and LN colonization in $K L L_{\text {Lenti }}$ mice, and GSK6098 treatment increases the tumor-associated leukocytes. (A) Region of interest (ROI) analysis of total flux and corresponding lungs in $K L L_{\text {Lenti }}$ mice. Tumors are outlined by white circles. Scale bar $=50 \mathrm{~mm}$ (B) Regression plot of $\% \mathrm{LN}$ colonization vs. total flux (p / s) in $K L L_{\text {Lenti }}$ mice. Linear regression, $\mathrm{R}^{2}=.9065, P=.0479$. (C) Regression plot of tumor burden (um^{2}) vs. invasive burden (um^{2}). Linear regression, $\mathrm{R}^{2}=.02886 P=\mathrm{ns}$. (\mathbf{D}) \% Tumor associated, CD45positive leukocytes in Vehicle vs. GSK6098 short-term treated mice. Each dot represents an individual mouse. 2-tailed t test; $P=.0819$.

Supplemental Table 1.

Tumor Grade	Vehicle (\%)	GSK6098 (\%)
Grade I	$7(9.1)$	$13(25.0)$
Grade II	$62(80.5)$	$37(71.2)$
Grade III	$3(3.9)$	$0(0.0)$
Grade IV	$5(6.5)$	$2(3.9)$

Supplemental Table 1.

Total and percent tumor grade in short-term Vehicle vs. GSK6098-treated mice. Fisher's exact test; $P=.053$.

Supplemental Table 2. Mice used in pre-clinical studies

Mouse ID	DOB	Sex	Treatment	Length of Treatment
2404	8/22/14	M	Vehicle	5 weeks
2410	8/22/14	M	Vehicle	5 weeks
2383	8/12/14	F	Vehicle	5 weeks
2468	9/17/14	F	Vehicle	5 weeks
2517	11/30/14	F	Vehicle	5 weeks
2529	12/10/14	M	Vehicle	5 weeks
2535	12/10/14	F	Vehicle	5 weeks
2541	12/9/14	F	Vehicle	5 weeks
2549	12/14/14	F	Vehicle	5 weeks
2550	12/14/14	F	Vehicle	5 weeks
2451	9/8/14	M	GSK ($75 \mathrm{mg} / \mathrm{kg}$)	5 weeks
2465	9/17/14	M	GSK ($75 \mathrm{mg} / \mathrm{kg}$)	5 weeks
2472	9/22/14	M	GSK ($75 \mathrm{mg} / \mathrm{kg}$)	5 weeks
2474	9/22/14	F	GSK ($75 \mathrm{mg} / \mathrm{kg}$)	5 weeks
2478	9/23/14	F	GSK ($75 \mathrm{mg} / \mathrm{kg}$)	5 weeks
2479	9/23/14	F	GSK ($75 \mathrm{mg} / \mathrm{kg}$)	5 weeks
2484	9/30/14	F	GSK ($75 \mathrm{mg} / \mathrm{kg}$)	5 weeks
2394	8/13/14	F	GSK ($75 \mathrm{mg} / \mathrm{kg}$)	5 weeks
2515	11/30/14	F	GSK ($75 \mathrm{mg} / \mathrm{kg}$)	5 weeks

Mouse ID	DOB	Sex	Treatment	Days to onset of clinical symptoms
2671	$4 / 30 / 15$	F	Vehicle	65
2703	$5 / 20 / 15$	M	Vehicle	8
2711	$5 / 26 / 15$	F	Vehicle	9
2733	$6 / 12 / 15$	F	Vehicle	34
2736	$6 / 12 / 15$	M	Vehicle	48
2741	$6 / 12 / 15$	F	Vehicle	16
2702	$5 / 26 / 15$	F	Vehicle	70
2684	$4 / 30 / 15$	F	Vehicle	64

2709	$5 / 26 / 15$	F	Vehicle	73
2750	$6 / 22 / 15$	F	Vehicle	77
2739	$6 / 12 / 15$	M	Vehicle	77
2746	$6 / 22 / 15$	M	Vehicle	72
2715^{*}	$5 / 29 / 15$	M	GSK (75mg/kg)	45
2716	$5 / 29 / 15$	M	GSK (75mg/kg)	58
2688	$5 / 19 / 15$	M	GSK (75mg/kg)	67
2670	$4 / 30 / 15$	F	GSK (75mg/kg)	71
2673	$4 / 30 / 15$	F	GSK (75mg/kg)	70
2748	$6 / 22 / 15$	M	GSK (75mg/kg)	76
2730	$6 / 1 / 15$	F	GSK (75mg/kg)	74
2725	$6 / 1 / 15$	F	GSK (75mg/kg)	72
2695	$5 / 26 / 15$	M	GSK (75mg/kg)	78
2691	$5 / 19 / 15$	F	GSK (75mg/kg)	75
2719^{*}	$5 / 29 / 15$	F	GSK (75mg/kg)	19

* censored (2715 died from severe fight wounds and 2719 died from systemic infection).

Supplemental Table 3

	pYFAK	
Genotype	Focal	Diffuse
$K R A S$	1	6
$K R A S, L K B 1$	5	1

Supplemental Table 3

Contingency table of $K R A S$ and $K R A S, L K B 1$ lung adenocarcinoma patient tumors that exhibited focally upregulated (Focal) vs. majority diffuse (Diffuse) pYFAK ${ }^{397}$ staining pattern. Fisher's exact test $P=0.0291$.

