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Introduction
In the evolving landscape of  biomedical research, understanding multifactorial musculoskeletal conditions 
has become paramount. Traditionally, many approaches are driven by single-factor, observation-based 
hypotheses, but human inference is subjective, highly variable, and has a limited capacity to define complex 
relationships. Further, integrating results from multiple studies, each investigating a discrete set of  risk 
factors, to cohesively characterize mechanistic relationships is challenging. Understanding how and why 
complex disorders develop, along with how to best treat disorders, requires a more systematic and objective 
approach to characterize disorder patterns and associated risk.

As we transition into the modern era, disease data sets have become more accessible, offering the possi-
bility of  using data-driven approaches to enhance etiological understanding; as one such approach, machine 
learning has been widely used to analyze disease data sets and enhance disease diagnosis, prevention, and 
treatment. Machine learning algorithms enable systematic and complex multifactorial consideration, which 
is difficult to achieve with only subjective and qualitative observation of  complex data. Despite the value of  
deep learning for systematic characterization of  data inputs and risk factors, deep learning alone does not pro-
vide sufficient context to facilitate mechanistic understanding of  model outputs or describe the biomechanical 

Clarifying multifactorial musculoskeletal disorder etiologies supports risk analysis, development 
of targeted prevention, and treatment modalities. Deep learning enables comprehensive risk factor 
identification through systematic analyses of disease data sets but does not provide sufficient 
context for mechanistic understanding, limiting clinical applicability for etiological investigations. 
Conversely, multiscale biomechanical modeling can evaluate mechanistic etiology within the 
relevant biomechanical and physiological context. We propose a hybrid approach combining 3D 
explainable deep learning and multiscale biomechanical modeling; we applied this approach to 
investigate temporomandibular joint (TMJ) disorder etiology by systematically identifying risk 
factors and elucidating mechanistic relationships between risk factors and TMJ biomechanics and 
mechanobiology. Our 3D convolutional neural network recognized TMJ disorder patients through 
participant-specific morphological features in condylar, ramus, and chin. Driven by deep learning 
model outputs, biomechanical modeling revealed that small mandibular size and flat condylar 
shape were associated with increased TMJ disorder risk through increased joint force, decreased 
tissue nutrient availability and cell ATP production, and increased TMJ disc strain energy density. 
Combining explainable deep learning and multiscale biomechanical modeling addresses the 
“mechanism unknown” limitation undermining translational confidence in clinical applications of 
deep learning and increases methodological accessibility for smaller clinical data sets by providing 
the crucial biomechanical context.
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and physiological environment or root etiology. Conversely, multiscale biomechanical models can evaluate 
mechanistic etiology of  identified risk factors and describe the joint mechanical environment, including joint 
mechanics, nutrient availability, and energy metabolism (1–7).

By incorporating multiscale biomechanical models in conjunction with deep learning algorithms, the 
deterministic relationship among morphology, mechanics, and mechanobiology can be defined within an 
appropriate clinical and biomechanical context; taken together, these relationships offer a powerful tool to 
advance musculoskeletal disorder etiological understanding, preventive care, and development of  targeted 
treatment modalities. This paper proposes a hybrid approach combining deep learning and multiscale bio-
mechanical modeling for investigation of  musculoskeletal disorder etiologies; we explore temporomandib-
ular joint (TMJ) disorders as an example to demonstrate the approach’s utility.

TMJ disorders affect an estimated 11.2–12.4 million adults in the United States (8) and cause sub-
stantial economic burden; individual costs average more than $1,500 per person per 6-month period (8), 
totaling $35–39 billion annually. Despite this high incidence and economic burden, TMJ disorder etiology 
is poorly understood. Clinical care for TMJ disorders is often limited to nonspecific treatment with few 
preventive options. Identification of  major TMJ disorder risk factors and an understanding of  their mech-
anistic relationships with TMJ biomechanical function are essential to improve patient care by informing 
prevention and development of  targeted treatment modalities.

TMJ disorder risk is related to craniofacial morphology, emphasizing the importance of  TMJ mor-
phological evaluation in addressing the clinical need for targeted treatment. Prior studies (9–12) suggest 
that the combined influence of  several morphological risk factors likely causes adverse TMJ mechanical 
environments, leading to TMJ disorders. Current characterization of  the relationship between TMJ mor-
phology, mechanics, and joint function largely relies on clinical observation of  prevalent morphological 
patterns in patients with TMJ disorder to inform hypothesis-driven investigation (9, 10, 13). In TMJ-related 
research, machine learning has been extensively used for CT and MRI segmentation (14–16); its applica-
tions in characterizing TMJ morphology and assessing dysfunction risk have been limited. Patients with 
TMJ condylar degeneration, osteoarthritis, and disc displacement were identified with prior deep learning 
models, improving diagnostic screening (17–20). However, important limitations of  prior models must be 
addressed to facilitate clinical implementation of  deep learning for TMJ disorder diagnosis, risk analysis, 
and treatment optimization.

Prior TMJ deep learning models implemented 2D joint analyses (21), relying on 2D scaled projections 
of  3D structures and preventing complete representation of  3D TMJ morphology; a 3D deep learning 
model is necessary to improve accuracy of  deep learning results. As with many traditional machine learn-
ing algorithms, these models also only provide a “black box” relationship between structure and function. 
This approach prevents identification of  underlying structural factors driving model outputs, informed risk 
analysis, and etiological investigation. Instead, explainable deep learning (22) algorithms provide insight 
into model prediction, enabling identification of  key TMJ morphological region(s) for determining TMJ 
disorder risk.

As previously described, deep learning enables systematic characterization of  morphology but cannot 
facilitate mechanistic understanding of  disorder etiology. Mechanical loading in the TMJ is determined by 
masticatory muscle and bite forces, which are primarily absorbed by the TMJ disc and articular cartilage. 
The TMJ disc plays a critical role with its mechanical response being integral to overall joint health. This 
disc is an avascular structure, and its nutrients are supplied solely by diffusion, a process markedly impact-
ed by joint loading. When subjected to excessive loading, the nutrient environment within the disc can be 
compromised, leading to degenerative changes and TMJ disorders. Understanding this complex interplay 
between morphological risk factors, mechanical loading, and nutrient supply is fundamental to accurately 
modelling and characterizing TMJ disorders (Figure 1).

The objective of  this study is to develop a systematic and reliable approach to investigate the multi-
factorial nature of  musculoskeletal disorders by integrating explainable deep learning and multiscale bio-
mechanical modeling; characterization of  TMJ disorder morphological risk factors is used as an example 
demonstrating approach utility. The proposed hybrid approach enables characterization of  TMJ disorder 
morphological risk factors within the relevant biomechanical and physiological joint environment. The 
developed 3D convolutional neural network derived from 3D cone beam computed tomography (CBCT) 
images differentiated TMJ disorder patients from healthy controls; explainable deep learning identified 
the mandibular condyle, ramus, and chin regions as being crucial for TMJ disorder status prediction. 
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Morphological risk factors varied substantially between patients, emphasizing the need for individual-
ized analysis and treatment. Based on the regions of  interest identified by the deep learning model, we 
further analyzed effects of  mandibular size and condylar shape on the TMJ biomechanical and physio-
logical environment. Our biomechanical models showed that small mandibular size can increase joint 
forces, deplete nutrient availability, and cause insufficient ATP production in the TMJ disc. The models 
also demonstrate that condyles with a flat shape can reduce joint contact area and increase TMJ disc 
energy density. The high-risk patterns well explained previous incidence data and clinical observations 
that women and individuals with Class II skeletal malocclusion — characterized by the mandible being 
positioned behind the maxilla — have higher TMJ disorder risk due to their smaller mandibular sizes 
(23–25). Combining deep learning and multiscale biomechanical modeling resolved the well-recognized 
deep learning “mechanism unknown” limitation undermining translational confidence in utilizing deep 
learning to enhance targeted and preventive TMJ disorder care. This hybrid approach also increases 
methodological accessibility for smaller clinical data sets by providing the crucial biomechanical context 
for interpretation of  deep learning results. Although demonstrated here within the context of  TMJ disor-
ders, this approach has the potential for utilization in other complex musculoskeletal systems including 
the knee and spine.

Results
Development and performance of  3D explainable convolutional neural network. We developed a 3D convolu-
tional neural network, a type of  deep learning model adept at analyzing complex voxel data (Figure 2A). 
This model was trained using data extracted from CBCT images, which provide detailed geometries of  
the mandibles from our sample groups, which included 40 patients with TMJ disorders and 40 people 
in a healthy control group (referred to as healthy controls). CBCT images from another 12 patients with 
TMJ disorder and 12 healthy controls were used as a validation set. The model achieved 100% and 83% 
accuracy in the training and validation sets, respectively. A receiver operator characteristics (ROC) analy-
sis (26) further evaluated the model’s capacity to predict TMJ disorder status based on the sigmoid score. 
The model had excellent predictive capacity with an AUC of  ROC of  0.952 along with high sensitivity 
(0.942) and specificity (0.981).

Participant-specific saliency maps were generated using the gradient-weighted class activation map-
ping (Grad-CAM) method (27), identifying the regions driving classification results. Saliency maps gener-
ated by Grad-CAM were compared with those generated by Grad-CAM++ to ensure consistency across 
different saliency map generation algorithms (Supplemental Figure 1). Three areas were identified with 
each individual having a participant-specific combination of  regions contributing to model prediction: the 

Figure 1. Multiscale representation of the TMJ. At the body level (left-most image), the TMJ joint force is balanced by masticatory muscle force and bite 
force at the teeth. At the joint level (center image), the TMJ disc absorbs the force exerted between the TMJ fossa and condyle, playing a pivotal role in 
joint health. At the tissue level (right-most image), the avascular nature of the TMJ disc means that it primarily relies on diffusion for nutrient and oxygen 
supply, a process markedly affected by joint loading. Consequently, nutrient availability and ATP production through energy metabolism are crucial for 
maintaining TMJ disc health. Across these scales, mandibular morphology drives TMJ joint mechanics, and joint mechanics drives the underlying biological 
process, emphasizing the interconnectedness of structure and function in the TMJ.
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TMJ condyle, mandibular ramus, and the chin (Supplemental Table 1; supplemental material available 
online with this article; https://doi.org/10.1172/jci.insight.178578DS1). The fact that each participant 
had a specific combination of  1, 2, or 3 of  these areas (Figure 2B) contributing to model prediction 
emphasized the complex and multifactorial nature of  TMJ disorder morphological risk factors.

TMJ disorder morphological pattern identified by deep learning: mandibular size. While our saliency maps 
provide critical information regarding TMJ disorder morphological patterns, direct interpretation of  the 
underlying morphological features can be difficult. Furthermore, their utility in clinical and research set-
tings can be enhanced by translating these features into commonly used morphometric measurements. 
Such a translation not only facilitates statistical analyses due to its quantifiable nature but also bolsters 

Figure 2. 3D convolutional neural network and examples of saliency maps. (A) Overview of the 3D convolutional neural network approach for distinguish-
ing between healthy participants and patients with TMJ disorder. CBCT from 80 training participants (40 healthy and 40 with TMJ disorder) and 24 valida-
tion participants (12 healthy and 12 with TMJ disorder) were utilized to train and validate this model. The CBCT images were manually segmented to obtain 
3D mandible geometries, which were then voxelized into a 3D 0–1 matrix. The classification model consists of 3 3D convolutional layers, 2 fully connected 
layers, and a global average pooling layer. Saliency maps, generated using Grad-CAM, pinpoint the most influential regions for classification. (B) Examples 
of saliency maps were generated using Grad-CAM. 3 key regions were identified: the TMJ condyle, mandibular ramus, and chin. Each individual exhibited a 
unique combination of these regions, emphasizing the multifaceted nature of TMJ disorder morphological risk factors. Detailed regions of interest for each 
participant can be found in Supplemental Table 1.
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interpretability by directly correlating findings with clinically relevant anatomical features. Therefore, we 
sought to extract and quantify morphometric features identified in saliency maps for use in TMJ disorder 
clinical and research scenarios.

The saliency map reveals 3 key anatomical regions on the mandible: the TMJ condyle, ramus, and 
chin. Positioned at the most distant points on the mandibular structure, these regions epitomize ‘extreme’ 
locations. Notably, the distance between these landmarks characterizes dimensions across various parts 
of  the mandible (Figure 3A). Consequently, we initiated our investigation by treating these landmarks as 
vital indicators of  diverse mandibular dimensions. From the saliency maps, we extracted measurements 
for 3D mandibular length (depicting overall length), 2D mandibular length (denoting the distance from 
lateral-posterior to medial-anterior points), ramus width (representing the width of  the ramus region), and 
ramus height (indicating the height of  the ramus region) (Figure 3B). Using a mixed effects model to 
account for the correlation between left and right side measurements within participants, we found that 
patients with TMJ disorder had significantly smaller 3D mandibular length (P = 0.007), 2D mandibular 
length (P = 0.022), ramus width (P = 0.001), and ramus height (P = 0.047) than healthy controls (Figure 3C 
and Supplemental Table 2).

To fully understand the multidimensional morphological differences in mandibular dimensions, we 
turned to Principal Component Analysis (PCA). Given the multidimensional nature of  our data, analyzing 
each parameter separately could overlook crucial interactions and correlations among the variables. PCA, 
however, condenses the information contained in several original variables into a smaller set of  new com-
posite dimensions, with each dimension orthogonal to the others. These new dimensions are derived such 
that they capture the maximum possible variance in the data, making them an effective tool for distilling 
the essential structure of  our data. We performed PCA on 4 key parameters: 3D mandibular length, 2D 
mandibular length, ramus width, and ramus height, all of  which were derived from participant-specific 
saliency maps. This allowed us to reduce the dimensionality of  our data and gain a deeper understanding 
of  the morphological variations contributing to TMJ disorders.

Upon normalization of  the parameters, PCA elucidated that the first principal component (PC1) 
accounted for a substantial 71.45% of  the total variance (Figure 3D), with each of  the measurements show-
ing strong correlation with PC1 (3D mandibular length: 0.9150; 2D mandibular length: 0.8799; ramus 
width: 0.7477; ramus height: 0.8293). This suggests that each variable substantially contributes to PC1, 
indicating that it predominantly represents a ‘size’ factor in craniofacial morphology. All 4 measurements 
also demonstrated high loadings (3D mandibular length: 0.5413; 2D mandibular length: 0.5202; ramus 
width: 0.4426; ramus height: 0.4905), further reinforcing the importance of  PC1 (Supplemental Figure 2). 
Among the 4 morphological indicators, 3D mandibular length showed both the highest loading and stron-
gest correlation with PC1, proving its efficacy to represent mandibular size.

TMJ disorder morphological pattern identified by deep learning: TMJ condyle size and shape. In addition to 
evaluating mandibular size through morphometric indicators, the saliency map directed our attention to 
intrajoint morphological features, specifically regarding the TMJ condyle. The condyle is of  great impor-
tance in the context of  TMJ disorders due to its critical role in the mechanical function and stability of  
the joint (Figure 4A). Changes in the size and shape of  the condyle can alter the load distribution and 
biomechanical environment within the TMJ, potentially leading to pathological conditions such as TMJ 
disorders. Consequently, we examined condyle size and shape in our cohort (Figure 4B). Using a mixed 
effects model to account for the correlation between left and right side measurements within participants, 
we found that patients with TMJ disorder exhibited smaller condyle area (P < 0.001) and flatter condyle 
shape (P = 0.046) than healthy controls (Figure 4C), suggesting a morphological link to TMJ disorder risk.

For both the mandibular size and condyle size and shape, the results highlight the effectiveness of  
our deep learning model as it accurately identifies key morphological patterns related to TMJ disorders, 
proving the power and precision of  our explainable deep learning algorithm. We found that patients with 
TMJ disorders have smaller mandible size, smaller condyle area, and flatter condyle shape compared with 
healthy controls. These findings provide insight into morphological characteristics of  TMJ disorders and 
provide a foundation for further mechanistic analysis using computational modeling.

Effect of  mandibular size on forces exerted on the TMJ. Since the human mandible operates as an integrated 
unit, variations in structural features, such as size, can influence the force exerted on the TMJ. To explore 
this relationship, we constructed participant-specific models using inverse dynamic musculoskeletal model-
ing. These models were developed using a separate data set of  16 scans (8 female and 8 male) of  the heads 
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of  cadavers who, in life, did not have TMJ disorder, enabling consideration of  parameters that cannot be 
ethically obtained in vivo and reducing functional variability to clarify mechanistic relationships. These 
cadaveric models were driven by mandible kinematics, EMG data, and bite forces sourced from 2 specific 
live reference participants. Male cadaveric models were driven by data from the male reference partici-
pant, while female cadaveric models were driven by data from the female reference participant. Utilizing 
data from only 2 reference participants allowed us to minimize external influences and focus exclusively 
on morphological factors. For each model, we used 3 bite force levels (11N, 30N, and 60N) to simulate 
small, medium, and large bite forces within our multibody model (28). The range of  bite force magni-
tudes was determined by referring to human bite forces used in chewing typical solid foods with various 
textures (29) (Figure 5A).

Figure 3. Analysis of mandibular dimensions and their association with TMJ disorders. (A) Saliency maps generated from deep learning models show key 
landmarks on the mandible, representing diverse mandibular dimensions. (B) Morphometric measurements extracted from saliency maps (3D mandib-
ular length, 2D mandibular length, ramus width, and ramus height). (C) Comparative analysis of measurements from patients with TMJ disorder (n = 104 
derived from 52 individuals, each contributing left and right measurements) and healthy controls (n = 104 derived from 52 individuals, each contributing 
left and right measurements) with a mixed effects model to account for the correlation between left and right side measurements within participants. 
The results reveal the differences between the 2 groups. In the figure, asterisks denote the level of statistical significance; * P < 0.05, **P < 0.01, and ***P 
< 0.001. (D) PCA results with the first principal component (PC1) accounting for 71.5% of the total variance emphasizing the ‘size’ factor in craniofacial 
morphology. A biplot of the PCA results can be found in Supplemental Figure 2. These analyses underscore the importance of mandibular dimensions in 
understanding TMJ disorders.
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All size-related morphological indicators (3D mandibular length, 2D mandibular length, ramus width, 
and ramus height) were negatively correlated with TMJ reaction force at all bite force levels. The relation-
ship between bite force and joint force is determined by the moment arm ratio between muscle force and 
bite force. By comparing the morphological indicators related to mandibular size with the moment arm 
ratio, we found that the human mandibular musculoskeletal system does not scale proportionally; people 
with small mandibles tend to have small moment arm ratios, increasing joint force at the same bite force 
level (Supplemental Figure 5). Our result well explained with the clinical observation that women and 
patients with Class II dentofacial deformities, who typically have smaller mandibular size and tend to have 
larger joint force, are more likely to have TMJ disorders (23–25) (Figure 5B).

Effect of  mandibular size on biological responses in the TMJ disc. In addition to the mechanical analysis, 
we also built models to explore the TMJ disc’s biological response to mechanical loading. We used solute 
diffusion and energy metabolism models to explore how mandibular size affects TMJ disc oxygen and 
glucose availability, lactate accumulation, and ATP production (30). We simulated the effect of  TMJ disc 
compression during static biting on the nutrient environment of  the disc. This involved recreating localized 
solute exchange reduction on the contact area and incorporating mechanical strain–dependent solute diffu-
sion in the disc’s loading volume. Movement of  solutes within the disc were governed by Fick’s second law. 
Oxygen and glucose consumption rates and ATP production were calculated according to stoichiometry of  
intracellular energy metabolic reactions (31) (Figure 6A).

Individuals with smaller mandibles and larger joint forces had worse TMJ disc oxygen and glucose 
availability, more lactate accumulation, and less ATP production; 3D mandibular length was most strong-
ly correlated with these mechanobiological indicators compared with other mandibular size indicators 
(Supplemental Figure 6; Supplemental Table 7). Large joint forces could cause a large TMJ disc–condyle 
contact area and increased mechanical strain, slowing TMJ disc nutrient and metabolism waste transport 
(Supplemental Figure 7). Our solute diffusion and metabolism model provides a mechanistic explanation 
for why degenerative changes are more likely to happen in people with small mandibles (Figure 6B).

Role of  condyle shape and size in determining joint contact area and energy density. TMJ finite element mechanics 
models were used to evaluate contact behavior and the tissue response. The models include the TMJ condyle, 

Figure 4. TMJ condyle morphology and its correlation with TMJ disorders. (A) Saliency maps generated from deep learning models highlight the TMJ 
condyle as an area of interest, with variations observed in the labeling of one or both condyles among individuals. (B) Detailed assessment of the condyle’s 
size and shape within the study cohort, differentiating between the overall dimensions (large or small) and the flatness (steep or flat). (C) Comparative 
analysis of measurements from patients with TMJ disorder (n = 104 derived from 52 participants, each contributing left and right measurements) and 
healthy control measurements (n = 104 derived from 52 participants, each contributing left and right measurements) with a mixed effects model to 
account for the correlation between left and right side measurements within individuals. The results reveal that patients with TMJ disorder tend to have 
smaller condyle areas and a more flattened condyle shape in contrast with healthy controls. In the figure, asterisks denote the level of statistical signifi-
cance, *P < 0.05, **P < 0.01, and ***P < 0.001. These insights underscore the role of condyle morphology in the context of TMJ disorders.
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fossa, disc, and output strain energy density, which is the energy deposited in the TMJ disc that can cause tissue 
fatigue and damage. We previously showed that joint force is influential, so to study contact behavior indepen-
dent of joint force, we used constant joint force loads of 30 N and 60 N. We applied a fixed boundary condition 
to the fossa and exerted the joint force on the condyle. TMJ disc strain energy density and contact area were 
recorded (Figure 7A).

Figure 5. Exploration of the relationship between mandibular size and TMJ force with inverse dynamic musculoskeletal model. (A) Construction of inverse 
dynamic musculoskeletal models derived from 16 specimens (8 female, 8 male) without TMJ disorders and driven by live kinematics, EMG data, and bite forces 
from reference participants (Supplemental Figure 4). 3 bite force levels (11 N, 30 N, and 60 N) simulate varying bite force scenarios, with magnitudes based on 
human bite forces during consumption of foods with diverse textures. (B) Analysis of morphological indicators, such as 3D and 2D mandibular lengths, ramus 
width, and height, shows a negative correlation with TMJ joint force across bite force levels of 11N, 30N, and 60N (n = 16, 8 males and 8 females). Specifically, 
participants with larger mandibles tend to have reduced joint forces at a given bite force level. This trend is statistically significant, as seen in the correlations 
for 3D mandibular length (11 N, 30 N, and 60 N: P = 0.001, R²=0.5340), 2D mandibular length (11 N, 30 N, 60 N: P = 0.014, R²=0.3627), ramus width (11 N, 30 N, 
60 N: P = 0.005, R²=0.4382), and ramus height (11 N, 30 N, 60 N: P = 0.003, R²=0.4719). Solid lines represent curve fittings where the differences are statistical-
ly significant (P < 0.05). Further, the moment arm ratio, which dictates the relationship between muscle force and bite force, suggests nonproportional scaling 
in the human mandibular musculoskeletal system (see Supplemental Figure 5). Specifically, individuals with smaller mandibles have smaller muscle force and 
bite force moment arm ratios, leading to increased joint forces at a given bite force. This observation aligns with clinical findings that link smaller mandibular 
sizes in females and patients with class II dentofacial deformity to a higher risk of TMJ disorders due to elevated joint forces.
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Flat TMJ condyle shape, but not condyle size, was associated with larger energy density and small 
contact area. Morphological indicators such as TMJ condyle size and shape determine contact area with 
condyle size representing the contact area capacity. However, our results showed that even with large joint 
force (60 N), less than 50% of  the condyle area made contact. Instead, condyle shape played a major role; 
steep condylar shape allowed for better joint congruency and distributed the load over a larger area. TMJ 
condyle shape was independent of  mandibular size (r < 0.1), suggesting that both mandibular size and con-
dylar shape are independently important TMJ disorder morphological risk factors (Figure 7B).

Discussion
Traditional musculoskeletal research methodologies, which often rely on observation-based hypotheses, 
have proven effective for addressing single-factor clinical challenges. However, the human capacity to dis-
cern patterns within vast amounts of  complex data is inherently limited; we require tools to decipher the 
intricate patterns within large and complex data sets. The availability of  large data sets in contemporary 
research presents an opportunity to employ data-driven approaches for deeper insights, and deep learn-
ing has emerged as a potent tool. Yet, the black-box nature and other intrinsic limitations of  traditional 
machine learning often restricts its ability to elucidate the underlying mechanisms driving detected pat-
terns. Our adoption of  explainable deep learning improves upon traditional machine learning by identi-
fying the features based on which the model made its prediction, providing improved model insights and 
enhancing the ability to further probe deep learning outputs.

Beyond recognizing patterns and relationships within data, it is imperative to uncover the underlying 
mechanisms behind potential risk factors and comprehend their effect on biological tissues. In musculoskel-
etal disorder research, multiscale biomechanical modeling has been recognized as an effective method to 
investigate mechanisms of  pathology. However, such modeling requires a clear understanding of  relevant 
potential risk factors; as previously noted, traditional methods are often driven by an incomplete represen-
tation of  related risk factors and as such fall short in providing a holistic view of  disorder mechanisms. 
To bridge this gap, our study introduces a pioneering hybrid approach that synergizes the complementa-
ry capabilities of  3D explainable deep learning and multiscale biomechanical modeling. This innovative 
methodology not only facilitates a comprehensive understanding of  complex conditions, such as TMJ dis-
orders, but also delivers mechanistic insights into underlying tissue responses. When adeptly integrated, 
explainable machine learning and multiscale biomechanical modeling hold immense promise for tackling 
multifactorial conditions in biomedical research.

This hybrid methodological approach can be utilized to better understand a wide array of  musculoskel-
etal disorders and diseases; here, we have used TMJ disorders as an example of  the approach’s utility. TMJ 
disorders, like many multifactorial musculoskeletal conditions, present considerable clinical challenges 
due to a limited understanding of  their complex origins and multifactorial risk factors. Present treatments 
primarily offer temporary symptom relief, often through pharmacological pain management, instead of  
addressing the root causes (32–34). Consequently, in light of  the ongoing opioid crisis, there is a pressing 
need for improved methods to better understand TMJ disorder etiology and comprehensively assess risk 
factors. The TMJ disorder challenge underscores a broader challenge in biomedical research: the need for 
innovative methodologies that can unravel the intricate interplay of  factors in complex conditions and 
provide reliable mechanistic explanations. Previous research has leveraged 2D deep learning algorithms 
for improved diagnostic prediction of  TMJ disorder–related conditions (21, 35), which demonstrated the 
utility of  deep learning in objectively interpreting complex TMJ morphology. However, prior limitations 
reduced clinical applicability, accuracy, and translational confidence of  previous models: (a) lack of  com-
plete 3D representation of  TMJ morphology, (b) black-box output without insight into specific morpho-
logical regions influencing TMJ disorder risk, and (c) exclusive reliance on deep learning, which does not 
elucidate the mechanical and functional relevance of  morphological features. This study directly addresses 
these limitations, illustrating the value of  combining explainable deep learning and multiscale biomechan-
ical modeling in TMJ research.

This investigation employed 3D explainable deep learning within a clinically and biomechanically 
relevant context, marking a considerable step forward from traditional assessment techniques for identi-
fying TMJ disorder morphological risk factors. Traditional approaches have been hindered by intrinsic 
challenges tied to human inference and 2D imaging, such as the confounding effects of  scaling and dis-
tortion, inconsistent distribution of  morphological features across individuals, and the human limitation 
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Figure 6. Exploration of the TMJ disc’s biological responses to mechanical loading and its relationship with mandibular size with solute diffusion 
and energy metabolism model. (A) Implementation of solute diffusion and energy metabolism models to assess the impact of mandibular size on 
TMJ disc oxygen and glucose availability, lactate accumulation, and ATP production. Simulation of TMJ disc compression during static biting reveals the 
nutrient environment’s response to localized solute exchange reduction in the contact area and mechanical strain–dependent solute diffusion in the 
disc’s loading volume. Solute movements are dictated by Fick’s second law, with oxygen, glucose consumption rates, and ATP production determined 
by the stoichiometry of intracellular energy metabolic reactions. (B) Analysis indicates that participants with smaller mandibles and larger joint forces 
experience compromised TMJ disc nutrient availability, increased lactate accumulation, and reduced ATP production (n = 16, 8 males and 8 females). 3D 
mandibular length exhibits the strongest correlation with these mechanobiological indicators. Oxygen versus mandibular length (11 N: P = 0.052, R² = 
0.2441; 30 N: P = 0.002, R² = 0.4991; 60 N: P = 0.001, R² = 0.5906). Glucose versus mandibular length (11 N: P = 0.004, R² = 0.4507; 30 N: P = 0.002, R² 
= 0.5246; 60 N: P = 0.006, R² = 0.4347). Lactate versus mandibular length (11 N: P = 0.004, R² = 0.4628; 30 N: P = 0.001, R²=0.5753; 60 N: P = 0.004, R² 
= 0.4520). ATP versus mandibular length (11 N: P = 0.029, R² = 0.2960; 30 N: P = 0.002, R² = 0.5042; 60 N: P = 0.002, R² = 0.4951). Solid lines represent 
curve fittings where the differences are statistically significant (P < 0.05), and dashed lines represent curve fittings where the differences are not 
statistically significant (P ≥ 0.05). Elevated joint forces can lead to an expanded TMJ disc–condyle contact area and heightened mechanical strain, 
impeding nutrient transport and metabolic waste removal within the TMJ disc (Supplemental Figure 7). This model offers a mechanistic explanation 
for the increased susceptibility to degenerative changes in individuals with smaller mandibles.
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in recognizing and memorizing intricate patterns (36). On the other hand, 3D explainable deep learning 
offered a systematic and comprehensive means to grasp the morphological risk factors associated with 
TMJ disorders. The participant-specific combinations of  condylar, ramus, and/or chin regions as areas of  
interest found in each participant’s saliency map underscore the multifactorial and intricate nature of  TMJ 

Figure 7. Evaluation of contact behavior and tissue response in the TMJ using finite element mechanics models. (A) The models encompass the TMJ condyle, 
fossa, and disc and provide insights into strain energy density, the energy deposited in the TMJ disc that can lead to tissue fatigue and damage. To assess con-
tact behavior independent of joint force, constant joint force loads of 30 N and 60 N were applied. A fixed boundary condition was set for the fossa, with the 
joint force exerted on the condyle. The resulting TMJ disc strain energy density and contact area are depicted. (B) Analysis suggests a mild influence of condyle 
shape on determining energy density and contact area (n = 16, 8 males and 8 females). Average strain energy density versus condyle area (30 N: P = 0.816, R² 
= 0.0040; 60 N: P = 0.671, R² = 0.0133). Average strain energy density versus flatness ratio (30 N: P = 0.192, R² = 0.1182; 60 N: P = 0.041, R² = 0.2668). Contact 
area versus condyle area (30 N: P = 0.753, R² = 0.0073; 60 N: P = 0.615, R² = 0.0186). Contact area versus flatness ratio (30N: P = 0.048, R² = 0.2509; 60N: P = 
0.101, R² = 0.1800). Solid lines represent curve fittings where the differences are statistically significant (P < 0.05) and dashed lines represent curve fittings 
where the differences are not statistically significant (P ≥ 0.05). While condyle size dictates the potential contact area capacity, actual contact is influenced 
more by shape. Even under a large joint force (60 N), less than half of the condyle area engaged in contact. A steeper condylar shape ensured improved joint 
congruency, distributing the load across a broader area. Interestingly, the shape of the TMJ condyle was found to be independent of mandibular size (r < 0.1), 
indicating that both mandibular size and condylar shape function as distinct morphological risk factors for TMJ disorders.
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disorder morphological risk factors. This complexity extends beyond the simplistic notion of  a single most 
important region, highlighting the interconnected relevance of  multiple morphological features. In fact, 
it is this complexity that validates our adoption of  explainable deep learning. The notable findings of  our 
study, specifically the correlation of  mandibular size and condylar shape with TMJ disorder risk, highlight 
the value of  integrating advanced machine learning and musculoskeletal modeling for precise identification 
and interpretation of  intricate morphological traits.

Mechanistic understanding of  the relevance of  identified TMJ disorder morphological risk factors 
to the TMJ internal environment is essential. Using a hybrid approach combining deep learning and 
multiscale biomechanical modeling, the current study determined that smaller mandibular size increas-
es TMJ internal reaction force by altering the moment arm ratio between muscle force and bite force. 
This results in worse TMJ disc oxygen and glucose availability, more lactate accumulation, and less 
ATP production by increasing the contact area between the TMJ disc and condyle. This finding suggests 
that women and patients with class II skeletal malocclusion, who typically have smaller mandibular 
sizes, may be more likely to develop TMJ disorders (23–25) due to larger joint forces and inadequate 
nutrient availability and ATP production.

Previous studies have identified morphometric measurements such as reduced ramus height, narrower 
ramus width, and smaller condyle volume in patients with TMJ disorder patents compared with healthy 
controls using traditional approaches (9, 10). Our explainable deep learning model also identified these 
features, which confirmed the robustness of  our methodology. However, previous studies failed to reveal 
the true risk factor, mainly because they studied each piece of  local information separately. Our study 
adopted a holistic approach and evaluated the risk factors all together. Our results showed that the true 
risk factor is overall mandible size, which is closely correlated with the moment arm ratio between mus-
cle force and bite force. Grasping this underlying mechanism can transition these findings into practical 
applications. For instance, orthognathic surgeries can target alteration of  the moment arm ratio, which, 
in turn, impacts joint loading. This offers a foundational rationale for addressing TMJ issues through 
orthognathic surgical procedures. Some morphological patterns, such as a smaller condyle size, might 
be observed in the TMJ disorder group but might not induce substantial biomechanical changes in the 
TMJ. As such, these patterns should be considered more as indicators of  TMJ disorders rather than direct 
risk factors. Additionally, we discovered that a flatter condylar shape can increase TMJ disc strain energy 
density by affecting the joint contact area. Given that degenerative changes caused by large strain energy 
density can further flatten the condyle, early intervention is crucial. Without timely action, a vicious cycle 
might ensue, ultimately leading to TMJ disorders.

Our results have provided mechanistic understanding as to the clinical and biomechanical relevance 
of  the risk factors identified by the deep learning model. This additional context critically supports TMJ 
disorder etiological understanding, provides greater translational confidence in applying deep learning to 
improve TMJ disorder patient care, and enables informed risk analysis and development of  targeted treat-
ment modalities. Of  note, improved context and mechanistic explanation provided by the proposed hybrid 
approach also enable deep learning application with smaller data sets, improving clinical accessibility of  
this powerful methodology compared with traditional machine learning approaches.

The broader implications of  this study extend beyond TMJ disorders, signaling a paradigm shift in 
biomedical research. Morphology drives joint mechanics, and joint mechanics drive mechanobiological 
responses; understanding each of  these pieces of  the mechanistic chain is critical to improve the etiological 
understanding of  musculoskeletal disorders and optimize care for affected patients. By synergizing explain-
able machine learning with multiscale biomechanical modeling, we’ve illuminated specific morphological 
risk factors and their biomechanical implications in TMJ disorders. With this hybrid approach, the inter-
pretive context provided by biomechanical models describes the mechanobiological relevance of  machine 
learning model outputs, increasing methodological accessibility with smaller and more widely available 
clinical data sets. Indeed, developed models could serve as potent screening tools, considering multifaceted 
risk factors simultaneously. Applying this methodology with larger data sets amassed from collaborative 
efforts across multiple clinical sites would further improve the robustness and translational strength of  
machine learning outputs. This approach not only addresses the root etiology of  musculoskeletal con-
ditions but also enables development of  tailored and effective interventions. In an era when biomedical 
research can be supported with complex disease data sets, such pioneering strategies utilizing available data 
are essential for enhancing patient outcomes and addressing complex public health challenges.
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While our model proved accurate in identifying patients with TMJ disorder, limited sample sizes for 
training and validation presented a challenge. This might have skewed the model toward overfitting and led to 
the possibility of  missing morphological indicators not well represented in our data set; to mitigate these lim-
itations, we used random flipping and random erasing to prevent overfitting. Another limitation is that the age 
distribution is different within the data set for the neural network and the data set for multiscale biomechan-
ical models; the neural network data set predominantly featured individuals averaging 34.6 years, aligning 
with the typical prevalence age for TMJ disorders, while the biomechanical modeling data set consisted main-
ly of  older individuals, averaging 74.2 years, due to the greater availability of  cadavers from this age group. 
To counteract potential biases from these age differences, we implemented methodological safeguards such 
as using cadavers without TMJ symptoms and separately applying data sets to their respective study areas — 
neural network training and biomechanical modeling — to minimize the influence of  age on our results. This 
study focused on morphological risk factors and thus assumed nonparticipant-specific parameters across all 
participants. However, crucial factors such as participant-specific kinematics data, musculoskeletal behavior, 
local biological environment, and material properties have the potential to affect modeling outcomes. Future 
research will collect and analyze a substantial quantity of  multimodality data to address the aforementioned 
factors. The identification of  a more comprehensive set of  risk factors and their interactions could help to 
further understand TMJ disorder etiology for early diagnosis and optimized treatment.

In conclusion, our hybrid approach combining 3D explainable deep learning and multiscale biome-
chanical modeling offers a robust methodology for systematically identifying risk factors and providing 
mechanistic explanations in multifactorial musculoskeletal conditions. While this study focused on TMJ 
disorders, revealing the implications of  small mandibular size and flat condylar shape on TMJ biome-
chanics, the broader impact lies in the approach’s potential applicability. Deep learning, as an analytical 
tool enhanced to provide explainable outputs, has shown immense promise in offering systematic and 
objective insights into complex data sets. However, to truly harness its potential in patient care, we need to 
understand underlying mechanisms to boost translational confidence; our methodology provides this addi-
tional necessary context using multiscale biomechanical modeling. Beyond TMJ disorders, this innovative 
approach can be instrumental in understanding other multifactorial musculoskeletal pathologies, including 
knee osteoarthritis, spine disc degenerative diseases, and associated pain conditions, underscoring its versa-
tility and broad relevance in biomedical research.

Methods
Sex as a biological variable. Our study incorporated data from both male and female individuals, utilized in 
explainable machine learning and multiscale biomechanical modeling. Although sex was not considered as 
an independent variable in the construction of  our explainable deep learning models, due to the focus on 
morphological risk factors, we have differentiated between male and female participants in the presentation 
of  our multiscale biomechanical results. This differentiation was implemented by labeling male and female 
participants in different shapes for mechanistic understanding.

Explainable machine learning model. CBCT images were obtained from 52 patients with TMJ disorder 
exhibiting disc displacement and 52 healthy controls without functional loss. Patient data were examined 
by a calibrated examiner under the standardized DC-TMJ disorders Axis I and II protocols (37) and col-
lected under institutional approval. All patient data were fully anonymized to ensure privacy. 3D mandi-
ble geometries were extracted from CBCT images and segmented into STL format using Amira (Thermo 
Fisher Scientific). The geometries were centered and voxelized, resulting in a resolution of  60 × 45 × 45, 
with each voxel representing a 2.5mm3 cube in real space. The voxelized sample was represented as a 3D 
binary matrix, with ‘1’ indicating regions occupied by the mandible and ‘0’ indicating empty regions. Data 
augmentation was employed to improve the diversity of  training data and mitigate overfitting. Random 
flipping and random erasing techniques were applied, taking into consideration the symmetry of  mandible 
geometries and the characteristics of  voxelized models.

A 3D convolutional neural network was employed for participant classification (Figure 2A). The mod-
el is comprised of  3 3D convolutional layers for feature extraction, global average pooling, and 2 fully con-
nected layers with 128 hidden neurons. The activation function used between layers was ReLU (rectified 
linear unit). To prevent overfitting, a dropout operation with a 0.3 probability was used between the fully 
connected layers. The output of  the model was a scalar value for each voxelization matrix, which was then 
used to perform classification through the sigmoid operator. The model parameters were optimized by 
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minimizing the binary cross-entropy loss. To maintain classification accuracy while managing model com-
plexity, the model was designed to be relatively shallow, preserving position information during saliency 
map generation by gradient backward propagation.

Data were split into training (40 TMJ disorder, 40 healthy samples) and validation (12 TMJ disorder, 
12 healthy samples) sets. The training set was processed with random data augmentation at each training 
iteration. A dropout operation with a 0.3 probability was implemented between the 2 fully connected layers 
during training. The Adam optimizer (38) was used with a learning rate of  0.001 for parameter optimiza-
tion. Training was performed on a Nvidia V100 GPU-equipped machine, taking approximately 3 hours 
with 2,000 iterations and a batch size of  80 samples. The model achieved an accuracy of  83.33% when 
evaluated on the validation set.

The efficacy of  our deep learning model was further gauged with a ROC analysis (26) by calculating the 
AUC ROC following a 10-fold cross-validation procedure. This measure, routinely used to assess the accura-
cy of  binary classification models, provides a value ranging between 0.5 and 1.0. Here, a score of  0.5 implies 
no better performance than random chance, whereas a perfect score of  1.0 indicates flawless classification. 
Optimal model sensitivity and specificity were also identified in the ROC analysis, representing the true 
positive and true negative rates, respectively. A perfect sensitivity score of  1.0 would indicate the ability to 
correctly identify all patients with TMJ disorder as having a TMJ disorder, whereas a perfect specificity score 
of  1.0 would indicate the ability to correctly identify all healthy controls as being without TMJ disorder.

To visualize and understand the morphological characteristics of  TMJ disorders that contributed most 
to the classification decisions of  our model, we utilized a method known as Grad-CAM (27) for generating 
saliency maps. In brief, the Grad-CAM approach is designed to highlight the critical regions within the 
input data that have a substantial influence on the model’s output prediction. This is achieved by calculat-
ing the gradients of  the output category with respect to the feature maps of  a specific convolution layer. 
These gradients are then globally average-pooled to obtain importance weights for each feature map. The 
final saliency map, or Grad-CAM heatmap, is created by taking a weighted combination of  the feature 
maps guided by these importance weights.

In the context of  our binary classification model, we adjusted the standard Grad-CAM method to com-
pute gradients directly through the model’s output, rather than with respect to a specific output category. 
This modified approach allowed us to quantify how changes in the activation of  different regions within the 
3D image would affect the overall classification output of  the model. To generate the final saliency maps, 
we rescaled the weighted combination of  activation maps and projected them back onto the original input 
voxel space. This resulted in saliency maps that highlighted the regions within the input CBCT images 
that were of  most importance for the classification decisions of  our model. These maps provide valuable 
insights into the model’s decision-making process and help make it more understandable and interpretable. 
Detailed mathematical derivations and equations supporting our methodology are provided in Supplemen-
tal Note 1. The neural network and Grad-CAM algorithm were implemented using PyTorch framework.

Inverse dynamic musculoskeletal model. The heads of  8 male and 8 female cadavers were scanned using a 
CBCT scanner (Planmeca3D Max, Planmeca USA) and a 7T MRI scanner (BioSpec 70/30 USR; Bruker 
Corp.). The voxel dimensions for the CBCT scanner were set at 0.2 × 0.2 × 0.2 mm3, while the MRI 
in-plane resolution was set at 0.234 mm × 0.234 mm with a slice thickness of  0.5 mm. After the scans were 
completed, dissection was performed to record muscle attachment sites using a camera-based 3D location 
recording system.

EMG activities of  bilateral temporalis and masseter muscles were recorded from a representative male 
and female individual using surface electrodes (Biometrics) during a static biting task. Concurrently, bite 
forces were captured via a calibrated force sensor. Participants were asked to perform static biting tasks with 
gradually increasing bite force magnitude, from 10 N to 70 N. During these tasks, the kinematics of  the man-
dibular system were recorded using a camera-based motion capture system (Supplemental Figure 4). This 
extensive data allowed us to develop a model capable of  accurately simulating the biomechanical behavior 
of  the TMJ across a spectrum of  bite forces, including the 11 N, 30 N, and 60 N we chose in this paper.

A high-pass zero-lag fourth-order recursive Butterworth filter (cut-off  frequency: 30 Hz) was utilized to 
remove the DC offset of  the raw EMG signal caused by movement artifacts of  the electrodes. The signal 
was then full wave rectified, normalized with respect to the peak rectified EMG value obtained during the 
maximum voluntary contraction (MVC) experiment, and filtered using a Butterworth low-pass filter (cut-
off  frequency: 6 Hz) (39).
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Sixteen participant-specific mandibular system musculoskeletal models were constructed using the bone 
geometry obtained from the CBCT scans and muscle attachment information obtained from dissection. The 
models were driven by the mandible kinematics, EMGs, and bite forces obtained from the 2 reference partici-
pants: 1 male reference participant and 1 female reference participant. Male cadavers were driven by data from 
the male reference participant, while female cadavers were driven by data from the female reference participant.

Inverse dynamics–based 3D musculoskeletal models of  the human mandible were developed using our 
previously described approach (28). Moment of  inertia used in the model can be found in Supplemental 
Table 3. The relative movement of  the lower jaw with respect to the skull during maximal jaw open-close 
motion was calculated using the coordinate transformation method.

The musculoskeletal model of the mandible (28) was equipped with 26 muscle actuators, including 5 dis-
tributed forces for the temporalis and masseter muscles and 3 centroid-to-centroid forces for superior/inferior 
lateral and medial pterygoid muscles on each side of the cephalad. Muscle parameters are summarized in Sup-
plemental Table 4. The initial estimation of muscle forces was made by inputting the low-pass filtered EMGs 
and instant muscle lengths/velocities into the Hill-type muscle model (Supplemental Note 2; Supplemental 
Figure 3) considering muscle force-length, force-velocity, and passive elastic force-length relationships (40).

The resultant forces and moments at the TMJ were calculated using principles of  inverse dynamics. To 
address the redundancy issue of  shared muscle forces concerning the mandible force equilibrium equations, 
an optimization program was used to minimize the difference between the resultant mandible moment cal-
culated from inverse dynamics and the resultant mandible moment estimated from the Hill-model. Experi-
mental model validation can be found in our previous publication (28).

Solute diffusion and metabolism model. The nutrient environment within the TMJ disc was calculated for 
the same 16 participants using solute diffusion and energy metabolism models (30). This analysis generated 
3D concentration gradient profiles of  oxygen, glucose, lactate, and ATP production.

Solute gradients within the disc were calculated using Fick’s second law, a principle that describes sol-
ute diffusion processes:

where Ji represents the flux of  a given solute species, Qi the metabolic reaction for that species, Di the 
diffusion coefficient, and ci the concentration. The metabolic reactions were defined based on the stoichi-
ometry of  intracellular energy metabolic reactions in Supplemental Note 3.

In our first stationary study step, diffusion coefficients for the nutrient solutes (glucose, oxygen, and lac-
tate) were held as constant values derived from literature-reported measurements (30). During the second 
transient study step, we quantified the disruption of  solute gradients of  the TMJ disc in response to 2-hour 
static biting. The effect of  TMJ disc compression under static biting on the disc nutrient environment was 
simulated by mimicking the attenuated localized solute exchange through the condyle-disc contact area 
and considering mechanical strain-dependent solute diffusion in the loading volume of  the disc. Defini-
tions of  condyle-disc contact area and disc loading volume are based on normal stress as described in Sup-
plemental Note 4. The mechanical strain-dependent diffusion coefficients were determined using the strain 
values obtained from the finite element mechanics models, as detailed in Supplemental Note 5.

We quantified changes in nutrient availability and accumulation of  waste metabolites. These were pre-
sented as a normalized percentage change in the mass of  a specific molecule (denoted by i), where i can 
represent oxygen, glucose, lactate, or ATP, within the entire volume of  the disc. These changes were derived 
from the 2-hour loaded configuration compared with the initial unloaded configuration:

where normalizer is determined by finding the maximum ratio of  initial mass of  i in the loading vol-
ume to the initial mass of  i across the whole disc, across all participants studied; massi

0h denotes the mass of  
i across the whole disc, massi

2h denotes the mass of  i across the whole disc after 2 hours under load. Other 
modeling parameters, including those measured experimentally, are described in Supplemental Table 
5. The validity of  this approach is experimentally tested by our previous work, wherein in vitro cellular 
metabolic measurements corresponded well with the outcomes predicted by our model (30).
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Finite element mechanics model. Finite element models were built to provide deeper understanding of  the 
complex TMJ disc biomechanical behavior under various static biting conditions.

Employing the data from the heads of  the same 16 cadavers used in the Inverse Dynamic Musculoskel-
etal Model, finite element models of  the TMJ were developed. The specimens were subjected to CBCT and 
7T MRI scans. Utilizing COMSOL Multiphysics software, these models were constructed with the aim of  
evaluating the biomechanical responses within the TMJ articular disc.

Segmentations of  the TMJ fossa, condyle, and TMJ disc were extracted from CBCT and MRI scans 
using Amira software (Thermo Fisher Scientific). The finite element model was built to include 5 material 
components: the condylar head, temporal fossa, articular disc, condylar cartilage, and temporal fossa carti-
lage. Contact pairs were defined between both cartilages and disc. Linearly elastic material properties were 
assigned to these components with reference values provided in Supplemental Table 6. A fixed boundary 
condition was applied to the temporal fossa and the condyle was defined as movable. Joint force was applied 
to the articular disc through the TMJ condyle to simulate the disc biomechanical response under static biting.

The elastic strain energy density was recorded to understand the tissue mechanical behavior and fatigue 
risk. Equations used to calculate these measures are provided in Supplemental Note 6.

Statistics. This study utilized a mixed effects model, implemented through the ‘mixedlm’ function of  the 
‘statsmodels’ Python library (41), to discern the differences between the TMJ disorders and healthy groups. In 
this model, the TMJ disorders or healthy group membership was a fixed effect, representing the primary inter-
est, and the individual was included as a random effect to accommodate correlation between measurements 
from the left and right sides of  the same participant. The model was estimated using the Restricted Maximum 
Likelihood (REML) method, a preferred estimation technique for mixed models, as it provides unbiased esti-
mates of  variance and covariance parameters. No adjustments were made to the reported P values. Selected 
results are reported in the manuscript, with additional details provided in Supplemental Table 2.

A PCA was performed using MATLAB’s built-in ‘pca’ function and was subsequently verified with 
OriginLab Pro. Given that the measurements were all in the same unit but with different means, data were 
normalized using the ‘zscore’ function prior to PCA, ensuring that each parameter contributed equally to 
the principal components, thus preventing any single measure from dominating due to scale. The correla-
tion between the original variables and the principal components was calculated to interpret the importance 
of  the components.

The linear regression analysis was conducted using OriginLab Pro to examine the relationship between 
morphological indicators and the results of  multiscale biomechanical modeling simulations. The signifi-
cance level was set at α = 0.05 for the analysis. The P values and R2 values were calculated and are reported 
to assess the null hypothesis that the slope is zero and to quantify the proportion of  the variance in the 
simulation results that is predictable from the morphological indicators.

Study approval. This study is the under the Medical University of  South Carolina IRB approval of  
Pro00077484 and Pro00066351.

Data availability. The data sets supporting the conclusions of  this article are divided into 2 main catego-
ries: an explainable deep learning data set and a multiscale biomechanical modeling data set. The explain-
able deep learning data set contains comprehensive information for each participant, including the actual 
medical diagnosis, machine learning predictions, identified regions of  interest based on Grad-CAM, sigmoid 
activation values, and detailed morphological measurements. The multiscale biomechanical modeling data 
set contains detailed modeling results for each participant, including joint forces, average disc strain energy 
density, disc contact area, glucose and oxygen availability, lactate accumulation, and ATP production. All 
these data are in the Supplemental Materials or Supporting Data Values files published along with this paper.

Due to their substantial size, the CBCT data, finite element models, and analytic code used in this study 
are not included in this article. Interested parties can obtain these materials by contacting the correspond-
ing authors via email.
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