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Introduction
Urinary tract infections (UTIs) are the most frequent severe bacterial infections in young children (1). Up to 
8.4% of  girls and 1.7% of  boys will have a UTI in the first 6 years of  life (2). Vesicoureteral reflux (VUR), 
which allows the flow of  urine from the bladder back to the kidneys, is present in one-third of  children pre-
senting with febrile UTI and is linked to increased risk of  renal scarring (3). Bladder and bowel dysfunction 
may also be significant contributors to the recurrence of  UTI. In bacterial cultures from pediatric UTIs, 
Escherichia coli, Klebsiella, Enterococcus, Proteus, and Pseudomonas spp are most commonly found. Pseudomo-
nas spp, in particular, are more frequent in children undergoing antibiotic prophylaxis treatment and those 
with urinary tract anomalies (4–8). Symbiotic bacterial communities predominantly constitute the bacterial 
microbiota in the asymptomatic, presumably healthy urinary tract. In contrast, urinary dysbiosis has been 
implicated in pathologic states such as nephrolithiasis, benign prostatic hyperplasia, bladder cancer, uri-
nary incontinence, and recurrent infections and reported in kidney transplant patients (9–12).

Urinary tract infections (UTIs) are the most common severe bacterial infections in young children, 
often associated with vesicoureteral reflux (VUR). To explore host genetic-microbiota interactions 
and their clinical implications, we analyzed the urinary microbiota (urobiota) and conducted 
genome-wide association studies for bacterial abundance traits in pediatric patients with UTI 
and VUR from the Randomized Intervention for Children with Vesicoureteral Reflux and Careful 
Urinary Tract Infection Evaluation cohorts. We identified 4 urobiota community types based on 
relative abundance, characterized by the genera Enterococcus, Prevotella, Pseudomonas, and 
Escherichia/Shigella, and their associations with VUR, age, and toilet training. Children with 
VUR exhibited decreased microbial diversity and increased abundance of genera that included 
opportunistic pathogens, suggesting a disrupted urobiota. We detected genome-wide significant 
genetic associations with urinary bacterial relative abundances, in or near candidate genes including 
CXCL12, ABCC1, and ROBO1, which are implicated in urinary tract development and response to 
infection. We showed that Cxcl12 was induced 12 hours after uropathogenic bacterial infection 
in mouse bladder. The association with CXCL12 suggests a genetic link between UTI, VUR, and 
cardiovascular phenotypes later in life. These findings provide the first characterization to our 
knowledge of host genetic influences on the pediatric urobiota in UTI and VUR, offering insights 
into the interplay between disease, host genetics, and the urobiota composition.
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We hypothesized that host genetic factors predispose to variation in urinary microbiota and surveyed host 
genetic-microbiota associations in pediatric patients with UTI, with or without VUR, in whom they could have 
a significant and lasting impact. We performed our study in participants in 2 studies sponsored by the NIH 
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), the Randomized Intervention for 
Children with Vesicoureteral Reflux (RIVUR) study, which recruited children with both UTI and VUR, and 
the Careful Urinary Tract Infection Evaluation (CUTIE) study, a RIVUR ancillary study whose participants 
were initially evaluated for inclusion in RIVUR and excluded because of the absence of VUR (2, 13, 14).

Results
Microbiota analysis. We performed 16S ribosomal RNA (rRNA) gene V3-V4 region sequencing of 325 urine sam-
ples from RIVUR (n = 228) and CUTIE (n = 97) (Supplemental Table 1; supplemental material available online 
with this article; https://doi.org/10.1172/jci.insight.199689DS1). We calculated per-sample Shannon α-diversity, 
a measure of species richness, evenness, or diversity within a sample, and between-sample β-diversity Bray-Curtis 
pairwise dissimilarity indices (BCd), a measure of dissimilarity between 2 or more communities. We observed a 
significant decrease in Shannon α-diversity, with VUR (P = 1.81 × 10–10; P = 2.29 × 10–8, when correcting for race, 
ethnicity, and age), lack of toilet training (P = 1.53 × 10–4), younger age (P = 1.25 × 10–4), and higher systolic (P = 
1.77 × 10–3) and diastolic (P = 2.58 × 10–2) blood pressure (Figure 1, Supplemental Methods, and Supplemental 
Figure 1). Similarly, principal coordinate analysis and permutational ANOVA on the BCd matrix (Adonis test, 
n permutations = 999) showed significant differences with cohort (R2 = 0.044, P = 0.001; R2 = 0.031, P = 0.001, 
when correcting for race, ethnicity, and age), toilet training (R2 = 0.024, P = 0.001), age (R2 = 0.023, P = 0.001), 
and systolic (R2 = 0.010, P = 0.021) and diastolic (R2 = 0.018, P = 0.001) blood pressure. We found that the num-
ber of UTI or antibiotic treatments showed no significant α-diversity (P > 0.05) association and explained less 
than 1% of variance in the BCd matrix (R2 = 0.006, P = 0.029 and R2 = 0.005, P = 0.039, respectively).

Overall, the most abundant genera were Enterococcus, Prevotella, Pseudomonas, and Escherichia/Shigella 
(0.22, 0.13, 0.12, and 0.11 aggregate relative abundances, respectively), which were also among the most 
prevalent (>80%, Figure 2 and Supplemental Figure 2).

Clustering of the samples based on Jensen-Shannon divergence (JSD) distance metrics of the microbiota 
at the genus level identified 4 community types (clusters) where the most abundant genera were Pseudomonas, 
Prevotella, Escherichia/Shigella, and Enterococcus, respectively (Supplemental Figure 3). We found associations of  
these community types with cohort, sex, age, toilet training, number of UTIs, and presence of scarring or pyelo-
nephritis, at baseline (global Fisher’s exact and Kruskal-Wallis tests P = 1.02 × 10–7, 1.45 × 10–4, 4.47 × 10–6, 
8.66 × 10–7, 2.10 × 10–2, and 2.52 ×10–2, respectively; Supplemental Tables 2 and 3). Specifically, in 2-cluster 
comparisons, we found that the Pseudomonas and Enterococcus clusters were enriched compared with each of  
the other clusters in VUR (RIVUR cohort). The Prevotella cluster was enriched in females compared with the 
Pseudomonas cluster, with older age compared with the other clusters, with toilet training compared with the 
Pseudomonas and Enterococcus clusters, and with the number of UTIs and presence of scarring or pyelonephri-
tis compared with the Pseudomonas cluster (Supplemental Tables 2 and 3).

Next, we tested for differential relative abundance of  taxa in the core microbiota (defined as those 
bacterial taxa with a relative abundance greater than 0.001 in at least 10% of  samples, at each taxonomic 
level), with a consensus approach based on 2 methods, ANCOM-BC2 (15) and MaAsLin2 (16) (Figure 
3 and Supplemental Figures 4 and 5). Among the most abundant taxa (relative abundance > 0.1), genera  
Pseudomonas and Halomonas, family Pseudomonadaceae, order Pseudomonadales, and class Bacilli were 
increased in RIVUR relative to CUTIE (cohort, adjusted for sex and age; q < 0.05); families Prevotella-
ceae, Ruminococcaceae, and Lachnospiraceae, and class Bacteroidia, were decreased. Genus Prevotella, 
families Prevotellaceae and Peptoniphilaceae, orders Bacteroidales and Clostridiales, and classes Bacte-
roidia and Clostridia were increased, and family Enterobacteriaceae, order Enterobacterales, and class 
Gammaproteobacteria decreased with age and with toilet training (adjusted for sex and cohort; q < 0.05).

Microbiota GWAS. We conducted whole-genome scans for associations of  host genetic loci with 
urinary bacterial taxa relative abundances in a subset of  278 participants (Supplemental Table 4) with 
high-quality host genome genotyping data. Only samples with nonzero relative abundances were included 
in the analysis for these quantitative traits (17). We focused these analyses on 62 taxa detected in at least 
50% of  samples (Supplemental Figure 6). We first used the mixed effects regression model implemented 
in the REGENIE software (18). Since the study cohort is multiethnic, including individuals with admixed 
genetic ancestry, we also conducted tests for associations using TRACTOR, which implements a local 
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ancestry-aware, fixed effects regression model, producing local ancestry-specific effect size estimates and 
P values (19). Genomic inflation factors ranged from 0.86 to 0.93 with REGENIE and 1.02 to 1.08 with 
TRACTOR. We prioritized genome-wide significant associations (P < 5 × 10–8) detected with at least one 
method and supported as suggestive (P < 10–5) by the other. Together, we identified 4 genome-wide signifi-
cant associations (Table 1 and Figure 4), with no additional independent SNPs within these loci.

The strongest association was on chromosome 10 (chr 10), in an intergenic region downstream of  
CXCL12, with the relative abundances of  genus Pseudomonas (top SNP: rs2624692, P = 2.03 × 10–9), and 
with that of  the Pseudomonadaceae family (top SNP: rs2818904, P = 2.41 × 10–8). These lead SNPs on chr 
10 are not independent (r2 = 0.93). For both SNPs, the major alleles were associated with lower Pseudomo-
nas relative abundance in urine (Table 1). The top SNP is a significant expression quantitative trait locus 
(eQTL) for CXCL12 in the kidney glomerulus with the Pseudomonas-decreasing allele rs262469-A associated 
with increased CXCL12 expression (NephQTL, ref. 20; Supplemental Table 5), while another significant 
SNP (rs2818912-T, P = 2.09 × 10–8; r2 = 0.47 with rs262469-A) is associated with lower CXCL12 gene 
expression in testis and ovarian tissue (GTEx v8, ref. 21; Supplemental Table 6). The top SNP in this locus 
is also a blood eQTL for ZNF239/MOK2 (eQTLGen, ref. 22; Supplemental Table 7).

Another signal, on chr 3, in an intronic region of  ROBO1, was associated with class Clostridia rela-
tive abundance (lead SNP: rs6802848, P = 4.85 × 10–8). The Clostridia-decreasing allele, rs6802848-G, 
is also associated with lower ROBO1 expression in skeletal muscle (GTEx v8; Supplemental Table 6), 
and rs1489846-C (r2 = 0.74 with rs6802848-G) is associated with higher ROBO1 expression in the kidney 
glomerulus (NephQTL; Supplemental Table 5).

In the European local genetic ancestry background (Table 1 and Figure 4), we detected an asso-
ciation in an intronic region of  ABCC1 with the class Bacilli and its order Lactobacillales (top SNP: 
rs246232, P = 1.02 × 10–8). The top SNP Bacilli- and Lactobacillales-decreasing allele, rs246232-G, is 
associated with lower ABCC1 gene expression in blood (eQTLGen; Supplemental Table 7) and is an 
splicing quantitative trait locus (sQTL) in skeletal muscle, esophagus muscularis, and thyroid for ABCC1 
(Supplemental Table 8). Colocalization analyses between the GWAS loci and eQTL and sQTL reported 
above did not yield evidence of  shared causal variants; therefore, further investigation is required.

Figure 1. Urobiota α- and β-diversity associations. Shannon α-diversity (top) and Bray-Curtis β-diversity (bottom) were computed and tested for dif-
ferences between RIVUR and CUTIE cohorts (A and D), with toilet training (B and E), and age (C and F). Rank-based regression was used for α-diversity 
and PERMANOVA for β-diversity. In the α-diversity plots the bottom, middle, and top horizontal lines of the box represent the 25th, 50th, and 75th 
percentiles, respectively; the bottom and top whiskers extend to the lowest and highest value within 1.5× IQR, respectively.

https://doi.org/10.1172/jci.insight.199689
https://insight.jci.org/articles/view/199689#sd
https://insight.jci.org/articles/view/199689#sd
https://insight.jci.org/articles/view/199689#sd
https://insight.jci.org/articles/view/199689#sd
https://insight.jci.org/articles/view/199689#sd
https://insight.jci.org/articles/view/199689#sd
https://insight.jci.org/articles/view/199689#sd


4

R E S E A R C H  A R T I C L E

JCI Insight 2026;11(2):e199689  https://doi.org/10.1172/jci.insight.199689

Finally, we identified a signal on chr 1, in an intergenic region 196 kb downstream of  BARHL2, that 
was associated with family Enterococcaceae relative abundance (top SNP: rs74759570, P = 8.84 × 10–9). 
We did not find eQTLs for the top SNPs in this region.

Phenome-wide association analysis and pleiotropic effects of  top signals. To explore potential effects of  
the lead SNPs from our bacterial relative abundance GWAS, we carried out a meta–phenome-wide 
association analysis (meta-PheWAS) across the Electronic Medical Records and Genomics (eMERGE; 
N = 102,138), UK Biobank (UKBB; N = 460,358), and All of  Us (N = 312,944) cohorts combined 
(Supplemental Tables 9–12). The lead SNP rs2624692 in the Pseudomonas GWAS showed significant 
associations in meta-PheWAS with cardiovascular disease traits (e.g., angina pectoris, P = 2.42 × 10–10; 
coronary atherosclerosis, P = 4.26 × 10–9; Figure 5 and Supplemental Table 9). The association of  this 
locus with coronary heart disease phenotypes is supported by prior studies linking proxy SNPs with 
coronary artery calcification (CAC) (23), myocardial infarction (24), and coronary artery dominance 
(25); these studies designated CXCL12 as the candidate gene. Colocalization analysis showed strong evi-
dence that the Pseudomonas relative abundance and CAC associations in these GWAS share a common 
causal variant (posterior probability = 0.77; Figure 6). Additionally, GWAS catalog matches at this chr 
10 locus included the association of  a proxy SNP with endometriosis (Supplemental Table 13).

The ROBO1 signal, associated with Clostridia relative abundance, is associated in the PheWAS with 
diverticulosis and diverticulitis (P = 1.09 × 10–5) and visual disturbances (P = 1.33 × 10–5). In addition, 
the lead SNP in the ABCC1 locus associated with Bacilli relative abundance was associated with tes-
ticular cancer (P = 2.33 × 10–5). This signal is also associated with plasma cysteinyl glycine disulfide 
levels, a metabolite in the glutathione pathway (26).

Figure 2. Urobiota composition, top genera. Aggregate relative abundance (blue bars) and prevalence (yellow bars) of 
top genera (relative abundance ≥ 0.01) in the urobiota of RIVUR and CUTIE participants (N = 325). Aggregate relative 
abundance and prevalence values are also shown as numbers at the end of each bar.
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Postinfection induction of  Cxcl12 in mouse bladder tissue. To provide an initial characterization of  CXCL12 
in the setting of  UTI, we induced UTIs with E. coli strain UTI89GFP (27) in C57BL/6 mice. Neither Cxcl12 
nor its receptor, Cxcr4, was expressed at baseline and at 8 hours postinfection. However, we observed induc-
tion of  Cxcl12 and Cxcr4 in mouse bladders 12–24 hours after infection. Cxcl12 was expressed in smooth 
muscle layers, where anti–smooth muscle actin immunofluorescence was seen, while Cxcr4 was expressed 
in cells in the urothelium, marked by anti–cytokeratin-5 immunofluorescence (Figure 7).

Discussion
Many comprehensive studies have been conducted on the gut microbiota and its interaction with host genet-
ics in health and disease. However, less is known about the urinary microbiota, specifically in the context of  
benign urinary tract conditions in children. In this study, we analyzed the urobiota and conducted what we 
believe is the first pediatric urinary bacterial traits GWAS of  patients with UTI and VUR in the RIVUR and 
CUTIE cohorts. There is evidence suggesting that dysbiosis is an important essential factor in pathogenic 
bacteria’s invasion of  the bladder, particularly in the context of  the gut/bladder axis (28, 29). UTI has been 
associated with a reduction of  urobiota α-diversity in young children (30). We found decreased α-diversity 
with VUR, lack of  toilet training, and younger age, suggestive of  dysbiosis, immature microbiota, or both. 
We also detected differences in β-diversity between RIVUR and CUTIE, toilet training status, and age.

The most abundant urinary genera were Enterococcus, Prevotella, Pseudomonas, and Escherichia/Shigella. 
Each of  these 4 genera exhibited the highest relative abundance and prevalence in 4 distinct community types, 
which showed the same associations as measures of  bacterial diversity, including with the presence of  VUR 
(RIVUR compared with CUTIE), and with the number of  UTIs, and presence of  scarring or pyelonephritis, 
suggesting that susceptibility to recurrent UTIs and pyelonephritis, as well as anatomical defects, might be 
linked to bacterial composition. While Pseudomonas is infrequently detected by standard urine culture meth-
ods, it is not uncommon in the urinary tract when using enhanced culture or sequencing-based approaches 
(31, 32) and has been associated with the probability of  urinary tract anomalies in children with UTI (33). 
All 4 genera identified — Escherichia, Prevotella, Pseudomonas, and Enterococcus — have been associated with 

Figure 3. Differential bacterial taxa abundances between RIVUR and CUTIE cohorts. Bar plots represent analysis of compositions of microbiomes with 
bias correction (ANCOM-BC2) at the genus (A), family (B), order (C), and class (D) taxonomic levels. Increased abundance in RIVUR compared with CUTIE is 
represented in yellow and decreased abundance in blue. Color intensity is proportional to total relative abundance and bar width to prevalence across both 
cohorts. Only statistically significant (q < 0.05) differences associated with cohort (adjusted for age and sex) that could also be detected with MaAsLin2 
are shown. Bar heights represent log fold-change and error bars their standard error (se).
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urinary symptoms or infections in previous studies. Escherichia spp include both commensal strains and those 
frequently isolated from patients with UTIs, reflecting the context-dependent relationship between bacteria 
and their host environment; Prevotella is a common component of  the healthy urobiota, but certain Prevotella 
spp have also been linked to infection (34); and Enterococcus spp, while common in humans, include some 
of  the most frequent hospital-acquired pathogens (35). Without comparison with a healthy control group, 
we cannot rule out that the compositional prevalence of  these genera stems from the antibiotic exposure in 
children treated for UTI.

Our analysis of  differential urobiota composition with study variables suggests a more disrupted 
microbiota in children with altered urine flow (VUR, RIVUR cohort) with an increased relative abun-
dance of  taxa that include opportunistic pathogenic and environmental bacteria, such as Pseudomonas 
(4, 36, 37) and Halomonas (38, 39), and decreased relative abundance in taxa generally considered ben-
eficial or commensal, such as Bacteroides, Phocaeicola, Prevotellaceae, Ruminococcaceae, and Lachnospiraceae 
(40–43). Differential relative abundance profiles observed with age and toilet training are coincident with 
an increase in α-diversity and possibly reflect the maturation of  the urobiota, influenced by anatomical 
and immunological development with age and changes in the gut-bladder axis with toilet training (44–48). 
An important caveat when interpreting our results is that the method of  urine sample collection was 
determined by urine toilet training status, which, in turn, correlates with age. Therefore, the associations 
we observed with bowel and urine toilet training, as well as with age, could reflect different degrees of  
periurethral contamination with different collection methods.

Our GWAS findings and annotation identify host candidate genes previously implicated in uri-
nary tract development, mechanisms of  inflammation and response to infection, and tissue homeosta-
sis. CXCL12, encoded in the chr 10 locus associated with Pseudomonas and Pseudomonadaceae relative 
abundances, is a chemokine and natural ligand of  CXCR4, and it also binds to CXCR7. It is involved 
in development, hematopoiesis, immunity, and inflammation (25, 49–51). In the kidney, CXCL12 
(aka SDF1) regulates distribution of  intercalated cells (α/β-IC). α-IC acidify urine and secrete sid-
erophore lipocalin 2/neutrophil gelatinase-associated lipocalin (LCN2/NGAL) to fight UTI (52, 53). 
Evidence shows that LCN2 regulates Cxcl12 expression (54, 55). During development, CXCL12 is 
involved in ureteric bud branching and mesenchymal tubulogenesis (56). Cxcl12 has also been implicat-
ed in bladder function in normal micturition and inflammation-induced bladder hyperreflexia (57). We 
demonstrated that in mice, Cxcl12 and its receptor, Cxcr4, are induced at relatively late stages of  UPEC 
infection (12 hours), compared with many cytokines we have previously studied (within 4 hours of  
infection). Moreover, ligand and receptor are located in distant tissue layers. The apparent localization 
of  Cxcl12 to the smooth muscle layer of  the bladder and Cxcr4 to the urothelium suggests a role for 
CXCL12/CXCR4 signaling in the late stages of  infection, such as recruiting infiltrating immune cells 

Table 1. Host genetic associations with urinary bacterial abundance traits

Taxon Chr:Pos:RefA:AltA, 
rsID

AltA (Eff. 
Allele) freq. βREGENIE seREGENIE PREGENIE βTRACTOR seTRACTOR PTRACTOR

Nearest gene, 
distance (kb)

Pseudomonas 10:44094445:G:A, 
rs2624692 0.57 –0.09 0.02 2.03 × 10–9 –0.47 0.08 2.14 × 10–8 CXCL12, –275.7

Pseudomonadaceae 10:44064871:G:A, 
rs2818904 0.58 –0.08 0.02 2.41 × 10–8 –0.43 0.08 1.62 × 10–7 CXCL12, –305.3

Clostridia 3:79361864:A:G, 
rs6802848 0.50 –0.09 0.02 4.85 × 10–8 –0.45 0.09 7.77 × 10–7 ROBO1, 0

Enterococcaceae 1:90516003:G:C, 
rs74759570 0.09 –0.17 0.04 1.79 × 10–6 –0.96 0.16 8.84 × 10–9 BARHL2, –196

Bacilli 16:16036667:C:G, 
rs246232 0.33 –0.08 0.02 4.25 × 10–7 –0.51 0.09 1.02 × 10–8 ABCC1, 0

Lactobacillales 16:16036667:C:G, 
rs246232 0.33 –0.08 0.02 5.94 × 10–6 –0.49 0.09 4.82 × 10–8 ABCC1, 0

Urinary bacterial taxa; lead SNP ID [chromosome:base pair position in build hg38:reference allele (refA):alternate allele (AltA), rs ID]; effect allele 
frequency (the effect allele is the alternate allele); and association estimated effect size (β), standard error (se), and P value (P), computed with 
either REGENIE on all ancestries combined or with TRACTOR on the EUR ancestry (as indicated by subscripts). Nearest genes, and their distances to 
the corresponding SNP are also tabulated.
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into the urothelial layer. This aligns with the previously reported role of  secreted CXCL12 in attracting 
immune cells in the mouse bladder after infection (58). Alternatively, this signaling pathway might 
be involved in regeneration following infection. There are other examples from bladder physiology 
that are consistent with intertissue signaling, such as urothelial basal cell SHH signaling leading to 
increased secretion of  WNT proteins by stromal cells during injury and regeneration (59).

Our pheWAS of  the top SNP in the CXCL12 locus detected the known association of  CXCL12 with 
cardiovascular phenotypes, and follow-up colocalization analysis suggested the same causal variant for 
the association with increased Pseudomonas relative abundance and CAC. Coincidentally, VUR has been 
linked to subclinical cardiovascular disease in children, even in the absence of  renal scarring (60). We can 
hypothesize that chronic inflammation resulting from UTI may lead to an increased risk of  cardiovascular 
disease later in life and that common pathways involving CXCL12/CXCR4/CXCR7 between vascular 
and bladder/vesicoureteral junction development and remodeling cannot be ruled out either. A recent 
study (25) has shown that Cxcl2 haploinsufficiency is associated with alterations in cardiac vasculature 
in mice, which may explain the association with cardiovascular traits. One can therefore also hypothesize 
that CXCL12 variation may also predispose to structural abnormalities in the urinary tract and result in 
altered interactions with the urinary microbiome.

Regarding other risk loci, biallelic pathogenic variants in ROBO1, associated in this study with Clostridia 
relative abundance, have been linked to syndromic CAKUT, including VUR, while Robo1Ile270Thr/Ile270Thr mice 
have renal anomalies and hydroureter (61). Prior studies have shown that SLIT2/ROBO1 signaling influenc-
es macrophages and neutrophil function and can affect susceptibility to bacterial infection (62–64). An asso-
ciation with Clostridia infection has not been specifically reported. MRP1, the product of  ABCC1, associated 
with Bacilli and Lactobacillales relative abundances in our study, negatively regulates intracellular glutathione 
abundance in human cells, increasing ferroptosis sensitivity (65). Cross-referencing of  this signal with the 
GWAS catalog also points to a possible link with the glutathione pathway. Ferroptosis, which entails iron 
accumulation and lipid peroxidation, is involved in response to infection and bladder cancer (66–69). The 
Enterococcaceae relative abundance association is intriguing since this family includes the genus Enterococcus, 
with species known to cause catheter-associated UTIs (70, 71). However, no clear candidate gene arose from 
our analysis of  this intergenic locus.

Our study has several limitations, including the incomplete resolution and scope of  16S rRNA 
gene sequencing to identify bacterial traits compared with metagenomic analysis; the relatively modest 
sample size, especially for detecting genetic associations in a multiethnic cohort; the unbalanced sex 
distribution of  our study cohort; the lack of  a healthy population control sample; and the heterogene-
ity in infection history, antibiotic treatment, and inflammation intrinsic to the patient population that 
our samples are drawn from. Extension and replication of  our findings with larger cohorts are needed. 
Additionally, further functional studies are warranted based on our results, such as colocalization 
with eQTL in human bladder tissue and further animal studies to clarify the involvement and role of  
candidate genes.

Our results, compared with a recent study in a healthy young adult East Asian population sample (72), 
show marked differences in bacterial composition and its association with genetic factors. These differences 
potentially reflect changes in the urinary microbiome with UTI and VUR, age, sex, disease state, possibly 
demographic and geographic factors, and genetic background.

Our study is the first to our knowledge to analyze the microbiota and its host-genetic associations in 
pediatric UTI and VUR. We characterized the diversity and relative abundance profile and identified 4 
community types in the urobiota of  this patient population sample and showed their associations with 
study variables. We also identified 4 genetic loci, and the candidate genes CXCL12, ABCC1, and ROBO1, 
associated with urinary bacterial traits. Furthermore, our results suggest a possible link between pediatric 
UTI and cardiovascular disease later in life, mediated by CXCL12.

Figure 4. LocusZoom plots of top loci associated with urinary bacterial traits. Each row represents a different trait. REGENIE results are shown 
for the Pseudomonas and the Clostridia GWAS, and TRACTOR results on the EUR background, for the Enterococcaceae and the Bacilli GWAS. The 
y axes represent –log(P value) and the x axes, chromosomal coordinates (Mbp, hg38). SNP colors indicate linkage disequilibrium (LD) estimate (r2) 
ranges and the blue line recombination rate in centimorgans per megabase (cM/Mb). CXCL12, CXC motif chemokine ligand 12, also known as stro-
mal cell-derived factor, SDF1; ROBO1, roundabout guidance receptor 1; ABCC1, ATP binding cassette-family transporter multidrug resistance protein 
1 gene; BARHL2, BarH-like homeobox 2 gene.
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Methods
Sex as a biological variable. Our study examined data from both male and female patients. It was limited 
to patients from the RIVUR and CUTIE cohorts; therefore, it involved significantly more female (91%) 
than male participants (Supplemental Tables 1 and 4). Mice in our study were female, as this better 
matched our human study.

Participants and specimens. We utilized urine and genomic DNA samples from participants in the RIVUR 
study (children with documented VUR, recruited after a first or second UTI) and the CUTIE (children with 
UTI, and without VUR), a companion study to RIVUR.

In the RIVUR and CUTIE studies, urine specimens were collected by means of  catheterization or 
suprapubic aspiration from children who were not toilet-trained and by the clean-voiding method from 
toilet-trained children (2, 3); urine samples were kept unfrozen before shipment to the NIDDK biorepos-
itory, shipped on ice packs within the hour, or refrigerated until shipment. Frozen samples received from 
the repository were thawed on ice in our laboratory immediately before processing. RIVUR samples 
were obtained before randomization.

Anonymized genomic DNA (N RIVUR = 456, N CUTIE = 163), frozen urine (–80°C; N RIVUR = 276, 
N CUTIE = 101), and phenotypic data were obtained from the NIDDK Central Repository (NIDDK-CR).

Urinary microbiota 16S rRNA gene sequencing and data processing. The 16S rRNA gene V3-V4 region from 
375 urine samples was amplified using standard primers (73), then sequenced on an Illumina MiSeq system 
using the MiSeq Reagent Kit v3 (2 × 300 bp), following contamination-control procedures described for 
low-biomass microbiome studies (74, 75).

FASTQ files were processed using the R package dada2. Primers’ sequences were removed with Cut-
adapt software (76). Sequences were truncated to 240 bp of  the forward and 200 bp of  the reverse strand. 
Reads with a quality score < 5, or with errors > 2 in the forward or > 5 in the reverse strand, were discarded. 
Error rates were learned for the forward and reverse reads, and all identical sequencing reads were com-
bined into “unique sequences.” Sequence variants were inferred using the dada algorithm, and the forward 

Figure 5. PheWAS for the lead Pseudomonas GWAS SNP. Manhattan plot of phenome-wide association study meta-analysis in the UKBB, eMERGE, 
and All of Us cohorts for SNP rs2624692. The x axis represents phenotypes grouped by categories and the y axis the –log(P value) of associations. Effect 
estimates in the PheWAS were calculated with respect to the minor allele G (associated with higher Pseudomonas relative abundance in the GWAS). The 
dashed line indicates the phenome-wide significance threshold (P < 6 × 10–5).
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and reverse reads were merged. A table of  amplicon sequence variants (ASVs) was constructed of  merged 
reads, and chimeric sequences were removed. Taxonomy was assigned with the Ribosomal Database Proj-
ect (RDP) Naive Bayesian Classifier algorithm implemented in the package, using the RDP trainset 18 
(dp_train_set_18.fa.gz) (77). Further processing was done using the phyloseq R package (78). Only samples 
with at least 5,000 total reads were carried forward, resulting in a set of  325 samples (n RIVUR = 228, n 
CUTIE = 97). Children in this combined cohort (N = 325) had a median age of  24 months, and 92% were 
female (Supplemental Table 1). A subset of  these (N = 278, n RIVUR = 193, n CUTIE = 85) also had host 
genomic DNA genotyping high-quality data (see below). For both sets (N = 325 and N = 278), ASVs with 
abundances of  less than 2 counts across samples were removed.

Analysis of  α- and β-diversity and community types. Abundances per sample were normalized by resa-
mpling with replacement to total counts equal to the sample with the fewest total counts using the rar-
efy_even_depth phyloseq function. Computation of  per-sample Shannon α-diversity was done with the 
estimate_richness function; rank-based regression with the Rfit R package function rfit was used to test for 
associations of  α-diversity with study variables; and for the cohort variable, race and ethnicity were includ-
ed as covariates to correct for differences in these demographic variables between RIVUR and CUTIE in 
our dataset. Pairwise β-diversity was computed with the phyloseq distance function (Bray method), and 
subsequent principal coordinate analysis of  the resulting distance matrix was performed using the ordinate 
function. Permutational analysis of  variance (PERMANOVA) on Bray dissimilarity was performed with 
the vegan R package adonis function (permutational MANOVA) (79).

JSD distance metrics were calculated for relative genera abundances followed by partitioning around 
medoids (PAM) clustering using the R packages phylentropy and cluster. The optimal number of  clusters 
was determined by the silhouette method with the factoextra R package function fviz_nbclust. Linear 
discriminant analysis effect size (LEfSe implemented in the R package microbiomeMarker) was used to 
determine the genera dominating each cluster. To estimate associations between continuous or ordinal 
variables and cluster membership, the Kruskal-Wallis was used, followed by Dunn’s test; the Fisher’s exact 
test was used for categorical variables.

Figure 6. Colocalization of Pseudomonas relative abundance and coronary arterial calcification associations. Regional 
Miami plot showing the associations with Pseudomonas relative abundance (top panel) and with coronary arterial calci-
fication (bottom panel) in the chr10:43094712-45093012 (hg38) locus (x axis) represented as –log(P value) on the y axis. 
There is strong evidence of colocalization (PP4 = 0.77). The 95% credible set SNPs are highlighted in blue. Lead SNPs in 
the signals from each GWAS are labeled with their rs IDs (rs2624692 and rs10899970).
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Core microbiome and differential abundance analysis. Using the R package phyloseq, reads per taxon per 
sample at each taxonomic rank level obtained with the tax_glom function were normalized with the rari-
fy_even_depth function. Next, only taxa with at least 5 reads in at least 10% of  samples were retained. For 
differential abundance analysis at each taxonomic level, a consensus approach (80) between 2 methods was 
used: analysis of  compositions of  microbiomes with bias correction (ANCOM-BC2) (15) and microbiome 
multivariable association with general linear models (MaAsLin2) (16).

Genotyping and imputation. Genomic DNA samples from RIVUR (N = 456) were genotyped on Illumina 
MEGA1.0 arrays and samples from CUTIE (N = 163) on Illumina MEGAeX arrays. Genotyping calls were 
generated in Illumina GenomeStudio v2, exported, and further processed with PLINK1.9. Samples from RIV-
UR and CUTIE were merged into one genotyping dataset comprising 1,981,066 unique biallelic SNPs. Indi-
viduals with per-sample call rate < 90% in high-quality common SNPs, with discordant genotype estimated/
reported sex checks, or without corresponding urine samples were excluded. The remaining 320 genotyped 
samples were retained for further analysis. Kinship analysis with the KING software identified 3 full sibling 
pairs. Ancestry inference was also conducted using KING with 1000 Genomes reference data for projection 
on 5 genetic ancestry groups: Africans (AFR), Admixed Americans (AMR), East Asians (EAS), Europeans 
(EUR), and South Asians (SAS) (Supplemental Figure 7). Prior to imputation, further filters were applied sep-
arately to the AFR, EUR, and combined AMR-EAS-SAS, excluding SNP missingness rate > 5%, minor allele 
frequency (MAF) > 0.1%, and deviations from Hardy-Weinberg equilibrium P < 1 × 10–4, and updating or 
removing SNPs with discrepancies in strand, alleles, and position based on a 1000 Genomes Project reference, 
using PLINK software and the HRC-1000G-check-bim-v4.3.0 perl script from the McCarthy Group.

The TOPMed Imputation Server was used to carry out phasing (EAGLE v2.4) and imputation 
(MINIMAC 4) with the TOPMed r2 reference panel (hg38). Samples from all ancestries were imputed 
together, resulting in a common set of  postimputation SNPs. ChrX was imputed separately for males and 
females. The HLA region was extracted with bcftools and imputed separately using the Michigan Impu-
tation Server with the multiethnic HLA reference panel (81) (hg19; chr6:28,000,361–33,966,845). Server 
parameters were set to Four-digit Multi-ethnic HLA reference panel (GRCh37/hg19), with phasing with 

Figure 7. Increased Cxcl12 and Cxcr4 expression after UTI in mouse bladder. Cxcl12 and Cxcr4 RNA were induced in 
mouse bladder tissue at 12 hours (B and E) and more strongly at 24 hours (C and F) after UPEC infection, but not at 0 
hour (A and D), as seen by chromogenic in situ hybridization (RNAscope). Composite images of consecutive sections 
from 24 hours postinfection bladder tissue suggest that Cxcl12 RNA (G) localizes mainly to stromal and muscle cell 
layers, and to a much lesser degree to the urothelium, as marked by smooth muscle actin and cytokeratin 5 immuno-
fluorescence (H), respectively. Images shown are representative of 3 mice per time point.
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EAGLE v2.4, standard quality control, and imputation. The imputed HLA genotypes were converted 
to hg38 with Picard LifoverVcf. Following imputation, only biallelic SNPs with imputation r2 ≥ 0.8 and 
Hardy-Weinberg test P ≥ 1 × 10–15 were carried forward in the analysis.

Genome-wide association analyses. GWAS were performed on 278 samples (193 RIVUR and 85 CUTIE 
participants, median age of  24 months, 91% female; Supplemental Table 2), corresponding to the intersection 
of  those that passed both host genomic DNA genotyping (N = 320) and urinary bacterial 16S rRNA gene 
sequencing (N = 325) quality controls and filters described above.

Relative abundances in the core microbiome were computed for each sample.
Associations of  core microbiota taxa nonzero relative abundances with host genome-wide geno-

typed and imputed SNPs were performed using 2 approaches. First, using REGENIE (18) software, 
with subcohort (RIVUR or CUTIE), sex, age (in months) at baseline, clinic site, toilet training status 
for bladder and bowel at baseline (TTUB), antibiotic treatment at baseline before sample collection and 
before randomization in the RIVUR study (AB), and 10 genetic principal components (PCs) as covari-
ates. PCs were computed with PCAiR software (Supplemental Figure 8) based on data from genotyped 
autosomal SNPs LD-pruned with PLINK1.9. Phenotypes were normalized using rank-based inverse 
normal transformation (RINT), and a minor allele count > 20 filter was applied. REGENIE Step1 
involved fitting a ridge regression model using 520,842 genotyped SNPs. REGENIE Step2 used the 
predictions from Step1 to perform genome-wide association testing using 6,148,017 high-quality post-
imputation SNPs. GWAS results were visualized using Manhattan, quantile-quantile, and LocusZoom 
(82) plots. Second, given the multiancestry nature and small size of  our study cohort, we used a local 
genetic ancestry-aware approach implementing the TRACTOR framework (83), on 275 unrelated sam-
ples. Local ancestry inference was performed on postimputation genotype data with RFMix v2, after 
phasing with SHAPEIT4. The phased AFR, EUR, and EAS genetic ancestry groups from the 1000 
Genomes Project (Phase 3; N = 2,504; hg38) were used as reference. TRACTOR was then used to 
extract per-sample ancestry-specific haplotype tract counts and SNP dosages, followed by fixed-effect 
model linear regression using R, with subcohort (RIVUR/CUTIE), sex, age (in months), TTUB, AB, 
clinic site, haplotype counts, and RFMix-computed admixture fractions as covariates. A local ancestry 
MAF > 0.05 filter was applied. To assess the possible presence of  additional independent genome-wide 
significant SNPs within GWAS loci, conditional analyses were conducted with both REGENIE and 
TRACTOR conditioning for the genotype of  the lead SNP in each signal, and LD-based clumping was 
also performed with PLINK1.9 and 1000 Genomes Project Phase 3 genome build hg38 for all popula-
tions (1000G ALL) and European genetic ancestry populations (1000G EUR) reference panels.

Functional annotation and phenome-wide association studies. For each GWAS significant signal, all SNPs 
within ±500 kb of  the lead SNP were first selected if  they were in at least moderately strong linkage dis-
equilibrium (r2 ≤ 0.5, based on the 1000G EUR reference panel) with the lead SNP or were genome-wide 
significant in our GWAS. These SNPs were then annotated with VEP software and cross-referenced with 
the GWAS catalog (84); eQTL from GTEx (21) v8, NephQTL (85), eQTLGen (22), DICE (86), meQTL 
from Liu et al. (87); sQTL from GTEx v8; blood pQTL (88); metabolomic GWAS (26); and microbiota 
and microbiome GWAS (17, 72, 89–95). Positive cross-reference matches were tabulated in the supplement 
and/or cited in the main text. CAC GWAS (23) summary statistics were obtained from the EMBL-EBI 
GWAS catalog (accession number: GCST90278455). Colocalization analysis was conducted with the R 
Coloc package, taking a PP4 > 0.7 as strong colocalization evidence.

PheWAS for lead genome-wide significant SNPs was performed as previously described (96, 97) using 
the PheWAS R package, on data from 3 biobanks: the Electronic Medical Records and Genomics III 
(eMERGE-III) (96, 98), All of  Us (99), and the UK Biobank (100). Meta-PheWAS statistics were then 
calculated by meta-analysis of  PheWAS results across the 3 biobanks. Associations with P < 0.05/(number 
of  tested phenotypes) were considered statistically phenome-wide significant.

Animal studies. Two-month-old female C57BL/6 mice (n = 3 per time point) were infected with the 
E. coli UTI89GFP strain, an isogenic derivative of  UTI89 (27) (50 μL 108 CFU/mL) from a clinical 
isolate via a soft polyethylene catheter (PE10 tubing: 0.011 in. internal; 0.024 in. external diameter) 
without external pressure (52). In situ hybridization was performed on mouse bladder tissue FFPE 
sections using the chromogenic RNAscope 2.5 HD reagent kit (RED, ACD, catalog 322350) and the 
RNAscope 2.5 HD duplex reagent kit (ACD, catalog 322430) according to the manufacturer’s pro-
tocols. Both Cxcr4 and Cxcl12 C2 probes were applied at 1/25 dilution in RNAscope Diluent. For 
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immunofluorescence staining, FFPE sections were deparaffinized in xylene and hydrated via alcohol 
gradient. Slides were boiled in antigen retrieval solution (from RNAscope) at 95°C for 15 minutes and 
blocked in 3% BSA in 0.125% Triton in PBS for 1 hour. Primary antibodies (Mouse anti–smooth mus-
cle actin, Santa Cruz Biotechnology catalog sc-32251, at 1/100 dilution; Chicken anti–cytokeratin-5, 
BioLegend, at 1/500 dilution) were applied overnight at 4°C in blocking buffer. Slides were washed 
3 times  in PBS and then incubated in secondary fluorescent antibodies (Donkey anti-Chicken Alexa 
Fluor 647, catalog 703-605-155, and Goat anti-Mouse Alexa Fluor 594, catalog 115-585-003, Jackson 
ImmunoResearch) for 1 hour at room temperature. Slides were washed 6 times in PBS and imaged 
with a ZEISS LSM 710 confocal microscope.

Statistics. Associations of  α-diversity with study variables was conducted with rank-based regression. 
Pairwise β-diversity was computed with the Bray method, and PERMANOVA on Bray dissimilarity was 
performed subsequently. For clustering of  samples based on their genera composition, JSD distance met-
rics were calculated, followed by PAM clustering. To estimate associations between continuous or ordinal 
variables and cluster membership the Kruskal-Wallis and Dunn tests were used and Fisher’s exact test 
for categorical variables. Analysis of  compositions of  microbiomes with bias correction (ANCOM-BC2) 
(15) and microbiome multivariable association with general linear models (MaAsLin2) (16) were used for 
differential bacterial relative abundance analysis. All microbiota statistical analyses were conducted in 
R. GWAS were performed on RINT normalized traits with 2 statistical methods: a mixed effects regres-
sion model implemented in REGENIE (18) software and a linear regression model within the TRAC-
TOR framework (83). PheWAS was conducted using logistic regression, followed by inverse variance 
meta-analysis as implemented in the PheWAS R package. Associations with P < 0.05/(number of  tested 
phenotypes) were considered statistically phenome-wide significant.

Study approval. Use of  human specimens and data provided by the NIDDK-CR under material and 
data use agreements was approved by the Columbia University Institutional Review Board. Mouse hus-
bandry, infection, and euthanasia followed protocols approved by the Columbia Institutional Animal 
Care and Use Committee.

Data availability. Host genomic DNA genotyping data have been submitted to dbGaP under acces-
sion number phs001749 and can be accessed through authorized access. Bacterial 16S rRNA sequenc-
es are available from the NCBI Sequence Read Archive under accession number PRJNA1330300. 
Phenotypic data, including clinical and demographic variables, are available from the NIDDK-CR 
(https://repository.niddk.nih.gov/study/51). Only publicly available open-source software and R 
(v4.2.2) and Python (v3.8.10) packages and workflows were used: PLINK v1.9 (https://www.cog-ge-
nomics.org/plink/1.9), SHAPEIT v4.2, RFMix v2.03 (https://github.com/slowkoni/rfmix), REGE-
NIE v2.2.4 (https://github.com/rgcgithub/regenie), TRACTOR (https://github.com/Atkinson-Lab/
TRACTOR), dada2 v1.24.0 (https://github.com/benjjneb/dada2), phyloseq v1.40.0 (https://github.
com/joey711/phyloseq), ANCOM-BC2 v1.6.4 (https://github.com/FrederickHuangLin/ANCOM-
BC), MaAsLin2 v1.10.0 (https://github.com/bioconductor-source/MaAsLin2), PheWAS v0.99.6.1 
(https://github.com/PheWAS/PheWAS), and coloc v5.2.3 (https://cran.r-project.org/web/packages/
coloc). The specific functions and parameters used are described in the Methods subsections above. 
No software packages or custom analysis algorithms were developed for this study. The blood eQTL 
by eQTLGen is available at https://www.eqtlgen.org/; NephQTL is available at http://nephqtl.org/; 
GTEx is available at https://gtexportal.org/home/; GWAS catalog is available at https://www.ebi.
ac.uk/gwas. Values in plots are reported in the Supporting Data Values file.
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