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Introduction
It has been difficult to predict whether and when an individual might develop lung cancer, and the 
molecular underpinnings of  the process remain poorly understood. Exposure to carcinogens, genetic 
predisposition, and tissue microenvironment contribute to the acquisition of  multiple molecular aberrations 
simultaneously. Multiple efforts, including some from our laboratory, have led to the characterization of  
epigenetic (1, 2), genomic (3), transcriptomic (4, 5), and proteomic (6–8) changes that contribute to the 
tumorigenic process in the field of  cancerization, the bronchial epithelium, of  individuals at risk for lung 
cancer. However, limited information exists about the proteomic determinants of  transformation of  the 
bronchial epithelium. To investigate the mechanisms leading to the transformative events in the normal 
airway epithelium, we tested the hypothesis that changes at the protein level may integrate the results of  
many molecular battles that the epithelium is fighting to preserve homeostasis and prevent the deregulation 
of  key and early determinants of  tumor development.

Therefore, we performed an in-depth proteomic analysis of  the airway epithelium using multidimensional 
liquid chromatography–tandem mass spectrometry (LC-MS/MS) to identify proteins that could provide new 
insights into the pathogenesis of  lung cancer and stratify at-risk individuals. We observed proteomic changes 
that are consistent with the Warburg effect, previously described in tumor cells (9, 10) and recognized as a 

The molecular determinants of lung cancer risk remain largely unknown. Airway epithelial cells are 
prone to assault by risk factors and are considered to be the primary cell type involved in the field 
of cancerization. To investigate risk-associated changes in the bronchial epithelium proteome that 
may offer new insights into the molecular pathogenesis of lung cancer, proteins were identified 
in the airway epithelial cells of bronchial brushing specimens from risk-stratified individuals 
by shotgun proteomics. Differential expression of selected proteins was validated by parallel 
reaction monitoring mass spectrometry in an independent set of individual bronchial brushings. 
We identified 2,869 proteins, of which 312 proteins demonstrated a trend in expression. Pathway 
analysis revealed enrichment of carbohydrate metabolic enzymes in high-risk individuals. Glucose 
consumption and lactate production were increased in human bronchial epithelial BEAS2B cells 
treated with cigarette smoke condensate for 7 months. Increased lipid biosynthetic capacity and 
net reductive carboxylation were revealed by metabolic flux analyses of [U-13C5] glutamine in 
this in vitro model, suggesting profound metabolic reprogramming in the airway epithelium of 
high-risk individuals. These results provide a rationale for the development of potentially new 
chemopreventive strategies and selection of patients for surveillance programs.
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hallmark of  cancer (11), occurring in the cytologically normal bronchial epithelial cells of  at-risk individuals, 
implicating metabolic reprogramming at the earliest phases of  the pathogenesis of  lung cancer. Based on 
the results of  the shotgun proteomic analysis, we validated selected candidates in an independent set of  
risk-stratified individual bronchial brushing specimens by parallel reaction monitoring mass spectrometry 
(PRM MS) (12). The PRM MS analysis demonstrated evidence of  metabolic reprogramming in the airway 
epithelium of  high-risk individuals. We validated this metabolic reprogramming in an in vitro model by 
exposing human bronchial epithelial cells to cigarette smoke condensate (CSC). We used stable isotope-
resolved metabolomics to trace the fate of  13C from labeled glutamine in airway epithelial cells and 
confirmed metabolic dysregulation by metabolic flux analysis. This comprehensive study of  proteomic 
alterations in airway epithelium in individuals at different risk for lung cancer uncovers dramatic metabolic 
reprogramming happening early in the pathogenesis of  this lethal disease.

Results
Proteome of  the bronchial airway epithelium in individuals at risk for lung cancer. To determine the nature of  
the proteomic alterations associated with increasing risk for lung cancer development, we first identified 
2,869 proteins in the bronchial brushing specimens of  risk-stratified individuals (Table 1 and Supplemental 
Table 1; supplemental material available online with this article; doi:10.1172/jci.insight.88814DS1) by 
LC-MS/MS-based shotgun proteomic analysis (13). The data set is available through the UCSD Center for 
Computational Mass Spectrometry, MassIVE accession number MSV000080236, and ProteomeXchange, 
accession number PXD005116 (http://massive.ucsd.edu/ProteoSAFe/status.jsp?task=3a436be6beca4
c47919de6a863b08f21). Three groups of  five pooled bronchial brushings per group, consisting of  more 
than 97% bronchial epithelial cells (Supplemental Figure 1) (4, 5), from individuals without lung cancer 
were categorized as low, medium, or high risk using a lung cancer screening risk assessment tool (14). 
Bronchial brushings from 5 never smokers and 10 current and exsmokers from individuals with lung cancer 
were also used to generate a bronchial airway proteomic data set representative of  individuals with and 
without disease. All subsequent analyses were performed with proteomics data from individuals without 
lung cancer. The number of  proteins identified separately in low-, medium-, and high-risk groups was 
2,116, 1,949, and 2,771, respectively (Supplemental Table 2 and 3). In low-, medium-, and high-risk groups, 
49%, 48%, and 61% proteins, respectively, were identified in all three technical replicates. Out of  2,869 
identified proteins, 1,469 proteins were identified in all risk groups. To identify significantly dysregulated 

Table 1. Characteristics of individuals providing bronchial brushings for shotgun proteomic analysis.

Characteristics No lung cancer Lung cancer
Risk Low 

(n = 5)
Medium 
(n = 5)

High 
(n = 5)

Never smoker 
(n = 5)

Smoker 
(n = 10)

Age
Average ± SD 58.2 ± 4.7 59.4 ± 10.7 72 ± 5.2 67.0 ± 9.2 65.6 ± 13

Median (range) 58 (53–65) 59 (47–74) 69 (68–78) 62 (56–80) 66 (52–84)
Gender

Male 4 2 3 1 7
Female 1 3 2 4 3

Smoking status
Never smoker 5 0 0 5 0

Exsmoker 0 5 4 0 7
Current smoker 0 0 1 0 3

Pack year (average ± SD) - 21.5 ± 24.1 62.8 ± 25.4 - 34.9 ± 21.8
Pack year (median) - 20 (1–60) 50 (50–108) - 57 (15–100)

Histology
Adenocarcinoma - - - 4 3

Squamous cell carcinoma - - - 0 4
Bronchioalveolar carcinoma - - - 1 1

 Large cell carcinoma - - - 0 2

 



3insight.jci.org   doi:10.1172/jci.insight.88814

R E S E A R C H  A R T I C L E

proteins among risk groups, we performed the Jonckheere-
Terpstra trend test. Normalized spectral counts were used as 
a quantitative measure of  protein abundance. There were 312 
significantly dysregulated proteins (trend P < 0.05), out of  
which 237 demonstrated increasing trends and 75 demonstrated 
decreasing trends (Supplemental Table 4).

Identification of  dysregulated proteins in the airway epithelium 
of  individuals at risk for lung cancer. To understand the biological 
relevance of  the alterations in the bronchial epithelium 
proteome, pathway analysis was performed on 312 genes 
corresponding to the proteins identified based on normalized 
spectral counts using WEB-based Gene SeT AnaLysis Toolkit 
(Webgestalt) (15). As shown in Table 2 and Supplemental 
Table 5, Kyoto Encyclopedia of  Genes and Genomes (KEGG) 
pathway analysis with 312 dysregulated proteins revealed 
rewiring of  multiple metabolic pathways. Interestingly, 
enzymes of  the glycolytic pathway, TCA cycle, pentose 
phosphate pathway, and galactose and glycogen metabolism 
were overexpressed, suggesting early events of  likely metabolic 
reprogramming in the cytologically normal bronchial 
epithelium of  individuals at risk for lung cancer (Figure 1). 
Results of  the trend test demonstrated significantly increasing 

trends of  GLB1, PYGB, PGM1, PGD, UGP2, PFKL, PFKP, PGK1, PKM2, LDHB, IDH1, IDH2, DLST, 
and ME2 from low-risk groups to high-risk groups (Figure 2). This is the first evidence to our knowledge 
for a profound metabolic reprogramming in the field of  cancerization that we believe represents very early 
molecular events in lung tumorigenesis.

Validation of  dysregulated metabolic enzymes by PRM MS in an independent set of  bronchial brushings. These 
original findings were validated in an independent set of 20 individual bronchial brushings from 10 individuals 
at low risk for lung cancer and from 10 individuals at high risk for lung cancer (Table 3). Of the 312 significantly 
dysregulated proteins, 35 were selected for validation based on the strength of the trend analysis and their 
biological relevance. An additional 7 enzymes, although not significantly dysregulated by shotgun proteomics, 
were also tested (Supplemental Table 6) because of relevance to the carbohydrate metabolic pathways. PRM 
MS analysis using two or more labeled peptides (12)(Supplemental Table 7) validated overexpression of  
PGD, GLB1, PYGB, PGM1, PFKP, and DLST in the high-risk group compared with the low-risk group (P < 

Table 2. Enriched KEGG pathways represented by dysregulated 
proteins of the bronchial epithelium.

KEGG pathways Adjusted P values No. of proteins
Metabolic pathways 8.09E-09 48
Protein processing in 
endoplasmic reticulum

6.91E-05 13

Ribosome 0.0003 9
Galactose metabolism 0.0011 5
Glycolysis/gluconeogenesis 0.0011 7
Spliceosome 0.0016 9
Pentose phosphate pathway 0.0096 4
Fructose and mannose 
metabolism

0.0224 4

Phenylalanine metabolism 0.0224 3
Tryptophan metabolism 0.0355 4
Vasopressin-regulated water 
reabsorption

0.0375 4

Protein export 0.0392 3
Huntington’s disease 0.0473 8
Glutathione metabolism 0.0473 4
  

Table 3. Characteristics of patients providing bronchial brushing specimens for validation of 
selected candidates by parallel reaction monitoring mass spectrometry

No lung cancer
Low risk (n = 10) High risk (n = 10)

Age
Average ± SD 64.7 ± 9.9 68 ± 4.3

Median (range) 67 (63–76) 70 (61–79)
Gender

Male 4 6
Female 6 4

Smoking status
Never smoker 10 0

Exsmoker 0 6
Current smoker 0 4

Pack year (average 
± SD)

NA 91.6 ± 33.7
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0.05) (Figure 3 and Supplemental Table 8). 
The overexpression of IDH1, PGK1, IDH2, 
and PKM2 in the high-risk group was close to 
statistical significance. Although the expression 
of LDHA and G6PD did not demonstrate a 
significant trend in the shotgun analysis, these 
enzymes were substantially overexpressed in 
the high-risk individuals by PRM MS analysis 
(Supplemental Figure 2). In these cases, the 
biological significance perhaps outweighs 
the statistical significance. In addition, one 
of the major enzymes of fatty acid synthesis, 
FASN, and enzymes of nonoxidative phase of  
pentose phosphate pathway, TALDO and TKT, 
demonstrated marked  overexpression in both 
shotgun and PRM MS analyses.

We further validated the risk-associated 
proteomic changes in metabolic enzymes found in our trend analysis by determining the gene expression 
levels of  the metabolic enzymes in available transcriptomic data from airway epithelium of  healthy never 
smokers and current smokers (4, 16) as well as smokers with and without lung cancer (17, 18). GLB1, 
IDH1, IDH2, and PGD were overexpressed (P < 0.05) in the cytologically normal airway epithelium 
of  current smokers compared with never smokers. PYGB, PGM1, and UGP2 were overexpressed in 
the cytologically normal airway epithelium from the mainstem bronchus of  smokers with lung cancer 
compared with smokers without lung cancer in at least one of  two previously published cohorts (17, 19) 
(Supplemental Table 9). Taken together, these results strongly suggest alterations of  the metabolic enzymes 
supporting aerobic glycolysis, the activation of  fatty acid synthase and pentose phosphate pathway in the 
airway epithelium of  high-risk individuals.

In vitro modeling of  chronic cigarette smoke exposure in human bronchial epithelial cells and evidence for metabolic 
reprogramming by 13C flux analysis. To recapitulate the metabolic reprogramming found in the airway 
brushings of  high-risk individuals, we performed quantitative metabolic flux analysis of  human bronchial 
epithelial cells exposed to CSC. Because long-term treatment with CSC mimics chronic tobacco smoking 
exposure (20), we exposed human bronchial epithelial BEAS2B cells to increasing concentrations of  CSC 
(20 μg/ml to 120 μg/ml) for 7 months. First, overexpression of  selected carbohydrate metabolic enzymes 
was confirmed by Western blotting. As shown in Figure 4A and Supplemental Figure 3, expression 
of  IDH1, IDH2, ME2, PFKP, PKM2, and PYGB was upregulated in our in vitro model. Second, to 
investigate functional indicators of  metabolic reprogramming, we measured lactate production and 
glucose consumption in long-term CSC-treated BEAS2B cells and observed increased lactate production 

Figure 1. Proteomic changes in carbohydrate 
metabolic enzyme expression in the bronchial 
brushings of individuals at high risk for lung 
cancer. All enzymes shown as gene symbols (blue 
and red) were detected by shotgun proteomic 
(LC-MS/MS) analysis of cytologically normal airway 
epithelial cells from individuals at low, medium, and 
high risk for lung cancer. Equal amounts of protein 
(20 μg) were pooled from each bronchial brushing 
lysate of each of the low-risk (n = 5), medium-risk 
(n = 5), and high-risk (n = 5) groups to create a 100-
μg pooled protein lysate. Jonckheere-Terpstra trend 
analysis was performed with the risk groups using 
normalized spectral count obtained from LC-MS/
MS data. Gene symbols of overexpressed enzymes 
are shown in red and gene symbols shown in blue 
are not overexpressed. Jonckheere-Terpstra trend 
analysis was performed with the risk groups using 
normalized spectral count obtained from LC-MS/
MS data. 
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and glucose uptake (Figure 4, B and C). These results indicate that metabolic reprogramming occurs in 
the high-risk epithelium before evidence of  malignant transformation.

In addition to increased glycolytic flux, we observed increased incorporation of  13C from [U-13C5]
glutamine into lipogenic acetyl-CoA and increased de novo lipogenesis by isotopomer spectral analysis 
(ISA) in long-term CSC-treated cells, further supporting the concept of  metabolic reprogramming in the 
high-risk epithelium (Figure 4, D and E). Evidence of  increased biosynthetic activities came from a 50% 
higher NADPH/NADP+ ratio measured in long-term CSC-treated cells (Figure 4F) and overexpression 
of  NADPH-generating enzymes G6PD, PGD, MTHFD1, and IDH (Figure 2, Supplemental Table 4, and 
Supplemental Figure 2) in response to oxidative stress imposed by risk factors.

Because FASN, IDH1, and IDH2 were overexpressed in the epithelium of  high-risk individuals, we 
hypothesized that glutamine anaplerosis may provide increased lipogenic acetyl-CoA through net reductive 
carboxylation flux from α-ketoglutarate into citrate and ultimately into acetyl CoA. To distinguish between 
glutamine metabolism via TCA cycle in the forward oxidative direction and reverse reductive carboxylation 
direction, we used [U-13C5]glutamine to trace the flow of  glutamine carbon into citrate (Figure 5). We observed 
increased abundance of  M+5 citrate, indicative of  reductive carboxylation, and decreased abundance of  
M+2 and M+4 citrate, indicative of  glutamine oxidation. Therefore, these observations in long-term CSC-
treated BEAS2B cells demonstrate a shift from oxidative to reductive TCA cycle metabolism.

Metabolic alterations in CSC-treated BEAS2B cells were further assessed using the INCA software 
package (21) to enable quantitative flux analysis based on the available 13C labeling measurements. A complete 
reversal of  the net IDH flux from the oxidative to the reductive direction was observed in CSC-treated cells 
(Figure 6). This switch was driven by increased glutamine consumption and a trend toward reduced pyruvate 
and fatty acid oxidation. Despite slower growth, CSC-treated cells synthesized palmitate at a rate similar to 
that of  control cells. This discrepancy required the addition of  an external source of  cellular palmitate to 
the isotopomer model in order to reconcile the 13C labeling data to the measured growth rates. It is possible 
that the external source of  palmitate could have been imported from the culture medium or recycled from 
storage lipids. As a result, the flux analysis indicated that a significantly higher fraction of  cellular palmitate 
was derived from de novo lipogenesis in CSC-treated cells compared with control cells, consistent with the 

Figure 2. Overexpression of proteins regulating metabolic pathways in the airway epithelium of high-risk 
individuals. Increasing trend of expression of carbohydrate metabolic enzymes in cytologically normal airway 
epithelial cells from low-, medium-, and high-risk groups for lung cancer. Equal amounts of protein (20 μg) were 
pooled from each bronchial brushing lysate of each of the low-risk (n = 5), medium-risk (n = 5), and high-risk (n = 
5) groups to create a 100-μg pooled protein lysate. Jonckheere-Terpstra trend analysis was performed with the risk 
groups using normalized spectral count obtained from LC-MS/MS data. Top row: enzymes involved in glycogenolysis 
and galactose supply that feeds glucose into glycolysis and the pentose phosphate pathway. Middle row: glycolytic 
pathway enzymes. Bottom row: TCA cycle enzymes.
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ISA results (Figure 4E). Finally, the 
analysis revealed an increase in flux 
through cytosolic malic enzyme (ME1) 
in response to CSC treatment. ME1 is 
a source of  cytosolic NADPH, which is 
required for both reductive carboxylation 
through IDH1 and palmitate biosynthesis. 

Consequently, malate was diverted away from the mitochondria, and its conversion to oxaloacetate by MDH2 
was also reduced. Overall, 13C flux analysis confirmed extensive reprogramming of  TCA cycle and the 
anaplerotic and lipogenic metabolism in response to chronic CSC treatment (Figure 6).

Discussion
In this study, we discovered proteomic and metabolic changes in the airway epithelium at risk for 
developing lung cancer. Our results provide evidence for a dramatic metabolic reprogramming in the 
field of  cancerization. The evidence is substantiated by quantitative proteomic analysis in primary 
airway epithelial cells and by metabolic flux studies performed in an in vitro bronchial airway epithelial 
cell culture model of  chronic tobacco exposure. Although altered metabolism accompanies many disease 
states, in cancer, regulated alterations of  metabolism are often a consequence of  tumorigenic mutations 
and epigenetic alterations essential for malignant transformation (22). Yet, the timing of  this metabolic 
reprogramming during lung cancer development remained so far elusive. The results we report here lead 
us to hypothesize that these metabolic derangements may contribute to the earliest molecular events 
involved in lung tumorigenesis. This hypothesis warrants formal testing.

This study interrogates deeply the proteome of  the airway epithelium of  individuals at different risk for 
lung cancer. As proteomics links genotype to phenotypes, this approach complements previous reports of  
gene expression (4, 5) and epigenetic (23) or copy number alterations (24) in this patient population. Our 
findings demonstrated carbohydrate and lipid metabolism reprogramming as a result of  the effects of  risk 
factors, including age, smoking history, and genetics, on the airway epithelium.

From our proteomic analysis, we performed Webgestalt pathway analysis using 312 significantly 
dysregulated proteins. Among the top 10 pathways enriched from KEGG analysis, carbohydrate metabolic 
pathways dominated the findings (Table 2) and 48 metabolic enzymes of  the 312 significantly altered 
proteins were dysregulated in the bronchial epithelial cells (Supplemental Table 5). We validated these 
results in an in vitro model of  long-term CSC exposure and described the occurrence of  the Warburg 
effect in the cytologically normal bronchial epithelial cells from at-risk individuals. The overexpression 
of  metabolic enzymes had been reported at the transcription level in the at-risk airway epithelium of  
smokers (4, 16). Upregulation of  GLB1, PYGB, PFKL, PGK1, LDHB, IDH1, IDH2, and ME2 in smokers 
without lung cancer already suggested carbohydrate metabolic reprogramming in the bronchial epithelial 
cells. Our results provided proteomic and functional evidence for metabolic reprogramming in the field 
of  cancerization, including increased biosynthetic ability by upregulation of  the pentose phosphate 

Figure 3. Validation of protein expression 
by quantitative measurements of 
carbohydrate metabolic enzyme expression 
by PRM MS in an independent set of 
individual bronchial brushings. Each 
sample was analyzed on a Q-Exactive 
mass spectrometer using an acquisition 
method that combined a full-scan SIM event 
followed by 14 PRM scans. Two replicates 
of each specimen from low-risk individuals 
(n = 10) were compared with those of the 
high-risk individuals (n = 10). Likelihood 
ratio test based on mixed effect model. Top 
row: enzymes involved in glycogenolysis 
and galactose supply that feeds glucose 
into glycolysis and the pentose phosphate 
pathway. Middle row: glycolytic pathway 
enzymes. Bottom row: TCA cycle enzymes.
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pathway and lipogenic enzymes. Reprogramming of  the pentose phosphate pathway was indicated by 
the overexpression of  G6PD (Supplemental Figure 2) and PGD (Figure 2 and Supplemental Table 8), an 
observation that may be mediated by strong NRF2 activation (25, 26). The pentose phosphate pathway 
plays a role in supplying NADPH for lipid biosynthesis and nucleotide building blocks. In this study, a 
higher NADPH/NADP+ ratio (Figure 4F) and the overexpression of  NADPH-generating enzymes PGD, 
MTHFD1, and IDH2 in response to oxidative stress imposed by tobacco smoke suggests an adaptive 
phenomenon. To maintain redox balance, the intracellular NADPH level is crucial (27, 28). NADPH 
production from folate metabolism, one of  the major sources of  NADPH in the cell, is substantiated by the 
overexpression of  MTHFD1 (Supplemental Table 4) in the high-risk group.

To confirm and further characterize the metabolic dysregulation happening in the airway epithelium 
of  high-risk individuals, we modeled long-term tobacco smoke exposure with CSC in vitro using human 
bronchial epithelial BEAS2B cells and measured lactate and glucose concentrations in culture supernatant 
after 24 hours. Significantly enhanced lactate production and glucose consumption in CSC-treated cells in 
vitro raises questions about the possible role of  carbohydrate metabolic enzymes in lung cancer development 
(Figure 4, B and C). Overexpression of  glycolytic enzymes, including LDH, PFKP, and PKM2, in these 
cells indicates a phenomenon consistent with the Warburg effect. Moreover, the potential of  glycogen 
and ganglioside as possible sources of  glucose in high-risk individuals is supported by the overexpression 
of  GLB1, PGM1, and PYGB, which produces glucose-6-phosphate to feed into the glycolytic pathway. 
Previously, we reported significant activation of  the phosphoinositide 3-kinase signaling pathway in a 
genomic signature of  cytologically normal airway epithelial cells (29), and regulation of  multiple steps of  
glycolysis by Akt was reported earlier (30). Whether these metabolic changes have any causative effect on 
the transformation of  normal bronchial epithelial cells to dysplastic and finally malignant cells, as Otto 
Warburg postulated more than half  century ago (9, 10), remains to elucidated.

Our observations were not limited to carbohydrate metabolism. We found that overexpression of  
ME2 catalyzes the conversion of  malate, a TCA cycle intermediate, to pyruvate. Overexpression of  ME2 
thus may assist the fatty acid biosynthetic pathway in obtaining pyruvate and acetyl-CoA. Furthermore, 
overexpression of  the key lipogenic enzyme FASN in this study, as shown by shotgun proteomics analysis 

Figure 4. Chronic exposure of 
the human bronchial epithelial 
BEAS2B cell line to increasing 
concentrations (20–120 μg/ml) of 
CSC for 7 months in vitro induces 
metabolic reprogramming. (A) 
Overexpression of carbohydrate 
metabolic enzymes by Western 
blotting. (B) Lactate production and (C) 
glucose consumption were measured 
by the YSI 2300 STAT Plus Analyzer. (D) 
Fractional acetyl-CoA enrichment and 
(E) the fraction of newly synthesized 
palmitate were determined by 
isotopomer spectral analysis of 
palmitate after 24 hours of labeling 
with [U-13C5] glutamine. The complete 
isotopolog distribution of palmitate 
is provided in the Supplemental 
Materials. (F) NADPH/NADP+ ratio 
measured by the NADP/NADPH-Glo 
assay kit (Promega). The results are 
represented as the mean ± SEM. CSC, 
cigarette smoke condensate. *P < 0.05, 
Student’s t test.
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(Supplemental Table 4) and by PRM MS (Supplemental Figure 2), corroborates the upregulation of  
lipid biosynthetic pathways. Overexpression of  alcohol and aldehyde metabolic enzymes ALDH1A1, 
ALDH3A1, and AKR1B10 in lung tumor tissues was reported by our group and other investigators (31, 
32). In this study, these enzymes were overexpressed in the cytologically normal bronchial epithelium of  
individuals at-risk for lung cancer (Supplemental Figure 2 and Supplemental Table 4). Previously, we also 
reported overexpression of  acyl-CoA-binding protein/diazepam binding inhibitor in lung cancer tissues, 
indicating perturbation of  lipid metabolism in lung cancer (7, 33).

Finally, we applied stable isotope-resolved metabolomics to trace the fate of 13C from uniformly labeled 
glutamine in airway epithelial cells exposed to chronic CSC or control treatments. Rewiring of glutamine 
utilization in response to CSC treatment was demonstrated by increased incorporation of glutamine carbon into 
citrate and lipogenic acetyl-CoA, concomitant with overexpression of IDH, suggesting a shift from oxidative to 
reductive TCA cycle metabolism. This shift was most strongly evidenced by the increased abundance of M+5 
citrate and decreased abundances of M+2 and M+4 citrate isotopologs (Figure 5). It is important to note that 
M+5 citrate must have been derived from M+5 glutamine, rather than condensation of M+1 acetyl-CoA with 
M+4 oxaloacetate, since the palmitate mass isotopolog distribution (MID) indicates that the vast majority of  
labeled acetyl-CoA was M+2 enriched (Supplemental Excel File 1).

Without performing quantitative flux analysis, it is difficult to distinguish reversible IDH flux from net 
reductive carboxylation flux based on citrate and palmitate labeling measurements alone (34). Therefore, 
we applied a comprehensive isotopomer model to regress fluxes from the experimentally determined MIDs 
and cellular growth rates. This analysis confirmed that the net IDH flux switched from the oxidative to 
the reductive direction in response to CSC treatment of  BEAS2B cells (Figure 6). The flux modeling also 
revealed that CSC-treated cells relied on de novo lipogenesis to supply nearly all of  the palmitate required 

Figure 5. Evidence of increased glutamine metabolism through reductive carboxylation in response to CSC treatment. Intracellular metabolites 
from DMSO- or CSC-treated BEAS2B cells cultured in dialyzed FBS were extracted, and 13C labeling from [U-13C5]-glutamine was analyzed by GC-MS. 
Mass isotopolog distributions of selected TCA cycle intermediates were measured after 24 hours of labeling with [U-13C5]glutamine. CSC, cigarette 
smoke condensate. αKG, α-ketoglutarate; OAA, oxaloacetate. The results are represented as the mean ± SEM. P < 0.05, Student’s t test.
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for new cell growth, whereas control-treated cells relied heavily 
on preexisting (i.e., unlabeled) sources of  palmitate that were 
presumably scavenged from the medium or from internal lipid 
stores (Figure 6). These findings further support the conclusion 
that reprogramming of  glutamine metabolism plays a specific 
role in fueling enhanced lipid biosynthesis by these cells.

It is significant that the proteomic analysis indicated 
overexpression of  both IDH1 (cytosolic) and IDH2 
(mitochondrial) isoforms in at-risk patients, which correlates 
with the shift to reductive carboxylation observed in the in vitro 
study. However, it was not possible to resolve the individual 
contributions of  IDH1/2 enzymes to the net IDH flux 
estimated by isotopomer modeling without including additional 
assumptions that either (a) restrict the directionality of  the IDH1 
or IDH2 flux or (b) enforce directional channeling of  citrate 

between cytosol and mitochondria (e.g., as proposed by Jiang et al., ref. 35). Therefore, the reported IDH 
flux represents the net contribution of  both mitochondrial and cytosolic isoforms. The isotopomer model 
also did not explicitly balance NADPH, since not all sources/sinks of  NADPH could be resolved using the 
available measurements. We were therefore unable to rigorously identify the source of  NADPH that fueled 
reductive IDH flux in CSC-treated cells. It is possible that ME1 or G6PD/6PGD enzymes could supply 
cytosolic NADPH required to drive the IDH1 reaction toward isocitrate (35). This hypothesis is consistent 
with the increase in ME1 flux observed in CSC-treated cells (Figure 6) and the increases in expression 
of  pentose phosphate pathway enzymes identified in at-risk patients. Alternatively, ME2 could supply 
mitochondrial NADPH to drive the IDH2 reaction toward isocitrate, but this flux was only slightly elevated 
in CSC-treated cells. It is important to note that the magnitudes of  both ME1 and ME2 fluxes were larger 
than the net reductive IDH flux observed in CSC-treated cells, so either enzyme could potentially provide the 
stoichiometric amounts of  NADPH required to fuel reductive carboxylation in this context.

The proteomic study also has limitations. The proteome of  the large airway epithelium of  risk-stratified 
individuals was compared between high and low risk based on a risk assessment tool that is imperfect, with 
an overall accuracy around 75% (14). The data set was generated by LC-MS/MS shotgun proteomics by 
combining equal amounts of  protein from 5 bronchial brushings, a methodological requirement, given 
the small amount of  protein obtained from each bronchial brushing specimen. However, we were able to 
validate our results by PRM MS in an independent set of  individual bronchial brushings from participants 
from our cohort with matched risk assessment. Finally, in this paper, we have not demonstrated evidence 
that metabolic reprogramming is associated with tumor development, but we are raising this provocative 
hypothesis in a prospective cohort of  high-risk individuals. In conclusion, we discovered multiple aspects 

Figure 6. Significant metabolic alterations detected by 13C flux 
analysis of CSC-treated cells. (A) Metabolic fluxes were estimated 
using the INCA software package by regression of experimentally 
determined MIDs from 13C-labeling measurements and cellular growth 
rates. All model fits were overdetermined by 94 measurements. Flux 
estimation was repeated a minimum of 10 times from random initial 
values. Flux units are shown in units of mmol/gDW/d, except for 
growth rate, which is shown as 1/d. Error bars indicate 95% confidence 
intervals. CSC, cigarette smoke condensate; DIC, dicarboxylate ion 
carrier. (B) 13C metabolic flux analysis reveals metabolic reprogramming 
in CSC-treated cells. The red and blue arrows indicate fluxes that were 
significantly altered by CSC treatment relative to controls (α = 0.05). 
Red arrows indicate flux increases, and blue arrows indicate flux 
decreases. The IDH flux switched from the oxidative direction to the 
reductive direction in response to CSC treatment. Akg, α-ketoglutarate; 
Glc, glucose; FA, fatty acids; Fum, fumarate; Lac, lactate; Mal, malate; 
Oac, oxaloacetate; Palm, palmitate; Pyr, pyruvate; Suc, succinate. 
Suffixes indicate compartmentation: c, cytosolic; m, mitochondrial; x, 
external. Metabolites without suffixes are assumed to be present in 
only a single compartment or equilibrated across compartments.
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of  metabolic reprogramming in cytologically normal bronchial epithelial cells obtained from the bronchial 
brushings of  individuals at risk for lung cancer development by in-depth and quantitative proteomic 
analysis. This large-scale proteomic identification from a complex sample, such as the bronchial brushings 
obtained noninvasively, brings key mechanistic insights into lung cancer pathogenesis. We postulate that 
the monitoring of  a proteomic signature of  metabolic enzymes may narrow down at-risk individuals who 
are more likely to develop lung cancer and benefit from screening and surveillance programs.

Methods
Study population and collection of  bronchial brushing specimens. Bronchial brushing specimens were collected at 
the time of  bronchoscopy from the main stem bronchus of  consented nonsmoking and smoking volunteers 
at various risks for lung cancer at the Vanderbilt University Medical Center and the Nashville Veteran Affairs 
Medical Center. Individuals providing bronchial brushing specimens were grouped as low-, medium-, and 
high-risk groups, each group consisting of  5 individuals, by use of  a lung cancer screening tool (14). Never 
smokers were categorized as low risk, smokers with less than 5% risk of  developing lung cancer at 10 years 
and without chronic obstructive pulmonary disease were categorized as medium risk, while those with 
more than 5% risk were considered high-risk individuals. Characteristics of  the individuals of  each group 
are shown in Table 1 and those of  individual subjects in Supplemental Table 1.

Bronchial epithelial cells were obtained by brushings (Bronchoscopy cytology brush, Cook Medical) 
and collected in normal saline on ice following an established protocol (5). Bronchial brushings cells were 
centrifuged at 300 g for 5 minutes. Cell pellets were stored in a –80oC freezer after removing supernatant.  
Bronchial brushings consisted of  over 97% normal bronchial epithelial cells in our specimens (Supplemental 
Figure 1) and those by others (4, 5). 

Bronchial brushings were suspended in 200 μl of  50% 2,2,2-trifluoroethanol (Acros Organics) and 50% 
50 mM ammonium bicarbonate (Fisher Scientific) (v/v) and homogenized using sonication with three 
20-second cycles at 30-second intervals, followed by incubation at 60°C for 1 hour with shaking. After 
the 1-hour incubation, the sonication cycle was repeated. After the second sonication cycle, the protein 
concentration was measured using the BCA protein assay (Pierce Biotechnology). Each group was pooled 
by taking 20 μg from each of  the 5 bronchial brushing specimens to create a 100-μg pooled protein lysate. 
The pooled lysates were reduced with 100 μl of  40 mM tris (2-carboxyethyl) phosphine hydrochloride (Pierce 
Biotechnology) with 100 mM dithiothreitol (Acros Organics) and incubated at 60°C for 30 minutes with 
shaking. After cooling, 100 μl of  200 mM iodoacetamide was added and incubated for 20 minutes at room 
temperature in the dark. Samples were diluted with 600 μl of  50 mM ammonium bicarbonate, and trypsin 
was added at a ratio of  1:50 (w/w) and digested at 37°C overnight. The resulting peptide mixtures were 
lyophilized. The lyophilized samples were resuspended in 350 μl of  HPLC-grade water, vortexed vigorously 
for 1 minute, and desalted using Oasis HLB 96-well Elution plates (30 μm, 5 mg, Waters Corp.), which were 
prewashed with 500 μl of  acetonitrile and equilibrated with 750 μl of  HPLC-grade water. The flow-through 
was discarded, the plates were washed with 500 μl of  HPLC-grade water, and the peptides were eluted with 
80% acetonitrile and dried in vacuo. Samples were stored in the freezer until further analysis.

Peptide fractionation by isoelectric focusing. Isoelectric focusing of  tryptic peptides was adapted from the 
method of  Cargile et al. (36). Tryptic peptides (100 μg) from the digest cell pellet were resuspended in 155 
μl of  6 M urea and loaded onto custom ordered 7-cm, pH 3.5–4.5 ZOOM pH Strips (Invitrogen), placed 
into a ZOOM cassette, and allowed to rehydrate for 1 hour at room temperature. The loaded strips were 
focused at 21°C on a ZOOM IPG Runner system (Invitrogen) using the following program: step at 175 V 
for 15 minutes; gradient to 2,000 V over 45 minutes; and held at 2,000 V for 105 minutes. The strips were 
cut into 15 pieces and placed in separate wells of  a 96-well ELISA plate. Peptides were eluted from the 
strips as follows: 200 μl of  0.1% formic acid for 15 minutes; 200 μl of  50% acetonitrile/0.1% formic acid for 
15 minutes; 200 μl of  100% acetonitrile/0.1% formic acid for 15 minutes. Solutions of  extracted peptides 
were combined and evaporated in vacuo, resuspended in 750 μl of  0.1% trifluoroacetic acid, desalted with 
the Oasis HLB 96-well Elution plates, HLB 96-well 30-μm Elution plates (Waters Corp.), and evaporated in 
vacuo with a SpeedVac sample concentrator (Thermo Fisher Scientific). Peptides were resuspended in 100 
μl of  0.1% formic acid and placed in sample vials prior to LC-MS/MS analysis.

LC-MS/MS analysis. Peptide fractions were analyzed on a Thermo LTQ XL ion trap mass spectrometer 
(Thermo Fisher Scientific) equipped with an Eksigent 1D Plus nanoLC pump and AS-1 (SCIEX). A 2-μl 
injection volume of  peptides was separated on a packed capillary tip (Polymicro Technologies, 100 μm × 



1 1insight.jci.org   doi:10.1172/jci.insight.88814

R E S E A R C H  A R T I C L E

11 cm) containing Jupiter C18 resin (5 μm, 300 Å, Phenomenex) using an in-line solid-phase extraction 
column (100 μm × 6 cm) packed with the same C18 resin (using a frit generated with liquid silicate Kasil 
1). Mobile phase A consists of  0.1 % formic acid, and mobile phase B consisted of  0.1% formic acid in 
acetonitrile. A 95-minute gradient was performed with a 15-minute washing period (100 % A) at a flow-rate 
of  1.5 μl/min to remove residual salt. Following the washing period, the gradient was increased to 25% 
B by 50 minutes, followed by an increase to 90 % B by 65 minutes, and held for 9 minutes, before being 
returned to the initial conditions Tandem spectra were acquired using a data-dependent scanning mode in 
which one full MS scan (m/z 400–2,000) was followed by 5 MS/MS scans. MS/MS scans were acquired 
in centroid mode using an isolation width of  3 m/z, an activation time of  30 ms, an activation q of  0.250, 
and 35 % normalized collision energy. One microscan with a maximum ion time of  100 ms and 1,000 ms 
was used for each MS/MS and full MS scan, respectively. MS/MS spectra were collected using a dynamic 
exclusion of  60 seconds with a repeat of  1 and repeat duration of  1.

Database searching and statistical analysis of  spectral counts. Tandem spectra were searched against the 
human RefSeq (release 59; Aug 2010) using the Myrimatch database search algorithm (v 2.1.111) and 
Pepitome (v 1.0.42) for the spectral library searches (37). The database incorporated both the forward 
and reversed sequences to allow for determination of  FDRs. The searches were performed allowing for 
static modifications of  +57 Da on cysteines (for carbamidomethylation from iodoacetamide) and dynamic 
modifications of  +16 Da on methionines and formation of  N-terminal pyroglutamine (-17 Da). Semitryptic 
peptides were considered in the search parameters. Peptide and fragment ion tolerances were set to ±1.25 
m/z and 0.5 Da, respectively. The data were filtered and assembled with the IDPicker algorithm (v. 3.0.460) 
at 5% peptide FDR, requiring at least two unique peptides (minimum peptide length of  7 amino acids) 
and 10 spectra per protein in the entire data set (38). These settings resulted in an overall protein FDR of  
5%. Spectral count differences between the different risk groups were determined using quasi-likelihood 
modeling requiring a FDR value of  < 0.05 and at least a 4-fold change in spectral counts (39).

Sample preparation for PRM MS. Ten individual bronchial brushing specimens from each of  the low-
risk and high-risk groups of  an independent set (Table 3) were digested and analyzed by PRM MS for the 
candidate proteins listed in Supplemental Table 6. Following the same digestion protocol used for the shotgun 
analysis, each sample was reconstituted to a stock concentration of  1 μg/μl with 0.1% formic acid following 
digestion and desalting. Prior to analysis, each sample was diluted with an equal volume of  10 fmol/μl of  the 
labeled reference peptide mixture containing three isotopically labeled peptides used for signal normalization 
(40). The final concentration of  the samples was 0.5 μg/ μl and 5 fmol/μl labeled reference peptide.

Liquid chromatography separation. All peptide separations were performed using an Easy nLC-1000 
pump and autosampler system (SCIEX). For each analysis, 2 μl of  each sample was injected and loaded 
onto a PicoFrit capillary column (New Objective, 11 cm × 75 μm) packed in-house with ReproSil-Pur C18 
AQ 3-μm resin (New Objective). The peptides were separated using a linear gradient of  2%–35% solvent B 
(0.1% formic acid in acetonitrile) at a flow rate of  300 nl/min over 40 minutes, followed by an increase to 
90% B over 4 minutes and holding at 90% B for 6 minutes before returning to initial conditions of  2% B.

Analyses on a quadrupole-orbitrap instrument. PRM analyses were performed on a Q-Exactive mass 
spectrometer (Thermo Fisher Scientific). For ionization, 1,800 V was applied and a 250°C capillary 
temperature was used. Each sample was analyzed using an acquisition method that combined a full-scan 
SIM event followed by 14 PRM scans, as triggered by a scheduled inclusion list, with a 4-minute retention 
time window, containing the precursor ions representing target peptides. The SIM scan event was collected 
using a m/z 380–1,500 mass selection, an Orbitrap resolution of  17,500 (at m/z 200), a target automatic 
gain control (AGC) value of  3 × 106, and a maximum injection time of  30 ms. The PRM scan events 
used an orbitrap resolution of  17,500, an AGC value of  1 × 106, and maximum fill time of  80 ms, with an 
isolation width of  2 m/z. Fragmentation was performed with a normalized collision energy of  27 eV, and 
MS/MS scans were acquired with a starting mass of  m/z 150.

Data processing. PRM data analysis was performed using the Skyline software. (41)
Cell culture. Human bronchial epithelium cell line BEAS2B (ATCC) was maintained in DMEM 

medium (Fisher Scientific) containing 10% heat-inactivated FBS (Fisher Scientific, catalog 16140071) at 
37°C, 100% humidity, and 5% CO2. Cells were tested every 6 months for mycoplasma using the PCR-based 
MycoAlert PLUS Mycoplasma Detection Kit (Lonza). Cells were treated with increasing concentrations 
(20–200 μg/ml) of  CSC for 7 months in vitro. After 7 months treatment, the expressions of  target proteins 
were tested by Western blotting.
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Western blotting. Cell lysates were prepared using methods described previously (7). Proteins (30 μg per 
sample) were separated on 4%–20% tris-glycine gels (Fisher Scientific) and transferred to PVDF membranes 
(Fisher Scientific). The membranes were incubated in Blocker Casein (Thermo Fisher Scientific) primary 
(1:1,000) and secondary antibodies (1:10,000) as described previously (7). Anti-rabbit and anti-mouse 
secondary antibodies were purchased from Promega. Primary antibodies used were as follows: IDH1 
(clone D2H1, catalog 8137, Cell Signaling), IDH2 (clone D7H6Q, catalog 12652, Cell Signaling), ME2 
(rabbit polyclonal, catalog 12399, Cell Signaling), PGD (clone EPR6565, catalog ab129199, abcam), PFKP 
(rabbit polyclonal, catalog ab118712, abcam), PKM2 (sheep polyclonal, catalog AF7244, R&D Systems), 
and PYGB (rabbit polyclonal, catalog 12075-1-AP, Proteintech). Blots were visualized with Western 
Lighting (PerkinElmer). The blots were reprobed with an anti-β actin antibody to correct for protein loading 
differences. Densitometry data of  the bands using ImageJ (NIH) were obtained.

Lactate production and glucose consumption measurement. Two million BEAS2B cells were seeded in each 
of  the six 10-cm petri dishes. On day 0, the cells were treated with either CSC (Murty Pharmaceuticals 
Inc.) or DMSO (Sigma-Aldrich) in triplicate, and 1 ml media were collected from each dish after 24 hours. 
Glucose consumption and lactate production were measured with a dual glucose/lactate analyzer (2300 
STAT Plus Glucose and Lactate Analyzer, YSI Life Sciences). Data were normalized to the total protein.

NADPH/NADP measurement. BEAS2B cells cultured for 7 months with and without CSC were plated 
(10,000/well) in 50 μl culture medium in a clear bottom black 96-well plate. Cells were lysed in 50 μl base 
solution with 1% dodecyltrimethyl ammonium bromide (Sigma-Aldrich). For NADP+ measurement, 25 μl 
0.4 N HCl was added to each well. The plate was heated at 60°C for 15 minutes. To each well treated with 
acid, 25 μl Trizma base was added, and to each well without acid treatment, 50 μl HCl/Trizma solution 
was added. Thereafter, 50 μl NADP/NADPH-Glo detection reagent (Promega) was added to each well, 
and the plate was incubated for 60 minutes at room temperature. Luminescence was recorded using a 
luminometer (Promega).

Metabolite extraction and gas chromatography–mass spectrometry analysis of  13C labeling. The extraction of  
intracellular metabolites from DMSO- or CSC-treated BEAS2B cells cultured in dialyzed FBS (Sigma-
Aldrich) and gas chromatography–mass spectrometry (GC-MS) analysis of  13C labeling from [U-13C5]-
glutamine (Cambridge Isotope Laboratories) were performed as described previously (42). Briefly, cell 
metabolism was quenched by adding 1 ml of  precooled methanol (−80°C) to cultured cells in 10-cm 
dishes. A biphasic extraction was used to separate polar metabolites into a methanol/water phase and lipid 
metabolites into a chloroform phase. The extraction results in mixing of  free metabolites from separate 
subcellular compartments. Polar metabolites were converted to their tertbutylsilyl derivatives using 
MBTSTFA + 1% TBDMCS (Thermo Fisher Scientific) (43). Nonpolar extracts were converted to fatty 
acid methyl esters as described previously (43). Then, 1 μl of  each derivatized sample was injected into 
GC-MS (Agilent 7890A/5975C) equipped with a 30 m HP-5 MS capillary column for analysis of  isotopic 
enrichment. Raw MIDs were corrected for natural isotope abundance as described by Fernandez et al. 
(44). ISA was used to calculate fractional enrichment of  acetyl-CoA and fractional lipid synthesis based on 
palmitate labeling measurements, as described by Ahn and Antoniewicz (45).

13C metabolic flux analysis. An isotopomer model was constructed using the INCA software package (21) 
to enable flux regression from 13C-labeling measurements. The model was based on the work of  Vacanti et 
al. (46). The model provides a detailed description of  TCA cycle and anaplerotic and lipogenic pathways 
but does not attempt to accurately resolve fluxes in glycolysis or pentose phosphate pathways due to 
limited measurement availability. The complete reaction network and a list of  underlying assumptions are 
provided in the Supplemental Materials. Metabolic fluxes were estimated by regression of  experimentally 
determined MIDs and cellular growth rates. All model fits were overdetermined by 94 measurements. Flux 
estimation was repeated a minimum of  10 times from random initial values to ensure a global minimum 
was obtained. All results were subjected to a χ2 statistical test to assess goodness of  fit, and accurate 95% 
confidence intervals were computed for all flux parameters by evaluating the sensitivity of  the sum-of-
squared residuals to parameter variations (47).

Statistics. To identify potential protein features from shotgun proteomic data, the Jonckheere-Terpstra 
trend test (48) was applied to detect monotone trends (either increasing or decreasing) among low-risk, 
medium-risk, and high-risk groups. Furthermore, to compare the expression difference between the low-
risk group and the high-risk group for some candidate proteins identified from the trend analysis, likelihood 
ratio test based on mixed effect model (49) was applied to correctly handle the correlation structure of  the 
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PRM data, which have two repeated measurements for each sample. For both trend test and likelihood 
ratio test, the FDR controlling procedure was adapted to handle the multiple comparisons issue when 
testing many proteins simultaneously. Cellular metabolites were compared using the 2-tailed Student’s t 
test. The results are represented as the mean ± SEM. Differences with P < 0.05 were considered statistically 
significant. Differences in 13C flux estimates were considered significant when the 95% confidence intervals 
from two experimental groups failed to overlap.

Study approval. Bronchial brushing specimens were collected at the time of  bronchoscopy from the main 
stem bronchus of  consented nonsmoking and smoking volunteers at the Vanderbilt University Medical 
Center and the Nashville Veteran Affairs Medical Center. The study was approved by the local institutional 
review board (Vanderbilt University Medical Center and Veterans Affairs, Tennessee Valley Healthcare 
System, Nashville, Tennessee Institutional Review Boards), and informed consent was obtained from all 
individuals at both institutions.
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