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Introduction
Metabolomics has become a leading technology to observe cellular states in a comprehensive and poten-
tially high-throughput manner. Other omic technologies such as microarray, next-generation sequencing, 
and proteomics provide comprehensive information about gene expression and protein levels. However, 
posttranscriptional and posttranslational modifications of  genes and proteins, respectively, do not indicate 
the direction of  change of  their underlying function in physiologic and pathophysiologic states. On the 
contrary, metabolites are the final product of  cellular processes, providing a direct link to phenotypes (1). 
For this reason, an increasing number of  studies have been conducted to discover metabolites whose levels 
significantly change in a specific clinical condition (2–4). In a previous study, we identified a panel of  13 
metabolites that were robustly altered in patients with diabetic nephropathy (3), thus motivating us to inves-
tigate the underlying molecular networks linked to these metabolites.

By integrating significantly altered metabolites with metabolic pathways using publicly available 
resources such as KEGG (5), Reactome (6), or MetScape (7), one may be able to identify perturbed parts 
of  biochemical pathways. However, if  the significant metabolites are dispersed over multiple pathways, 
biological interpretation becomes a difficult task. To find possible dominant pathways that are likely to be 

To derive new insights in diabetic complications, we integrated publicly available human protein-
protein interaction (PPI) networks with global metabolic networks using metabolomic data from 
patients with diabetic nephropathy. We focused on the participating proteins in the network that 
were computationally predicted to connect the urine metabolites. MDM2 had the highest significant 
number of PPI connections. As validation, significant downregulation of MDM2 gene expression 
was found in both glomerular and tubulointerstitial compartments of kidney biopsy tissue from 2 
independent cohorts of patients with diabetic nephropathy. In diabetic mice, chemical inhibition of 
MDM2 with Nutlin-3a led to reduction in the number of podocytes, increased blood urea nitrogen, 
and increased mortality. Addition of Nutlin-3a decreased WT1+ cells in embryonic kidneys. Both 
podocyte- and tubule-specific MDM2-knockout mice exhibited severe glomerular and tubular 
dysfunction, respectively. Interestingly, the only 2 metabolites that were reduced in both podocyte 
and tubule-specific MDM2-knockout mice were 3-methylcrotonylglycine and uracil, both of which 
were also reduced in human diabetic kidney disease. Thus, our bioinformatics tool combined with 
multi-omics studies identified an important functional role for MDM2 in glomeruli and tubules of 
the diabetic nephropathic kidney and links MDM2 to a reduction in 2 key metabolite biomarkers.
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involved in significant changes in individual metabolite levels, metabolite set enrichment analysis (MSEA) 
and related techniques have been developed (8, 9). These approaches may make connections among sets 
of  metabolites that are on the same classical pathways, but often do not identify new connections between 
metabolites that participate in different pathways. In addition, the fraction of  currently known metabolic 
pathways among all actual metabolic pathways in the cell is limited (10), thus reducing the identification of  
possible connections between metabolites.

Recent advances in technologies have supported the development of  genome-wide protein-protein 
interaction (PPI) networks (11), which may provide novel connections among enzymes and metabolic path-
ways. We therefore hypothesized that some proteins linking enzymes associated with reactions involving 
significant metabolites may act as bridges, constituting less-well-defined pathways. These bridges may then 
explain connections among metabolites that display quantitative changes in clinical samples. In this work, 
we present MetBridge, an integrated map of  metabolic networks and PPI networks relevant to human biol-
ogy. By focusing on the 13 metabolites linked to human diabetic kidney disease as an input, our developed 
software MetBridge Generator extracted a subnetwork (MetBridgeDKD) from MetBridge that potentially 
regulates these metabolites. We further assessed the potential relevance of  key bridge proteins in Met-
BridgeDKD to diabetic nephropathy by examining gene expression of  highly significant bridge proteins. We 
found that of  the top 5 identified proteins that had the greatest number of  interactions with the enzymes 
regulating the 13-metabolite signature of  diabetic kidney disease, 4 had significant dysregulation of  their 
gene expression in independent kidney biopsies of  patients with diabetic nephropathy. In particular, MDM2 
had the greatest number of  interacting proteins in the network and had the strongest significant downregu-
lation of  gene expression in both glomerular and tubulointerstitial compartments across 2 independent 
patient cohorts. Functional significance was demonstrated with chemical inhibition of  MDM2 and gene 
knockout in podocytes and tubular epithelial cells in mouse models. Interestingly, 3-methylcrotonylglycine 
and uracil, which were part of  our panel of  13 metabolites, were reduced in the MDM2-knockout mice in 
both podocytes and tubules, thus indicating partial recapitulation of  the metabolite downregulation pattern 
in patients with diabetic kidney disease.

Results
Construction of  MetBridge network. The global human metabolic map was obtained from the KEGG data-
base (5) and internal database (3) and integrated with human PPI data from the BioGRID database (12). 
The integrated network initially contained 161,024 edges connecting 16,525 nodes. We restricted nodes to 
metabolites, their associated enzymes, and proteins that directly interact with these enzymes. The result-
ing network, designated as “MetBridge”, contained 72,343 edges connecting 4,941 nodes. MetBridge was 
loaded onto Cytoscape (13).

This Cytoscape map provides users a global view of  not only metabolic pathways but also possible con-
nections between enzymes through PPIs (Supplemental Figure 1; supplemental material available online 
with this article; doi:10.1172/jci.insight.87877DS1). There are 3 types of  nodes on the network: metabo-
lites, their associated enzymes, and proteins that interact with the enzymes. These proteins are designated 
as “bridge proteins” — the proteins that connect the enzymes. They are discriminated by the shape and 
color of  the nodes. Edges represent association between metabolites and enzymes, or PPIs, which can be 
discriminated by their colors. We then developed a Cytoscape App (plugin), designated as “MetBridge 
Generator”, to search for subnetworks that connect a given set of  significant metabolites (Supplemental 
Figure 1). A user can input metabolites of  interest by HMDB IDs. The App searches for interacting protein 
partners of  enzymes associated with reactions of  given metabolites through the PPI network. The subnet-
work containing the metabolites, their associated enzymes, and bridge proteins are extracted and displayed 
on Cytoscape. The App also assesses the significance value of  the number of  interactions of  bridge proteins 
to the enzymes regulating the input metabolites compared with the other enzymes on the network (see 
supplemental methods). The sizes of  bridge proteins are proportional to the calculated significance (Figure 
1); thus, a user can intuitively understand which bridge proteins have more potential regulatory effects on 
the given metabolites.

Enriched functions of  enzymes and bridge proteins in the subnetwork MetBridgeDKD. We tested the App using 
a panel of  13 key metabolites that distinguished patients with diabetic kidney disease (3). With the Met-
BridgeDKD network, 39 enzymes interacted with the 13 metabolites and 291 bridge proteins in turn interacted 
with these enzymes (Figure 1). Additionally, 21 enzymes interacted with at least 1 of  these 39 enzymes and 
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at least 1 of  these 291 proteins. There were 3,390 edges connecting these nodes, which include 2,591 edges 
connecting these proteins. If  we randomly pick the same number of  proteins (291 proteins) from our Met-
Bridge, which contains 58,703 edges among 3,387 proteins, we expect to observe only ~432 edges among 
these proteins by chance, which is significantly fewer than the actual number of  2,591 edges (P < 2.33 × 
10–1,123, hypergeometric test; see supplemental methods). Thus, the 13 metabolites were all connected by a 
modestly extensive PPI network.

We checked the gene expression of  these bridge proteins that participate in our MetBridgeDKD network in 
mouse podocytes. RNAseq data using mouse podocytes were obtained from a previous study (14). Approxi-
mately 81.6% of  the transcripts corresponding to these bridge proteins participating in MetBridgeDKD were 
detected in the podocyte database (based on the threshold of  FPKM > 3 (https://hpcwebapps.cit.nih.gov/
ESBL/Database/Podocyte_Transcriptome/index.htm). The detected transcripts included those corre-

Figure 1. Metabolite protein-protein interaction network (MetBridgeDKD) connecting 13 metabolites that were significantly decreased in diabetic 
kidney disease samples. Red, blue, and pink nodes represent metabolites, enzymes, and bridge proteins, respectively. Pink, red, and blue edges 
represent KEGG-based associations of metabolite with enzyme, internally curated associations of metabolite with enzyme, and BioGRID-based 
protein-protein interaction (PPIs), respectively. The network was created using our internally developed MetBridge Generator, which runs as an 
App on Cytoscape. Node sizes of the bridge proteins (pink) are proportional to significance of node degree. Edge widths of PPIs are proportional to 
number of articles reporting the corresponding interactions.
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sponding to MDM2, HUWE1, PEX5, and CUL4B, 4 of  the top 5 bridge proteins with the highest number of  
significant connections to the enzymes.

To confirm the biologic relevance of  these enzymes, we analyzed the enriched functions of  enzymes asso-
ciated with the significant metabolites in the network using Cytoscape App BiNGO (15). Our results showed 
that there were 19 enriched biological processes (gene ontology [GO] terms, Supplemental Figure 2A) and 
16 enriched cellular components (Supplemental Figure 2B) under the default threshold of  P values corrected 
for multiple testing. As further supportive evidence that our MetBridgeDKD network reflects relevant pathways 
involved in diabetic kidney disease, we identified that citrate metabolic process genes and branched-chain 
amino acid metabolism were prominent in MetBridgeDKD, which had also been described in our previous 

Figure 2. Subnetworks connecting part of 13 metabolites significantly decreased in diabetic kidney disease samples. (A) Subnetwork showing 
enzymes (blue rectangles) associated with bridge proteins (pink circles) that are known to have a function in apoptosis, and the metabolites (red hexa-
gons) associated with these enzymes. (B) Subnetwork showing enzymes that interact with MDM2 (bridge protein) and metabolites that are associated 
with these enzymes. Six metabolites (solid red hexagons) are associated with the enzymes that directly interact with MDM2. Two metabolites (dotted 
red hexagons) are associated with the enzymes that interact with MDM2-interacting enzymes. (C) Subnetwork showing enzymes that interact with 
PEX5 (bridge protein) and metabolites that are associated with these enzymes. Peroxisomal components are marked in green. Five metabolites (solid 
red hexagons) are associated with the enzymes that directly interact with PEX5. Three metabolites (dotted red hexagons) are associated with the 
enzymes that interact with PEX5-interacting enzymes.
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report (3) and by independent investigators (16, 17) (Supplemental Figure 2, A and B).
An important contribution of  MetBridge is the identification of  bridge proteins that connect rel-

evant enzymes. To investigate whether functions of  these bridge proteins are linked to relevant functional 
pathways, we evaluated the biological processes and cellular components of  the bridge proteins (Supple-
mental Figure 2, C and D). We found that 22 GO biological processes and 21 GO cellular components 
were enriched. Forty-five proteins (~15.5% of  all proteins in MetBridgeDKD) in the subnetwork had GO 
annotation of  “regulation of  apoptosis”, which was identified as a significantly enriched GO term (Ben-
jamini–Hochberg corrected P value < 0.0484). Previous studies have shown that high glucose induces 
apoptosis in various cells including podocytes and tubular epithelial cells, which both contribute to devel-
opment of  diabetic kidney disease (18). The subnetwork of  MetBridgeDKD, which consists of  bridge 
proteins involved in regulation of  apoptosis, their interacting enzymes and metabolites associated with 
them, are shown in Figure 2A. We identified that 12 out of  the 13 metabolites were connected by bridge 
proteins involved in apoptosis via the enzymes, indicating a strong relationship between apoptosis and 
the significantly regulated metabolites. Among the identified bridge proteins, we found cyclin-dependent 
kinases and inhibitors including CDKN1A (p21). CDKN1A has been found to be consistently dysregulated 
in diabetic kidney and nondiabetic glomerular disease and is a well-known regulator of  the cell cycle and 
apoptosis (19), or diabetic kidney disease (20). Therefore, there appears to be robust biological relevance 
of  the identified bridge proteins.

Exploration of  bridge proteins and enzymes connecting the significant metabolites on the network. We further 
focused on bridge proteins that have many interactions with the enzymes regulating the panel of  13 metab-
olites (hub bridge proteins), since such hub proteins are likely to have biologically important functions 
(21, 22). In particular, for each bridge protein, we calculated the statistical significance of  the number of  
interactions with the set of  enzymes associated with the 13 metabolites compared with the number of  inter-
actions with other enzymes in the global metabolic map of  KEGG. We assumed that if  an enzyme E1 is 
involved in metabolism of  a metabolite M and another enzyme E2 interacts with E1, then E2 is associated 
with metabolite M and that the E1-E2 enzymatic unit has an effect on metabolism of  M (e.g., interaction 
between the 2 enzymes ACAA1 and SCP2 in Figure 2C).

The list of  significant bridge proteins in the MetBridgeDKD network was sorted by the number of  inter-
actions with the enzymes and is listed in Table 1 (the full list is given in Supplemental Table 1). Such sig-
nificances are reflected by the sizes of  the bridge proteins on the network shown in Cytoscape (Figure 1).

MDM2, HUWE1, PEX5, CUL4B, and IFIT1 were found to be the top 5 bridge proteins. Ubiquitin C (UBC) 
had the largest number of interactions (48) with the enzymes associated with our 13 metabolites; however, 
ubiquitin interactions with proteins are relatively nonspecific and it was not further evaluated. Nevertheless, the 
ubiquitin-proteasome system is known to be upregulated in the muscle of kidney disease patients and diabetic 
patients (23), and may indicate relevance of ubiquitin C in patients with diabetic kidney disease based on the 

Table 1. List of bridge proteins having a significant number of interactions with the enzymes associated with our 13 metabolites

Gene Symbol Gene annotation Number of 
interacting enzymes

Bonferroni-corrected 
P value

Directly associated significant metabolite names

MDM2 MDM2 proto-oncogene, E3 
ubiquitin protein ligase

14 0.010287 (S)-3-Hydroxyisobutyric acid; cis-Aconitic acid; 
Citric acid; 3-Methylcrotonylglycine; Tiglylglycine; 

2-Methylacetoacetic acid
HUWE1 HECT, UBA and WWE domain–

containing 1, E3 ubiquitin 
protein ligase

12 0.003133 (S)-3-Hydroxyisobutyric acid; Citric acid; 
2-Ethylhydracrylic acid; 3-Methylcrotonylglycine; 

Tiglylglycine; 2-Methylacetoacetic acid
PEX5 peroxisomal biogenesis factor 5 9 0.007836 (S)-3-Hydroxyisobutyric acid; Glycolic acid; 

3-Methyladipic acid; 3-Hydroxyisovaleric acid; 
Tiglylglycine

CUL4B cullin 4B 6 0.040394 (S)-3-Hydroxyisobutyric acid; 3-Methylcrotonylglycine; 
Tiglylglycine; 2-Methylacetoacetic acid

IFIT1 interferon-induced protein with 
tetratricopeptide repeats 1

4 0.025262 2-Ethylhydracrylic acid; 3-Methylcrotonylglycine
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Figure 3. Expression levels of MDM2, HUWE1, PEX5, 
CUL4B, IFIT1, and TP53 in 2 independent data sets. 
Data from European Renal cDNA Bank (ERCB) and Native 
Americans study (Pima) were used for the gene expression 
analyses. LD is control (living donor). (A) Expression data 
for MDM2. (B–E) Gene expression data from top bridge 
proteins (IFIT1, PEX5, HUWE1, and CUL4B) that came out of 
our network analysis are shown. Shown P values are uncor-
rected and based on t tests. For the top 5 bridge proteins, 
the P values that are significant (<0.05) after Bonferroni 
correction for multiple testing are marked with asterisks 
(*). (F) Expression data for TP53. The P values were signifi-
cant (<0.05) after correction for multiple testing. Lower and 
upper edges of each box represents first and third quartiles 
of the distribution, respectively. The horizontal line in 
each box represents the median. The whiskers extend to 
1.5 × (third quartile – first quartile). (G) Representative 
immunostaining of MDM2 in normal human kidney biopsy 
tissue (representative from n = 2) in upper panel and from a 
diabetic nephropathy biopsy tissue (representative from  
n = 3) in lower panel. Magnification, ×40.
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urine metabolite profile. Indeed, among the top 
5 bridge proteins, 3 proteins, MDM2, HUWE1, 
and CUL4B have been linked to ubiquitination.

MDM2 bridges 6 metabolites by directly interacting with 14 enzymes in the network (Figure 2B and 
Table 1) and bridged 2 metabolites indirectly (glycolic and 2-ethylhydracrylic acid). Citric acid was asso-
ciated with 9 enzymes (4 directly associated with citric acid and 5 indirectly associated through these 4 
enzymes), 8 of  which interacted with MDM2. Additionally, 2-methylacetoacetic acid and cis-aconitic acid 
also had significant numbers of  associations with MDM2. MDM2 also bridged 3-methylcrotonylglycine, 
tiglylglycine (with 1 enzyme each), and 3-hydroxyisobutyric acid.

PEX5 is a peroxisomal biogenesis marker essential for the assembly of  functional peroxisomes involved 
in energy metabolism, i.e., β-oxidation of  fatty acids (24). In our MetBridgeDKD network, PEX5 directly 
interacts with 9 enzymes, 6 of  which are directly associated with 5 metabolites (Figure 2C), 3 of  which 
are related to fatty acid metabolism (i.e. tiglylglycine, 3-hydroxyisovaleric acid, and 3-methyladipic acid). 
Enzymes interacting with PEX5 were linked to 3 additional metabolites through other enzymes. To deter-
mine which metabolite had the most significant number of  associations with the set of  enzymes that are 
enriched with PEX5-interacting partners, we assessed for metabolite overlap between enzymes associated 
with the metabolite and those which interact with PEX5. We found that glycolic acid had the strongest 
association with PEX5-interacting enzymes.

Interferon-induced protein with tetratricopeptide repeats 1 (IFIT1) interacted with 4 enzymes (MCCC1, 
MCCC2, PCCA, and PCCB), which are associated with 2 metabolites, 2-ethylhydracrylic acid and 3-meth-
ylcrotonylglycine (Table 1). HUWE1 (HECT, UBA, and WWE domain–containing 1, E3 ubiquitin protein 
ligase) and cullin 4B (CUL4B) interacted with 12 and 6 enzymes, respectively, which are associated with 6 
and 4 metabolites, respectively. The brief  descriptions of  these enzymes and metabolites are provided in 
Supplemental Table 1.

Gene expression changes of  bridge proteins in independent cohorts. As an independent validation regarding 
the possible relevance of  the identified bridge proteins to human diabetic nephropathy, we investigated gene 
expression levels of  the top hub bridge proteins in patients with diabetic kidney disease from 2 independent 
study cohorts, the European Renal cDNA Bank (ERCB) human diabetic kidney disease and Native Ameri-
cans from the Gila River Indian Community in Arizona (Pima). Gene expression levels in glomeruli and 
tubulointerstitium of  patients with kidney disease were compared with those of  controls (living donors).

We found that the gene expression level of  MDM2 was decreased in glomeruli and tubulointerstitium 
of  patients with kidney disease in the ERCB and the Native American data set (Figure 3A). To evalu-

Figure 4. Pharmacological inhibition of MDM2 in 
C57B6/JL healthy mice affects glomerular filtra-
tion barrier and kidney function. (A) Survival 
of Nutlin-3a–treated mice (66% at the end of 
the study) compared with that of control mice 
(100%, P = 0.19, log-rank test). (B) Body weight 
monitoring along the treatment. While control 
mice increased progressively in weight, Nutlin-
3a–treated mice lost weight progressively during 
the treatment, being significant from 18 weeks 
onwards compared with control mice. *P < 0.001, 
t test. Control, n = 9; Nutlin-3a, n = 9. (C) Albu-
minuria measured as urine albumin/creatinine 
ratio (ACR) along the study. ACR remained normal 
for control mice but increased progressively in 
Nutlin-3a–treated mice, being significantly higher 
at the end of the study. *P < 0.05, 1-tailed t test. 
Control, n = 7; Nutlin-3a treated, n = 7. (D) Blood 
urea nitrogen (BUN) levels at the end of the study 
were significantly higher in Nutlin-3a–treated 
mice compared with control mice. *P < 0.05, t 
test. Control group, n = 9; Nutlin-3a group, n = 
7. Error bars represent standard errors (B and C). 
For box-and-whisker plots, the horizontal line in 
each box represents the median (D). The whiskers 
extend to 1.5 × (third quartile – first quartile).
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ate MDM2 protein levels, immunostaining was performed in biopsy samples from patients with diabetic 
nephropathy and compared with control samples. As noted in Figure 3G, there was a marked reduction in 
both glomerular and tubulointerstitial staining of  MDM2 in the diabetic samples.

Increases in IFIT1 expression levels were observed in the Native American group but not in the ERCB 
group (Figure 3B). We also found that PEX5 was decreased in the ERCB and Native Americans groups 
(Figure 3C). HUWE1 showed a reduction in the ERCB group but not in the Native American group (Fig-
ure 3D). No significant difference was observed for CUL4B in any of  the groups (Figure 3E). Therefore, 

Figure 5. Pharmacological inhibition of MDM2 in uninephrectomized Leprdb–/–  
(db/db) mice fed with high-fat diet. (A) Survival in Nutlin-3a–treated db/db mice 
(37.5% at the end of the treatment) compared with that of vehicle-treated db/db 
mice (57%, P = 0.2, log-rank test). (B) Body weight monitoring along the treatment. 
Both groups lost weight during the treatment, though Nutlin-3a–treated mice had a 
lower body weight compared with vehicle-treated mice. (C) Blood urea nitrogen (BUN) 
levels over the treatment increased in both groups, being higher in Nutlin-3a–treated 
mice than in vehicle-treated mice. *P = 0.0039, t test, n = 7/group. (D) Immunofluo-
rescence (IF) image of control mouse in upper panel and of Nutlin-3a–treated mouse 
in lower panel. Magnification, ×60. (E) IF quantification of number of podocytes. 
Nutlin-3a–treated displayed a lower number of podocytes (6.50 ± 0.14) than vehicle-
treated mice (5.84 ± 0.54). *P = 0.0139, Wilcoxon rank sum test. db/db DMSO, n = 
4; db/db Nutlin-3a, n = 6. (F) Representative photomicrograph of TP53 staining in 
the wild-type and db/db mice. Nutlin-3a treatment in db/db mice causes upregula-
tion and nuclear shift of TP53 in renal cells. Representative from n = 5 for each group 
except wild type treated with Nutlin-3a (n = 4). Magnification, ×200. Error bars in B 
represent SE. For box-and-whisker plots in C and E, the horizontal line in each box 
represents the median. The whiskers extend to 1.5 × (third quartile – first quartile).
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gene expression levels of  4 out of  5 top bridge proteins 
were altered to various degrees with independent tran-
scriptomic analysis of  human diabetic nephropathy tis-
sue samples. Of  these, MDM2 had the most consistent 
downregulation in both glomerular and tubulointerstitial 
compartments in 2 separate clinical cohorts.

Pharmacological inhibition of  MDM2 function affects 
podocyte integrity in heathy mice and worsens diabetic kidney 
disease in a diabetic mouse model. As gene expression level 
of  MDM2 was consistently downregulated in multiple 
cohorts of  patients with diabetic nephropathy and in 
both glomerular and tubulointerstitial compartments, 

we evaluated the functional role of  MDM2 in kidney dis-
ease. MDM2 is a ubiquitin E3 ligase and can shuttle between the cytoplasm and the nucleus (25). One of  
the best-known cellular functions of  MDM2 is to bind to the tumor suppressor TP53, which enhances TP53 
ubiquitination and targets it for proteasomal degradation (26). A possible physiological role for MDM2 
and TP53 in glomerulosclerosis has been previously described (27). Interestingly, we found that the expres-
sion level of  TP53 was increased in the 2 patient cohorts of  diabetic kidney disease (Figure 3F).

The effect of  inhibiting MDM2 function with Nutlin-3a was evaluated in healthy and diabetic mice. 
Nutlin-3a is a cis-imadozolin compound that functions as an MDM2 antagonist by occupying the MDM2 
TP53-binding pocket and inhibiting the TP53 pathway with a high degree of  specificity (28–31). Nutlin-3a 
was injected intraperitoneally on alternate days during 4 weeks in 16-week-old C57BL/6 healthy mice. A 
vehicle group was injected with the solvent, dimethyl sulfoxide (DMSO), and a control group was kept in 
the same animal facility without receiving any intervention. The latter 2 groups presented no differences 
in any of  the analyses and were treated as a combined control group. Surprisingly, Nutlin-3a–treated mice 
had increased mortality (Figure 4A), with reduced body weight (Figure 4B) and an increase in albuminuria 
(measured as the albumin/creatinine ratio [ACR]) (Figure 4C) and plasma urea levels (blood urea nitrogen 
[BUN]) (Figure 4D), compared with control. This result demonstrated that MDM2 inhibition was sufficient 
to induce kidney dysfunction and increase mortality in wild-type mice.

The role of  MDM2 was then evaluated in Leprdb–/– (db/db) mice. This model of  diabetic kidney 
disease has modest glomerular changes and minimal tubulointerstitial changes with diabetes. MDM2 
immunostaining did not show differences in the db/db versus nondiabetic heterozygous mice (db/m) 
in the glomerular and tubulointerstitial compartments (Supplemental Figure 3). To inhibit MDM2, mice 
were injected with either Nutlin-3a or DMSO on alternate days during 4 weeks. To stress the phenotype, 
all the mice underwent uninephrectomy at 7 weeks of  age and were fed a high-fat diet. Overall mortality 
was very high in both groups, but more prominent in the Nutlin-3a–treated group (Figure 5A). Although 
there was a trend toward lower body weight in Nutlin-3a–treated mice, no statistically significant differ-
ence was observed in body weight (Figure 5B) or in glycemia between the 2 groups. However, as seen in 
control mice treated with Nutlin-3a, the diabetic mice treated with Nutlin-3a had increased BUN in asso-
ciation with increased mortality (Figure 5C). Additionally, immunostaining of  kidney sections for WT1 
and nephrin showed a significantly lower number of  podocytes in Nutlin-3a–treated compared with 
vehicle-treated mice (Figure 5, D and E). Expression levels of  podocyte genes were uniformly reduced 
in Nutlin-3a–treated diabetic mice (Supplemental Figure 4, A–F). There was also increased immunos-
taining of  TP53 in the kidneys from mice treated with Nutlin-3a compared with the controls for both 
wild-type and db/db mice (Figure 5F). However, there was an increase in TP53-positive nuclei in db/db 
mice treated with Nutlin-3a.

Figure 6. Effect on renal development and WT1 expression 
in a 17.5-day embryonic kidney in response to Nutlin-3a 
treatment. Periodic acid–Schiff (PAS) staining of kidney 
sections (A and B) and immunofluorescent staining using 
polyclonal antibody against WT1 (green, C and D) in a 17.5-day 
embryonic kidney treated with 5 μM Nutlin-3a or DMSO for 5 
days. Representative from n = 3/group. Magnification, ×10.
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Figure 7. Pathophysiological analyses of MDM2-knockout mice. Representative photomicrographs from (A) control, (B) the podocyte-specific 
MDM2-knockout mouse (PodoMDM2), (C) control, and (D) the tubule-specific MDM2-knockout mouse (TubMDM2KO) subcapsular cortical area. 
Images B–D are magnified on the right. Representative image (B) shows a focal glomerular sclerosis and a partial glomerular collapse in the periodic 
acid–Schiff–stained (PAS-stained) kidney sections of the podocyte-specific MDM2-knockout mouse. The representative PAS image (D) depicts the 
tubular damage in the form of tubular vacuolization, tubular casts, and tubular atrophy in the renal sections of the tubule-specific MDM2-knockout 
mouse. A and C are representative images of the PAS-stained renal sections of the control mice. Representative from n = 4–5/group. Magnification, 
×400 (A and B) and ×200 (C and D), further magnified by ~1.75 (B and D) using Adobe Illustrator. (E and F) Pathophysiological analyses of control and 
knockout mice. (E) Urine albumin/creatinine ratio of podocyte-specific MDM2-knockout mice compared with controls. (F) Serum creatinine (mg/dl) of 
tubule-specific MDM2-knockout mice versus control group. Shown P values are based on Mann–Whitney U test. Metabolite levels of (G) 3-methylcro-
tonyl glycine and (H) uracil in control and MDM2-knockout mice. Distinct control samples for podocyte-specific and tubule-specific mice were used. P 
values were calculated based on log2(metabolite level) (t test). The pair of P values for podocyte- and tubule-specific knockout mice for each metab-
olite was combined using Fisher’s method and the combined P values were corrected for multiple testing using Benjamini-Hochberg’s method. For 
box-and-whisker plots, the horizontal line in each box represents the median (G and H). The whiskers extend to 1.5 × (third quartile – first quartile).



1 1insight.jci.org      doi:10.1172/jci.insight.87877

R E S E A R C H  A R T I C L E

MDM2 inhibition in mouse embryonic kidney development. MDM2 has ubiquitous expression throughout 
the embryo and may play an important developmental role (32, 33). To determine if  MDM2 inhibition may 
have an effect on embryonic kidney development, Nutlin-3a was administered to embryonic kidneys. The 
Nutlin-3a–treated embryonic kidney sections (17.5 days) showed that the nephrogenic zone was poorly 
developed (Figure 6, A and B). The Nutlin-3a–treated embryonic kidney sections also showed reduced 
expression of  WT1 via immunofluorescent staining (Figure 6, C and D) compared with DMSO-treated 
control embryonic kidneys.

Pathophysiological and metabolomics analyses of  MDM2-knockout mice. We also conducted experiments 
with MDM2-knockout mice to further investigate cell-specific roles of  MDM2. There was a marked degree 
of  glomerular expansion and severe glomerular sclerosis in podocyte-specific MDM2-knockout mice (Fig-
ure 7, A and B), whereas in the tubule-specific MDM2-knockout mouse there was tubular dilatation in addi-
tion to tubular atrophy and tubulointerstitial fibrosis (Figure 7, C and D). There was also a marked increase 
in the urine ACR in the podocyte-specific MDM2-knockout mice (Figure 7E), and an increase in serum 
creatinine in the tubule-specific MDM2-knockout mice (Figure 7F).

Metabolomic analysis of  the urine from MDM2-knockout mice revealed a significant reduction in urine 
levels of  3-methylcrotonylglycine in the podocyte-specific MDM2-knockout mice and the tubule-specific 
MDM2-knockout mice (Figure 7G). Urine uracil was also significantly reduced in both the podocyte-spe-
cific and tubule-specific knockout mice (Figure 7H). The remaining urine metabolites from the panel of  13 
metabolites previously found to be reduced in human diabetic kidney disease (3) were not different in the 
cell-specific MDM2-knockout mice as compared with wild-type controls.

Discussion
We developed a new software, MetBridge Generator, on Cytoscape to provide a useful way to analyze metab-
olomics data (Supplemental Figure 1). MetBridge Generator identified several key proteins that were signifi-
cantly altered at the gene-expression level in kidney biopsy tissue from independent cohorts of  patients with 
diabetic nephropathy (Figures 2 and 3, and Table 1). The App alone cannot predict whether the key proteins 
have a causal role; however, new hypotheses can be developed based on the possible cellular or physiological 
role of  the key proteins. Of  the proteins that were identified from the MetBridge Generator network analysis, 
we found that MDM2 was consistently downregulated by gene expression analysis in patients with diabetic 
nephropathy (Figure 3A) and plays a key role in progressive diabetic kidney disease. Interestingly, reduced 
MDM2 in podocytes or in tubular cells was associated with enhanced renal disease and reduction in 2 key 
metabolites, 3-methylcrotonylglycine and uracil (Figure 7, G and H). These 2 metabolites were part of  the 
panel of  metabolites that were consistently reduced in patients with diabetic kidney disease (3).

Using MetBridge Generator allowed the identification of  relevant enzymes and bridge proteins that 
link human metabolomics data to the pathophysiology of  diabetic kidney disease at a molecular level. The 
enrichment of  enzymes participating in citrate metabolic process and branched-chain amino acid metabo-
lism from our MetBridgeDKD network (Supplemental Figure 2A) confirmed the role of  these pathways in 
diabetic kidney disease. Linkage of  these functions to diabetic kidney disease was supported not only by 
our recent study (3) but also by independent studies in mouse models (17), and in diabetic patients (34), 
which further support the relevance of  our systems approach. Our approach also supports the value of  
identifying key proteins/metabolites that are implicated via guilt by association; i.e., interacting proteins/
metabolites tend to share similar cellular functions and may function in pathogenesis (35).

We further focused on hub bridge proteins that have a significant number of  interactions with enzymes 
associated with our 13 metabolites, as hubs in biological networks tend to have a large impact on cellular 
processes. MDM2 emerged as the most relevant protein based not only on a large number of  interactions 
with the enzymes associated with our relevant metabolites (Figure 2B), but also on the significant reduction 
in MDM2 gene expression in patients with diabetic kidney disease from independent cohorts (Figure 3A). 
As MDM2 was consistently downregulated in both glomerular and tubulointerstitial compartments from 
human kidney biopsies, we suggest that MDM2 may play a key functional role in both compartments.

Our studies on MDM2 in healthy and diabetic mouse models support a key role for MDM2 in the patho-
physiology of  progressive kidney disease. The pharmacological inhibition of  MDM2 in healthy mice with 
the antagonist Nutlin-3a showed a negative effect on kidney function in otherwise healthy mice, as seen by 
the significant increase in BUN levels and proteinuria (Figure 4, C and D). Since MDM2 expression in the 
kidney is mainly localized in tubules and podocytes (36), it is likely that the impairment in renal function 
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is due to a combined disturbance in podocyte and tubular integrity as a result of  MDM2 inhibition. Prior 
studies have found that MDM2 reduction in mouse models exhibited impairment in podocyte homeosta-
sis, caused by upregulation of  TP53 and consequent cell death (27). Moreover, inhibition of  MDM2 with 
Nutlin-3a in diabetic mice revealed an accelerated disease progression with rapid podocyte depletion (Fig-
ure 5, D and E). As TP53 was increased in the nuclei of  diabetic mice treated with Nutlin-3a (Figure 5F), 
a key role for TP53 in mediating apoptosis and possible senescence in the diabetic kidney is likely. Of  note, 
the db/db diabetic mouse model does not develop progressive diabetic kidney disease, as MDM2 levels are 
not reduced under basal condition. The reduction in MDM2 with Nutlin-3a is required to mimic the human 
diabetic kidney disease condition.

The present study also demonstrated that MDM2 deletion in podocytes enhanced glomerulosclerosis 
and urinary albumin (Figure 7, B and E). MDM2 deletion in tubular cells resulted in an intact glomerular 
structure but there was a marked tubulointerstitial injury pattern consistent with progressive chronic kidney 
disease (Figure 7D). The tubule-specific MDM2 knockout also exhibited an increase in serum creatinine 
(Figure 7F), further supporting the important role for tubular MDM2 in the progressive decline of  renal 
function of  diabetic kidney disease. The gene knockout studies support the important role that MDM2 
likely has in human diabetic kidney disease, as both glomerular and tubulointerstitial levels of  MDM2 gene 
expression were significantly reduced in cohorts of  human diabetic nephropathy.

Interestingly, with urine metabolomics analysis from the MDM2-knockout mice we found that 2 metab-
olites among the 13 metabolites identified in patients with diabetic kidney disease, 3-methylcrotonylglycine 
and uracil, were significantly decreased (Figure 7, G and H). These were the only 2 metabolites that were 
reduced in both podocyte- and tubule-specific MDM2-knockout mice. 3-Methylcrotonylglycine has a con-
nection with MDM2 via methylcrotonoyl-CoA carboxylase 2 (MCCC2) (Figure 2B). Mutations in MCCC2 
lead to reduced catabolism of  leucine, one of  the branched-chain amino acids, and this leads to increased 
3-methylcrotonylglycinuria (37). Notably, the expression level of  MCCC2 was significantly decreased in 
glomeruli of  the Native American cohort and tubules of  the ERCB cohort (Supplemental Figure 5).

The metabolite uracil was also reduced in the MDM2-knockout mice and was previously identified 
in the signature for human diabetic kidney disease. Of  interest, plasma pseudouridine was increased in 
patients with diabetes who progressed to end-stage renal disease compared with those who did not (38). 
Since pseudouridine is synthesized from uracil, increased pseudouridine synthesis may result in decreased 
uracil. Interestingly, pseudouridine synthase dyskerin (DKC1) affects modification of  uridine residues to 
produce pseudouridine on rRNA, and an increased level of  nascent preribosomal RPL5/RPL11/5S rRNA 
complexes in response to impaired ribosome biogenesis inhibits the activity of  MDM2 (39). Thus, one of  
the possible connections between uracil and MDM2 under the disease condition may involve biogenesis and 
the modification pathway of  rRNA. Although we focused on metabolic pathways and PPIs, this hypothesis 
suggests that incorporating protein-RNA interactions into our network may elucidate additional key path-
ways underlying disease progression.

We further found that inhibition of  MDM2 with Nutlin-3a in the embryonic kidney caused defects 
in development of  the nephron (Figure 6), suggesting that MDM2 is important not only in the adult 
stage but also in the embryonic stage. Consistent with our results, knocking out MDM2 in mouse embry-
os and MDM2 knockdown by siRNA in podocytes of  adult mice caused cell death (27, 32). A previous 
study in MDM2-deficient mice also demonstrated that defects in kidney development at fetal stages 
enhance development of  hypertensive and chronic kidney disease at the adult stage (40–42). It is con-
ceivable that the kidney may undergo periods of  regeneration during the natural history of  diabetic 
nephropathy and regeneration and development of  new tubular cells will be inhibited with MDM2 
reduction. Reduction of  MDM2 will also predispose the diabetic kidney to impaired recovery from 
bouts of  acute kidney injury.

We also found that PEX5 may also contribute to diabetic kidney disease via network analysis and gene 
expression studies (Figures 2C and 3C). PEX5 is one of  the proteins essential for the assembly of  functional 
peroxisomes and plays an essential role in peroxisomal protein import. Defects in this gene have been 
associated with Zellweger syndrome (43). Peroxisomal dysfunction by catalase deficiency in diabetic mice 
has been associated with reduction in PEX5 expression levels, impaired peroxisomal and mitochondrial 
biogenesis, and accelerated diabetic renal disease and fibrosis (44). Thus, PEX5 is associated with diabetic 
nephropathy via peroxisomal dysfunction and we suspect that it may play a role in the significant down-
regulation of  peroxisome-related metabolites.
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In conclusion, we present an App that allows for efficient focused analysis of  urine metabolomics data 
from patients with diabetic kidney disease. The App will also be relevant to the interpretation of  many 
metabolomic signatures from a variety of  diseases. The present version of  the application has revealed 
a potentially novel role for the key protein MDM2 in human diabetic kidney disease. The role of  MDM2 
was supported by gene expression analysis in human diabetic nephropathy and with pharmacologic and 
genetic reduction of  MDM2. Reduction of  MDM2 likely plays a key role to enhance diabetic glomerular 
and tubular disease. Currently, only a fraction of  mammalian cellular metabolic pathways are well anno-
tated and accessible in publicly available databases. As our knowledge of  metabolic pathways expands and 
is collated in publicly available databases, there will be new connections among metabolites leading to new 
target identification. Similar types of  new bioinformatics tools will be critical to exploit metabolomics data 
to provide new disease insights.

Methods

Data collection
Metabolic pathway was obtained from the global human metabolic pathway map (http://www.genome.
jp/kegg/, hsa01100.xml, creation date: Apr 10, 2015) stored in the KEGG database, which contains 
information about connections between metabolites through enzymes. We particularly used informa-
tion about which metabolite is converted to which metabolite through a reaction catalyzed by which 
enzyme. A set of  human PPI data was downloaded from the BioGRID database (version 3.3.123, 
http://thebiogrid.org). By converting enzymes participating in metabolic pathways into protein infor-
mation, these 2 data sources were integrated. Metabolic pathways related to the 13-metabolite pan-
el linked to diabetic kidney disease in our previous publication was also added (3). The final global 
network, which contains comprehensive metabolic pathways and PPI information, was designated as 
“MetBridge” network. Detailed information about gene and enzyme information can be obtained from 
NCBI Entrez Gene (gene annotation, etc.) and BRENDA, respectively. Information about metabolites 
(HMDB numbers, corresponding KEGG IDs, etc.) were obtained from Human Metabolite Database 
(HMDB version 3.5-3.6).

Visualization by Cytoscape
The integrated interaction network containing metabolites, enzymes, and bridge proteins was loaded onto 
Cytoscape (version 3.1.1 or 3.2.1), a software platform for network visualization and analyses. Nodes were 
colored differently for metabolites, enzymes, and bridge proteins. We also assigned different shapes for these 
3 types of  nodes. Edge widths of  PPIs were proportional to the number of  independent studies reporting the 
corresponding interactions so that a user can have some idea as to which interactions are reliable. The user 
can browse the network to get detailed information on each metabolite, enzyme, or bridge protein.

Cytoscape App development
The Cytoscape App equipped with simple graphical user interface was developed using programming lan-
guage Java to find PPIs that connect significant metabolites within a step from enzymes associated with 
significant metabolites. Technically, the App searches for metabolites in the MetBridge and looks for their 
first and second neighbors, which correspond to enzymes and bridge proteins, respectively. Then the sub-
network is displayed as a separate window. The App is a jar file that can be installed using the Cytoscape 
Apps menu (tested on Cytoscape 3.1.1 and 3.2.1).

Gene expression analysis of human renal biopsies
Kidney biopsies were procured from patients with diabetic kidney disease from 2 cohorts (the Euro-
pean Renal cDNA Bank-Kroener-Fresenius biopsy bank (ERCB) and from Native Americans (Pima) 
enrolled in a randomized, placebo-controlled clinical trial to evaluate the renoprotective efficacy of  
losartan in type 2 diabetes (clinical trial registration number NCT00340678, clinicaltrials.gov) after 
informed consent and with approval of  the local ethics committees. Patient characteristics are pro-
vided in Supplemental Table 2. Gene expression profiling of  glomerular and tubulointerstitial compart-
ments from microdissected biopsies was performed essentially as previously reported (45, 46). In brief, 
Affymetrix GeneChip Human Genome U133A 2.0 and U133 Plus 2.0 Array were used in this study. 
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This analysis included only probesets that are present on both platforms. RMAexpress was used to 
perform robust multichip analysis, including background adjustment, quartile normalization, and sum-
marization. The expression values are reported as log2-transformed intensity.

Mouse studies
C57BL/6 wild-type mice (Charles River) and BKS.Cg-m+/+Leprdb/BomTac (db/db) (Taconic, and 
Jackson Labs) were kept under normal housing conditions under a 12-hour light/dark cycle. Water 
and standard chow food were available ad libitum, except for a 4-hour fasting prior to capillary glucose 
measurement every 2 weeks. In selected studies, diabetic mice underwent uninephrectomy at 7 weeks 
of  age, performed under general anesthesia, and started a high-fat diet at 10 weeks of  age. Starting from 
week 16, mice received intraperitoneal injections on alternate days throughout 4 weeks with either 20 
mg/kg MDM2 inhibitor Nutlin-3a (Selleckchem) in 50% DMSO (vehicle) or vehicle only. Mice were 
sacrificed after 4 weeks of  treatment. Plasma and urine were collected before the treatment and in the 
course of  the treatment, after 2 and 4 weeks. All experiments involving mice were conducted according 
to German and USA animal protection laws and approved by the local government authorities.

The podocyte-specific MDM2-knockout mice were generated by crossing MDM2fl/fl mice, in which the 
loxP sites were inserted into the MDM2 gene, with Nphs-Cre+ mice that constitutively express Cre recom-
binase under the control of  the podocin promoter, as previously described (27). The MDM2fl/fl littermates, 
lacking the podocyte-Cre transgene, were used as control mice. To obtain tubule-specific MDM2-knock-
out mice, the MDM2fl/fl mice were bred with Pax8-rtTA;TetO-Cre+ mice. The Pax8-rtTA;TetO-Cre+ mice 
express the reverse tetracycline-dependent transactivator (rtTA) under the control of  the Pax8 promoter, 
which upon doxycycline administration binds the tetracycline-responsive element of  the Cre gene and 
drives Cre induction in renal tubular cells. Thus, the MDM2 deletion in the renal tubular cells occurs in 
MDM2fl/fl; Pax8-rtTA;TetO-Cre+ mice only upon doxycycline treatment. MDM2fl/fl mice lacking the Pax8-
rtTA;TetO-Cre+ elements were used as controls.

Murine embryonic kidneys were dissected under sterile conditions from embryonic day 17.5 preg-
nant B6 mice and the kidneys were grown on 0.45-μm polyethylene terephthalate membranes in 6-well 
multiwell plates in a 37°C incubator for 5 days as described previously (47). Explants were grown in 
Dulbecco’s modified Eagle’s medium-Ham’s F-12 nutrient mixture (DMEM-F12) with Richter’s modi-
fication (Life Technologies) containing 50 mg/ml transferrin (Sigma-Aldrich) and either DMSO or 5 
μM Nutlin-3a (Selleckchem, catalog S8059) for 5 days. Media were not changed during each experi-
ment. Explants were fixed in 4% formaldehyde for 10 minutes, washed with PBS, and then embedded 
in paraffin. Tissue sections (5 μm) were stained with periodic acid–Schiff  (PAS) and imaged by light 
microscopy. Immunofluorescent staining of  WT1 in the cryosections was carried out as described (48). 
Briefly, sections were incubated overnight at 4°C with antibodies against WT1, washed with PBS, and 
incubated for 1 hour at room temperature with Alexa Fluor–conjugated secondary antibodies and visu-
alized by a BIOREVO BZ-9000 fluorescence microscope (Keyence).

The urine ACR was measured with the albumin ELISA kit (Bethyl Laboratories) and creatinine kit 
(DiaSys), according to the manufacturers’ instructions. BUN was assessed with a colorimetric assay 
(DiaSys) and calculated as mg/dl. Urine metabolomics was performed as per our recent publications 
(3, 48).

Renal pathology assessment
Kidney tissue was fixed in 4% neutral buffered formalin, dehydrated in a graded alcohol series, and 
embedded in paraffin. The sections were deparaffinized, rehydrated, transferred into citrate buffer, and 
microwave treated for antigen retrieval and processed as described for immunohistochemistry (36). The 
following antibodies were used: guinea pig anti–mouse nephrin (1:100, catalog BP5030, Acris Antibod-
ies), rabbit anti-MDM2 (1:100, ab38618, Abcam), rabbit anti–mouse TP53 (1:500, catalog VP-P956, 
Vector Laboratories), and rabbit anti–mouse WT1 (1:25; catalog sc-192, Santa Cruz Biotechnology). 
Immunofluorescent staining was evaluated using an LSM 510 confocal microscope and LSM software 
(Carl Zeiss, AG). Human kidney slides were obtained from one of  the co-authors (VD) and processed 
for MDM2 immunostaining in a protocol similar to that described above for mouse tissues.
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Statistics
Functional enrichment analysis. BiNGO (15), one of  the Cytoscape Apps, was used on Cytoscape 3.2.1 
to identify enriched biological processes and cellular component based on GO in our MetBridgeDKD 
network. Let t ∈ T be set of  GO terms for biological processes or cellular components. Let p ∈ P be set 
of  proteins in our whole MetBridge network (reference set), and p ∈ P13 be those in the MetBridgeDKD 
network (P13 ⊂ P). Let p ∈ M(t) be a set of  proteins that are associated with term t. Each p may belong 
to some M(t), i.e., p ∈ M(t1), p ∈ M(t2), ⋅⋅⋅ p ∈ M(tn), where 0 ≤ n ≤ |T|. BiNGO tested whether the rate 
of  proteins having the given GO term t in MetBridgeDKD, r13 = (|p ∈ P13 ∧ p ∈ M(t)|)/|P13|, is larger than 
that in MetBridge, r = (|p ∈ P ∧ p ∈ M(t)|)/|P|, where H0:r13 = r, H1: r13 > r. The hypergeometric tests 
were done for all GO terms t ∈ T that belong to biological processes or cellular component in the test 
set, followed by Benjamini and Hochberg multiple testing correction. Default settings of  BiNGO were 
used where possible. Similar analysis was done for the enzymes.

Gene expression patterns in human renal biopsies
We investigated the expression levels of  the top 5 genes in glomeruli and tubulointerstitium. These genes 
came out of  our network analyses. For each gene, we calculated P values based on the differences in the 
expression levels among living donors, ERCB, and Pima Native Americans cohorts (living donors versus 
ERCB and living donors versus Pima Native Americans) using t tests. We further marked P values that 
were still significant after adjusting for multiple comparisons (Bonferroni corrected P value < 0.05) due to 
10 tests within each validation cohort.

Mouse group comparison
Comparison between 2 groups shown in Figures 4 and 5 was performed by 2-tailed t test when groups 
were larger than 5 (n > 5) and by Mann–Whitney U test (Wilcoxon rank sum test) when one of  the groups 
or both were smaller, except for comparison of  ACRs, where Welch’s 1-tailed t test was used for compari-
son owing to inherent variability of  albuminuria measurements (Figure 4C). A value of  P < 0.05 was con-
sidered to be statistically significant. All statistical analyses were performed using GraphPad Prism or R.

Study approval
All human studies have been approved by the IRB of  the University of  California, San Diego (UCSD), 
University of  Michigan, Columbia University, and the NIDDK Intramural Research Program. All animal 
studies at UCSD and Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Uni-
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