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Introduction
Uveal melanoma (UM) is the most common primary intraocular cancer in adults (1, 2) with a stable inci-
dence of  5.2 per million in the USA (3) and approximately 6 per million in Europe, with a gradient from 
Northern Europe, with 8–9 per million in Scandinavia, to Southern Europe, with less than 2 per million 
(4). UM arises from melanocytes along the uveal tract, mostly from the choroid but also from the iris or 
ciliary body (5). Risk factors for UM include a fair skin color, red or blond hair, light eye color, ocular mela-
nocytosis and dysplastic nevi, cutaneous, iris or choroidal nevus, and familial syndromes, i.e., germline 
BRCA1-associated protein-1 (BAP1) mutations (1, 6). UM is more commonly seen in older age groups, 
with a progressively rising age-specific incidence rate that peaks at age 70 (1), but presents at a younger age 
in Chinese and Asian Indians than in Caucasians (7).

In contrast to cutaneous melanoma (CM), most UMs do not display any ultraviolet (UV) mutation 
signature and have a very low mutational burden (8), except for 2 subsets, 1 driven by germline MBD4 
mutations, and 1 UV driven that is restricted to Iris UM (9). UM lacks BRAF, NRAS, and KIT alter-
ations and instead harbors activating and mutually exclusive mutations in genes encoding the G-pro-
tein-alpha subunits GNAQ or GNA11 in 90% of  primary tumors (10–12). Mutations in the CYSLTR2 or 
PLCB4 genes may be found in the remaining 10% of  tumors (13, 14). These mutations lead to the activa-
tion of  the MAPK and PI3K/AKT pathways (15) but also the transcriptional coactivator yes-associated 
protein (YAP) through both a Hippo-independent and Hippo-dependent circuit (3, 16, 17). In a few cas-
es, secondary drivers might influence tumor development (18). Genomic profiling of  UM metastases as 
opposed to primary tissue emphasizes the overrepresentation of  BAP1 alterations (19). At the molecular 
level, 2–4 groupings have been identified by the analyses of  gene expression (mRNA, ncRNA), DNA 
copy number, DNA-methylation, and somatic mutations (8).

The primary tumor is controlled by radiological and surgical interventions and local relapses are 
extremely rare. Nevertheless, approximately half  of  the patients develop metastases that rapidly progress 

Uveal melanoma (UM) is a unique disease in that patients with primary UM are well stratified 
based on their risk of developing metastasis, yet there are limited effective treatments 
once metastases occur. There is an urgent need to better understand the distinct molecular 
pathogenesis of UM and the characteristics of patients at high risk for metastasis to identify 
neoantigenic targets that can be used in immunotherapy and to develop novel therapeutic 
strategies that may effectively target this lethal transition. An important and overlooked area 
of molecular pathogenesis and neoantigenic targets in UM comes from human endogenous 
retroviruses (HERVs). We investigated the HERV expression landscape in primary UM and found 
that tumors were stratified into 4 HERV-based subsets that provide clear delineation of risk 
outcome and support subtypes identified by other molecular indicators. Specific HERV loci are 
associated with the risk of uveal melanoma metastasis and may offer mechanistic insights into 
this process, including dysregulation of HERVs on chromosomes 3 and 8. A HERV signature 
composed of 17 loci was sufficient to classify tumors according to subtype with greater than 95% 
accuracy, including at least 1 intergenic HERV with coding potential (HERVE_Xp11.23) that could 
represent a potential HERV E target for immunotherapy.
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to the fatal stage. Despite research, survival of  patients with metastatic UM (mUM) has not changed 
over the decades. Thus, the major challenge in UM is the metastatic risk (20). The metastatic risk of  each 
patient can be prognosticated, but the mechanisms of  metastasis and pronounced liver tropism are still 
poorly understood.

Despite many attempts to treat mUM, survival of  patients has not improved over 3 decades, although 
there are suggestions that survival for some patients can be extended. Therapeutic advances for mUM have 
lagged behind those for metastatic CM because mUM was thought to be unresponsive to immune therapy. 
Recently, however, IMCgp100 (tebentafusp), a manufactured T cell stimulator, shows promise in mUM 
and suggests that immune-based therapy can be effective (21–24). There has also been some success with 
tumor-infiltrating lymphocyte (TIL) therapy (25) and PD-1 inhibition (pembrolizumab) in MBD4-related 
hypermutator phenotype (26) or in combination with the histone deacetylase (HDAC) inhibitor entinostat 
in the pembrolizumab + entinostat (PEMDAC) phase 2 clinical trial (27). Single cell studies (28) suggest 
that there is a fairly rich infiltrating immune landscape in mUM and immune therapy, and targets for 
immune therapy are being investigated.

We and others believe that an important and overlooked source of  novel neoantigenic targets comes 
from Human Endogenous Retroviruses (HERVs) (29–32). HERV expression is thought to be tightly con-
trolled by intrinsic mechanisms, such as PIWI (33), APOBEC (34, 35), and other restricting mechanisms 
(36), which function to contain nucleic acids within a cell. Recent studies have shown that HERVs may be 
much more dynamically regulated than previously thought. In human cancers, HERVs have been suspect-
ed to play both pathogenic and beneficial roles (37–40). HERV expression has been reported in germ cell 
tumors (41–43), prostate (44–46) and breast (47–51) cancers, lymphoma (52, 53), and renal cell carcinoma 
(29, 54, 55) among others (56–61). HERVs have been studied for their ability to contribute to tumorigenesis 
by activating cellular oncogenes or mutating cellular tumor suppressor genes, resulting in aberrant gene 
expression that promotes a cascade of  uncontrolled cellular proliferation (62, 63). HERV-encoded prod-
ucts (RNA, cDNA, and proteins), even with compromised functionalities, can be toxic, and their aberrant 
accumulation can contribute to various disease states, including cancer. However, there is substantial evi-
dence that HERVs also contribute to cis-regulatory DNA elements and modify transcriptional networks 
for the good of  the host, and they can also stimulate innate or adaptive responses (64–66). Thus, the study 
of  HERVs in melanoma is at an early and crucial stage, and any potential contribution of  HERVs to UM 
pathogenesis — and the corollary, of  the potential for neoantigenic targeting — warrants further study.

We have been intrigued with recent studies that have identified specific HERVs as biomarkers for 
tumors responsive to treatment with checkpoint inhibitors (29), which leads to the question: could HERVs 
also be surrogate neoantigenic targets in metastatic UM, and if  so, which HERVs? In particular, provi-
ruses from the HERV-E family have been reported to express immunogenic antigens in renal cell can-
cer (54), thus prompting us to investigate locus-specific HERV-E expression in UM. Using our computer 
pipeline Telescope (67), we characterized the expression landscape of  locus-specific HERVs within the 
Cancer Genome Atlas (TCGA) UM data set (n = 80). We identified specific differentially expressed (DE) 
HERVs and demonstrated that HERV expression predicted patient survival from metastases in a supervised 
machine learning model. The initial tumor microenvironment of  UM is an immune sanctuary site within 
the eye, but interestingly, differential HERV expression before apparent metastatic spread can distinguish 
tumors which metastasize to those that do not, providing a new model for understanding metastatic spread.

Results
HERV expression landscape defines 4 UM subsets. First, we sought to investigate whether locus-specific HERV 
expression signatures can be used for UM subtype classification and provide insights into molecular, clinical, 
and prognostic indicators. We used RNA-Seq data from 80 primary UM tumors from TCGA (phs000178) 
to profile expression of  14,968 HERV loci using our computer pipeline Telescope (67). Next, we performed 
unsupervised consensus clustering of  HERV expression profiles to determine the number of  UM subsets 
(parameter “k”) and membership of  each sample. The consensus clustering approach identifies clusters that 
are robust to outliers by iteratively subsampling the data matrix and performing k-means clustering (for a giv-
en k) on the submatrix. The set of  clusterings is then summarized by pairwise consensus, and the procedure 
is repeated for each value of  k. The resulting cluster assignments are inspected using various visualization 
tools to select a reasonable cluster number and membership. Our analysis supports the identification of  4 or 
fewer UM subsets (k ≤ 4), while clustering solutions with k greater than 5 were less stable. In agreement with 
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previous work on transcription-based classifiers (8), we selected a 4-cluster classification (Figure 1A). These 
4 HERV subsets corresponded with 2 previously characterized prognostic classes. HERV clusters 1 and 2 
(HC1 and HC2, hereafter referred to as HC1/2) correspond with low metastatic risk class 1 UM tumors 
while HC3 and HC4 correspond with poor prognosis and high metastatic risk class 2 UMs. Most UMs in 
HC1/2 have disomy 3 (D3) status (37/43) and do not have BAP1 alteration (41/43), while no D3 UMs 
are found in HC3/4 and only 4 out of  37 lack BAP1 mutations. Few HC1/2 primary UMs later developed 
metastases (3/20 and 1/22, respectively), while half  of  the HC3 clusters (9/18) and the majority of  the HC4 
clusters (13/19) developed metastases (Figure 1B).

Next, we asked whether clusters identified from HERV expression profiles are associated with other 
molecular classifiers or clinical outcomes. Using the adjusted Rand index (ARI) and Fisher’s exact test, we 
found that HERV clusters were most similar to clusters based on mRNA and lncRNA expression profiles 
(ARI = 0.747, P = 2.13 × 10–34 and ARI = 0.747, P = 5.49 × 10–33, respectively). HERV clusters were also 
significantly associated with clusters based on somatic copy number alterations (ARI = 0.300, P = 2.68 × 
10–16), DNA methylation (ARI = 0.303, P = 2.09 × 10–15), miRNA (ARI = 0.321, P = 1.06 × 10–15), and 
PARADIGM pathway analysis (ARI = 0.739, P = 1.09 × 10–29). HERV-based classification was also signifi-
cantly associated with important clinical and prognostic indicators, including D3/monosomy 3 (D3/M3) 
status (Fisher’s exact test, P = 2.649 × 10–16), metastasis (P = 7.076 × 10–6), and cause of  death (P = 1.662 × 
10–7), while not associated with gender (P = 0.7992).

We then examined the relationship between HERV cluster subtypes and metastatic death using 
Kaplan-Meier analysis (Figure 2). Intervals to clinical outcomes were calculated for documented death due to 
mUM or last follow-up, excluding other causes of death. The HERV subtype was significantly associated with 
clinical outcomes (n = 78, P = 4.97 × 10–7), with clusters HC3 and HC4 associated with a higher risk of death.

Specific HERV loci are differentially expressed in UM subsets. Having identified UM subsets based on the 
overall HERV expression landscape, we next asked which specific HERV loci were responsible for differ-
ences among subsets. First, we tested for HERVs that were differentially expressed between good prognosis 
(HC1/2) and poor prognosis subsets (HC3/4). We identified 86 HERVs that were significantly upregulated 
in HC1/2, while 34 HERVs were activated in HC3/4 (FDR < 1 × 10–3, abs [log2 fold change] > 1.5) (Figure 
3A). The overall HERV burden, as measured by the proportion of  all sequencing fragments originating 
from HERV loci, was greatest in HC4 (0.12%) and smallest in HC3 (0.055%) but was similar between 
HC1/2 (0.10%) and HC3/4 (0.091%) (Figure 3B). Gene set enrichment analysis (GSEA) revealed that 
HERVs overexpressed in HC1/2 were significantly enriched on chromosomes 3 and 19, while HERVs 
upregulated in HC3/4 were enriched on chromosome 8 (FDR < 0.01) (Supplemental Figure 1; supple-
mental material available online with this article; https://doi.org/10.1172/jci.insight.147172DS1). Fam-
ily-level analysis revealed that significantly upregulated HERVs in HC1/2 were from 33 HERV families; 
several families were overrepresented including HERV-K families HML2, HML3, HML4, HML5, HML6, 
and HERVKC4. HC3/4 had upregulated loci from 21 families, and HML2 and HML5 were also overrep-
resented, as well as HERV9 and HERVI. GSEA with HERV family gene sets did not find any significantly 
enriched families (Supplemental Figure 2). Examination of  HML2 and HERV9 enrichment plots revealed 
that gene set members were enriched on both ends of  the ranking metric, indicating that individual loci are 
regulated independently as opposed to family-level regulation (Figure 3C).

Specific HERV loci were found to be characteristic of  each subset compared with the other 3 subsets. 
HC1 had the greatest number of  upregulated HERV loci (201 loci), followed by HC4 (118 loci), HC2 (47 
loci), and HC3 (5 loci) (Figure 3D).

HERV signature predicts UM subset. We asked whether we could identify a prognostic HERV signature 
that could be used to classify primary UM tumors. Our goal is to reduce the large number of  HERVs 
deemed significant by differential expression testing, thereby narrowing targets for further investigation. 
We used 2 supervised learning approaches for evaluating the importance of  HERV loci: random forest 
classification with the Boruta algorithm, which aims to identify all relevant features; and randomized least 
absolute shrinkage and selection operator (LASSO) regression, which selects a minimum optimal set of  
features. Differential expression testing using the likelihood ratio test (LRT) identified 659 loci with signif-
icant (FDR < 1 × 10–3) differences between a model that includes the HERV subtype compared with a null 
model. Machine learning approaches identified a much smaller set of  important features, with 193 HERVs 
selected by Boruta and 17 using LASSO. Features selected with LASSO are a proper subset of  Boruta-se-
lected features and both approaches are subsets of  significant LRT features (Figure 4A).

https://doi.org/10.1172/jci.insight.147172
https://insight.jci.org/articles/view/147172#sd
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Using the features identified by each approach, we built multiclass support vector machine (SVM) clas-
sifiers to measure the accuracy of  the HERV signature in predicting UM subtypes. SVMs were trained with 
repeated 5-fold cross-validation on the set of  HERVs selected by each approach. All HERV signatures had 
a greater than 95% classification accuracy. The minimal optimal feature set (selected by LASSO) achieved 
97.2% accuracy with a 17-HERV signature, while the Boruta and LRT signatures achieved 98.2% and 
96.7% accuracy, respectively. In terms of  per-class performance, HC1 was misclassified most frequently 
(recall = 0.919) while other classes were more sensitive (recall HC2 = 0.973; HC3 = 0.999; HC4 =0.9995). 
Misclassification among good prognosis and poor prognosis clusters was rare and almost exclusively due 
to misclassification of  HC1 subtypes as HC4. We constructed a classification tree based on the 17-HERV 
signature that correctly classified 97.5% of  cases (Figure 4B). HC4 cases were characterized by low expres-
sion of  LTR46_Xq11.1, while HC3 had low expression of  both HML3_19q13.2 and MER4_1p21.3. HC2 
samples had high expression of  ERVLE_17p11.2c.

We have shown that our classification of UM based on HERV profiles is accurate and have identified a 
HERV signature with key marker HERVs for each UM subtype. However, the functional importance of spe-
cific HERV families or loci is largely undescribed. Thus, we sought to further characterize these HERVs and 
their potential products. HERVs selected for the 17-HERV signature were located in intergenic, exonic, and 
intronic regions and had various capacities for encoding proteins (Table 1). The 3 HERVs located in band 3q21 
— HERVH_3q21.3a, MER4B_3q21.2, and HML3_3q21.2 — are downregulated in HC3/4 UMs (Figure 5). 

Figure 1. HERV-based clustering identifies 4 UM subsets. (A) Principal component analysis and unsupervised 
consensus clustering of HERV profiles. Shape indicates vital status or cause of death: A, alive; AM, alive with 
metastatic UM; DM, death caused by metastatic UM; DO, other cause of death; DU unknown cause of death. 
Statistical ellipses indicate a 90% confidence interval for each cluster. (B) Clustering dendrogram of HERV profiles 
with covariate tracks indicating (from top) alternate cluster assignments, clinical variables/outcomes, chromosome 
3 and 8 copy number, and somatic mutations.
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This subtype is associated with the class 2 high metastatic risk UMs that have recurrent loss of 1 copy of chro-
mosome 3 (M3). None of the HERVs used in our classifier were located on chromosome 8, despite the associ-
ation of increased chromosome 8q copy number with HC4. Of those HERVs included in the signature, 7 loci 
have significant (FDR < 1 × 10–3) expression differences distinguishing poor prognosis cluster HC3 from HC4. 
HERVH_6q24.1b, HERVH_10q23.32, ERVLE_17p11.2c, and LTR46_Xq11.1 have higher expression in HC3, 
while ERVLE_2p13.2a, ERVLE_5q13.2a, and HERVE_Xp11.23 are more expressed in HC4.

Predicted HERV-derived T cell antigens. Cytotoxic T cells recognize peptide fragments of  proteins pre-
sented in the groove of  the MHC molecule, and which peptides are selected depends upon donor haplo-
type. Class I restricted peptides are approximately 9 amino acids in length, while class II are 11–14 amino 
acids. In cutaneous melanoma, certain peptides have been targeted for cytotoxic T lymphocyte (CTL) 
expansions, and HERV-derived peptides have been identified as infectious disease targets. From our anal-
ysis, we then determined the potential T cell epitope region, concentrating on proteins from open reading 
frames (ORFs) in the 17-HERV signature we found differentially upregulated from the Telescope analy-
sis. We identified 3 HERV loci with protein-coding potential based on intrinsic sequence composition: 
MER4_1p21.3, HML3_19q13.2, and HERVE_Xp11.23. We identified ORFs and characterized the result-
ing sequences by sequence similarity with other retroviral proteins (Supplemental Table 1). MER4_1p21.3 
contained 2 ORFs that did not share similarity with retroviral proteins, while HML3_19q13.2 and 
HERVE_Xp11.23 contained partial coding sequences for retroviral genes gag, pol, and env.

To map epitopes to short peptides we used netMHCpan (68) to look for peptides from ORFs for com-
mon HLA alleles in the TCGA-Uveal Melanoma (TCGA-UVM) cohort. For each of  the HLA alleles, 
amino acid sequences were scanned for peptides of  length 9 and were scored according to the likelihood 
of  the peptide being an MHC ligand. Peptides with percentile rank_EL less than 0.5 were considered to 

Figure 2. Kaplan-Meier survival analysis of HERV UM subtypes. Intervals to clinical outcome were calculated for docu-
mented death due to mUM or last follow-up, excluding other causes of death (n = 78).
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be “strong binders.” We report the number of  strongly binding peptides for each HLA allele and ORF 
combination and the amino acid sequences for all strong binders (Supplemental Tables 2 and 3). Across 
all alleles, 143 strongly binding peptides were identified for HERVE_Xp11.23, 85 for HML3_19q13.2, 
and 9 for MER4_1p21.3.

HERV subtype classifier in UM cell lines. We evaluated the applicability of  our classifier using publicly 
available UM RNA-Seq data sets. We identified 65 samples from several studies (69–73) (Supplemen-
tal Table 4; GEO Series GSE176345, NCBI BioProject PRJNA59636) and used Telescope to profile 
HERV expression. Fragment counts were normalized for library size together with TCGA samples using 
DESeq2. Initial analysis of  the combined data set with principal component analysis (PCA) (2872 fea-
tures) reveals high variability distinguishing TCGA from other data sets (Supplemental Figure 4). Since 
these data sets examined different tumors or cell lines and were obtained using different protocols, we 
cannot rule out technical or biological explanations for these differences. To overcome these pitfalls, we 
relied only on the 17 HERV loci determined to be most informative for subtype classification. Assign-
ment of  cell line samples to HERV subtype clusters was less confident than in TCGA cases; the greatest 

Figure 3. Differential HERV expression among UM subtypes. (A) Volcano plot showing significance (-log10 [adj. p value]) and effect size (log2 [fold change]) 
for differences in HERV expression between UM subtypes HC1/2 and HC3/4. Dashed lines are shown at significance and effect size thresholds (FDR < 1e-3, 
abs [log2 fold change] > 1.5) and HERVs that meet both thresholds are shown in red. HERVs with the greatest significance or effect size are labeled. (B) HERV 
transcriptional burden represented by overall proportion of reads that originate from HERV transcripts, by cluster. (C) GSEA enrichment plots for HML2 and 
HERV9 families. All genes are ordered by rank with vertical ticks indicating membership within the gene set; the running sum enrichment statistic is shown 
in green; and red dashed lines indicate the maximum and minimum enrichment scores. (D) Volcano plots, as in A, showing HERV significance and effect size 
significant HERVs for each cluster. Each plot shows the contrasts for 1 cluster compared with the average of the other 3 HERV clusters.

https://doi.org/10.1172/jci.insight.147172
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assignment probability in cell lines was 48.2%, while TCGA probabilities ranged from 60.7% to 97.6%. 
Out of  30 samples belonging to the Mel202 cell line, 26 were classified in the HC4 cluster. Similarly, all 
4 Mel270 samples were classified as HC4, while samples from 92.1 were assigned to HC1. Out of  65 
samples, all except 13 were assigned to HC4. We examined expression at LTR46_Xq11.1 more closely 
since this feature has the greatest variable importance in our model. Average expression at this locus was 
much lower in other studies compared with TCGA; low expression values result in HC4 classification. 
Visual examination of  other HERV loci revealed a similar pattern for some loci, while others had average 
expression more comparable to TCGA (Supplemental Figure 5).

BAP1 mutant UM activates specific HERV expression programs. BAP1 is a deubiquitinating enzyme 
with an increasingly recognized role in tumor suppression. In UM, metastatic risk groups are be strat-
ified by BAP1 status, with class 2 “poor prognosis” UMs associated with loss of  BAP1. We sought to 
investigate the association between inactivating mutations in BAP1 with HERV expression by iden-
tifying HERV loci that are differentially expressed in BAP1 WT (BAP1wt) and mutant (BAP1mut) 
tumors (Supplemental Figure 6). In the TCGA cohort, BAP1mut UMs (n = 35) had 22 HERV loci that 
were activated and 67 that were downregulated compared with BAP1wt UMs (n = 45). In UM cell 
line expression data from Han et al. (71) (GEO accession GSE149920), BAP1wt cell lines (MM66) 
had 33 upregulated and 29 downregulated HERVs compared with BAP1mut cell lines (MP38, MP46, 

Figure 4. Prognostic HERV model using supervised learning. (A) Upset plot showing unique and shared features 
selected using the LRT, Boruta algorithm with random forest classification, and randomized LASSO with stability selec-
tion. Solid dots on the lower plot indicate algorithms involved in the intersection, and the height of the bar plot is the 
number of intersecting features selected. (B) Classification tree grown by recursive partitioning based on the 17-HERV 
signature identified by all algorithms. The HERV locus corresponding to each split is shown with normalized and 
transformed cutoff values shown on the branches. Final classification is shown on the leaf nodes with the “true” class 
assignments shown below. For example, samples classified into the leftmost node would be assigned to HC1. Of those 
samples classified to that node, 8 were actually from HC1 and 0 were from HC2, HC3, and HC4, respectively.
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MP65 and PDX4). Five loci — HERVH_1p31.3d, ERV316A3_6p21.33c, MER4_22q12.3, MER-
4B_8q21.11, and HERVH_5p15.33 — were upregulated in BAP1mut UMs for both cohorts. Of  these, 
ERV316A3_6p21.33c was also important as a feature in the 17-HERV classification signature.

Discussion
In this study, we have characterized the HERV expression landscape in primary UM tumors and show that 
HERV expression profiles are useful for distinguishing metastatic outcomes in patients with UM. Unsu-
pervised learning shows that HERV profiles define 4 UM subsets that provide clear delineation of  risk 
outcome and support subtypes identified by other molecular indicators. The concordance of  HERV-based 
UM subtypes with other “-omics” classifiers suggests that distinct UM subtypes are driven by systems-level 
perturbations manifested through multiple indicators. Not surprisingly, this correlation was strongest with 
other transcriptome-based platforms, including mRNA and lncRNA profiles. However, as the vast majority 
of  HERV loci identified in our annotation are excluded from widely used genome annotations, retrotran-
scriptomic studies have the potential to identify novel RNA species that would be overlooked using estab-
lished transcriptomic approaches.

Identifying differential expression of  HERVs among varying prognostic subtypes has 2 broad implica-
tions. First, it suggests that distinct HERVs are associated with the risk of  UM metastasis and may offer 
mechanistic insights into this process. This is supported by the finding that the better-prognosis HC1/2 
clusters were enriched with upregulated HERVs on chromosome 3 and poor-prognosis HC3/4 clusters 
were enriched with upregulated HERVs on chromosome 8, consistent with the poor prognosis of  M3 and 
8q amplification. The 3 HERV elements in 3q21 were of  particular interest as their expression patterns were 
highly informative for classification. It remains to be seen whether this aberrant expression is directly relat-
ed to M3 or related to global methylation changes resulting from loss of  BAP1. Enrichment of  DE HERVs 
on chromosome 19 in HC1/2 additionally suggests that dysregulation of  HERVs on chromosome 19 may 
be associated with metastatic potential. Second, HERV loci characteristic of  high-risk UM subtypes could 
represent underappreciated targets for immune-based therapy.

Our HERV-based UM classifier is a proof-of-concept that patterns of  HERV expression may be used 
to develop biomarkers useful for UM classification and prediction of  clinical outcomes. The minimum 
optimal feature set was able to achieve greater than 95% accuracy for 4 subset classifications using only 
17 HERVs. This signature was highly sensitive, with greater than 99% of  poor prognosis HC3/4 UMs 

Table 1. Characterization of HERV loci comprising the 17-HERV signature identified by minimum optimal feature selection

Locus Gene Region Coding
MER4_1p21.3 SLC44A3-AS1* Intronic Y

ERVLE_2p13.2a DYSF Intergenic N
MER4B_3q21.2 SLC41A3* Exonic N
HML3_3q21.2 SLC41A3* Exonic N

HERVH_3q21.3a AC079848.2* Exonic N
ERVLE_5q13.2a BDP1 Intergenic N

ERV316A3_6p21.33c HCP5* Exonic N
HERVH_6q24.1b AL355596.1 Intergenic N

HERVI_9q22.1 AL353572.4 Intergenic N
HERVH_10q23.32 PCGF5 Intergenic N

MER4B_12q22 SOCS2-AS1* Intronic N
ERVLE_17p11.2c NATD1* Exonic N
HML3_19q13.2 ERVK9-11* Exonic Y

MER101_19q13.2c VN1R96P Intergenic N
HERV3_19q13.42a ZNF525* Intronic N

HERVE_Xp11.23 RN7SL262P Intergenic Y
LTR46_Xq11.1 LINC01278* Exonic N

HERV locus names correspond to the retro.hg38.v1 annotation. Nearest or overlapping (*) genes are based on ENSEMBL HG38 annotation release 99; region 
indicates whether HERV is located overlapping 1 or more exons (exonic), within an intron (intronic) or in an intergenic region. Protein-coding potential is 
inferred based on intrinsic sequence composition using the CNIT webserver.
 

https://doi.org/10.1172/jci.insight.147172


9

R E S E A R C H  A R T I C L E

JCI Insight 2022;7(9):e147172  https://doi.org/10.1172/jci.insight.147172

correctly classified as such. We constructed a classification tree from this 17-HERV signature that uses only 
4 HERV loci and that correctly classifies 97.5% of  cases. At the very least, these classifiers provide useful 
suggestions for HERV loci, warranting further investigation as potential biomarkers or neoantigens. We 
tested our classifier on out-of-sample data from UM cell lines and found that most samples were assigned 
to HC4. The locus with the highest variable importance in our model, LTR46_Xq11.1, appeared to have 
much lower expression in cell line data (Supplemental Figure 5), resulting in low-confidence assignments 
to HC4. Given that cell lines do not necessarily maintain the same expression patterns as the primary cells 
from which they are derived, biological differences affecting HERV expression are plausible, as are techni-
cal sources of  variation. Ideally, out-of-sample data from primary UM cases, generated using standardized 
protocols, will become available for testing our model.

Specific HERV upregulation has previously been associated with responsiveness to immune checkpoint 
blockade in patients with renal cell cancer (29, 55), and a novel HERV-E neoantigen was identified (54). 
The restricted expression of  HERV-E in kidney tumors was found to occur as a consequence of  inactiva-
tion of  the von Hippel–Lindau tumor suppressor. Antigens derived from this provirus are immunogenic, 
stimulating cytotoxic T cells that kill kidney cancer cells in vitro and in vivo. In this study, we identified an 
intergenic HERV on the X chromosome (HERVE_Xp11.23) that potentially encodes immunogenic pep-
tides and is highly expressed in HC4 poor-prognosis UMs, a possible immunotherapeutic target.

The tumor microenvironment and immune landscape of  primary UM has been found to be an 
important determinant of  UM subtype and prognostic outcome. In contrast to many other cancers, 
immune infiltration in UMs tends to be associated with worse prognosis (74). Our study suggests that 
increased infiltration (Supplemental Figure 3) is also associated with higher overall HERV burden in 
HC4 UMs and increased expression of  specific HERV loci, including HERVE_Xp11.23. Our MHC 
class I binding analysis revealed numerous ORFs encoding epitopes that may be bound by several 
HLA alleles. Since tebentafusp can only be used in individuals with the HLA-A2 allele (40–50% of  
patients), identification of  potential epitopes restricted by other HLA alleles could broaden antigen 
selection for future immunotherapeutic approaches for all patients. Additional studies examining the 
complex relationship between immunogenic HERV burden, immune infiltration, and prognostic out-
come are important to advance the field.

There are some limitations to our study, including the scarcity of  available data sets and no RNA-Seq 
data from UM liver metastases. Identification of  which HERVs are DE in liver metastases compared with 
the primary tumor may allow rational antigenic targeting.

Figure 5. HERV expression signature distinguishes UM subsets. Heatmap showing HERV expression profiles for the minimal optimal set HERVs 
(17-HERV signature). Heatmap rows, representing HERV loci, are ordered by unweighted pair group method with arithmetic mean (UPGMA) hierarchi-
cal clustering of rank-based (Spearman’s) correlation distance and scaled to 0 mean and unit variance. Rows are annotated according to HERV locus 
categorization by chromosome and HERV superfamily. Columns are ordered by unsupervised consensus clustering of HERV profiles as previously 
described and annotated by HERV cluster assignment.
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In summary, our work demonstrates that HERV expression quantified at the family level may prove to 
be overly simplistic to accurately describe HERV activity, while locus-specific HERV profiling can better 
account for independent expression of  HERV insertions due to sequence variation, local genomic con-
text, or epigenetics. Together, these studies suggest that defining locus specific HERV expression in uveal 
melanoma may provide insights into oncogenesis and metastases, response to treatment, and creation of  
potentially novel avenues of  therapy.

Methods
Data processing. The NCI’s Genomic Data Commons (GDC) (75) was used to identify 80 primary UM 
tumors with available RNA-Seq data from the TCGA-UVM project. Paired-end RNA-Seq data (Illumina) 
were downloaded in Binary Alignment Map (BAM) format using the GDC data transfer tool. Aligned 
BAM files were reverted to unaligned uBAM files and adapter sequences were marked using Picard (76). 
Adapter-trimmed reads were aligned to the reference genome hg38 (GCA_000001405.15 no-alt analysis 
set) using bowtie2 (77) with very sensitive local alignment, reporting up to 100 alignments per read with 
approximately 95% or greater sequence identity (--very-sensitive-local -k 100–score-min L,0,1.6). The result-
ing BAM files containing ambiguous reads were reassigned using Telescope (67) with the “retro.hg38.v1” 
annotation obtained from (https://github.com/mlbendall/telescope_annotation_db/tree/af3c359/builds/
retro.hg38.v1). This annotation includes 14,968 HERV and 13,545 L1 loci. Telescope was run with up to 
200 iterations of  expectation-maximization and an informative prior for theta (--max_iter 200–theta_prior 
200000). The final read counts output by Telescope were used in downstream retrotranscriptome analysis.

Gene expression was estimated using a pseudoalignment approach. The transcriptome index was built 
using the GENCODE v22 annotation obtained from GDC and adapter-trimmed reads were input to kallis-
to (78) with 100 bootstrap samples (-b 100).

The data processing pipeline was implemented on a high-performance computing cluster using Snake-
make (79) with the bioconda package manager (80). The complete analysis pipeline is available from 
(https://github.com/mlbendall/herv_melanoma).

Patient characteristics, clinical outcomes, and molecular characterization. Patient characteristics and clinical 
outcomes for 80 UM samples were obtained from NCI GDC (81) and TCGAbiolinks (82). Additional 
clinical data and molecular characterization, such as cluster assignments and somatic mutations, were 
previously reported and obtained from Robertson et al. (8). Leukocyte fraction and CIBERSORT immune 
fractions were estimated by Thorsson et al. (83) and accessed through the NCI’s GDC.

Unsupervised analysis. Unsupervised analysis was performed using the R statistical environment and Biocon-
ductor package manager (84). HERV counts reported by Telescope were filtered to exclude any loci that had 
fewer than 5 observations (fragments) across all samples, resulting in profiles of 4104 HERV loci. Counts were 
normalized using size factors calculated by DESeq2 (85) and transformed using a variance stabilizing transfor-
mation. PCA was performed on the transformed counts and visualized using PCAtools (86). Consensus cluster-
ing with the k-means clustering algorithm was performed for 1000 replicates using ConsensusClusterPlus (87). 
The clustering procedure was performed for k = 2 through k = 9; the resulting cluster solutions were evaluated 
using consensus matrices and silhouette statistics. Clustering solutions for k = 2, k = 3, and k = 4 appeared to 
describe the data well and yielded clusters of sufficient size, and a final clustering of k = 4 was chosen based on 
agreement with other molecular and clinical indicators. Dendrogram was created with the dendextend package 
(88). Kaplan-Meier survival curves were fitted using survival (89) and drawn using survminer (90). Intervals to 
clinical outcomes were calculated for documented death due to mUM or last follow-up and were censored at 5 
years. The adjusted Rand index was calculated to compare clustering solutions and Fisher’s exact test was used 
to test for significant correlations between HERV clustering and categorical variables.

Differential expression analysis. Differential expression analysis was performed using the R statistical 
environment using the DESeq2 package (85). The experimental model included 1 term for HERV clus-
ter assignment with 4 levels (~ clust.herv + 0). Comparison between poor and good prognosis clusters 
were made by comparing the average of  C1 and C2 to the average of  C3 and C4, i.e., ([C1+C2)/2] — 
[C3+C4)/2]). Cluster-specific contrasts were extracted for each HERV cluster compared with the mean of  
the other 3 clusters, i.e., C1 — ([C2+C3+C4]/3). Thresholds for significant genes were FDR less than 1 × 
10–3 and abs (log2 fold change) greater than 1.5. Significance and effect size were visualized using volcano 
plots implemented in the EnhancedVolcano package (91). Heatmap and upset plot visualizations were 
implemented in pheatmap (92) and UpSetR (93), respectively.
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Gene sets for GSEA were created using the retro.hg38.v1 annotation. HERV loci were grouped into fam-
ilies according to the internal region. The test statistic calculated in DESeq2 was used to rank genes. GSEA 
was performed using the adaptive multilevel splitting Monte Carlo approach implemented in fgsea (94).

Supervised learning and prognostic HERV model. Supervised analysis was performed using the R statistical envi-
ronment. HERVs used for the LRT and supervised learning were filtered to exclude loci that were not observed 
(fragment count threshold greater than 5) in at least 5% of samples, resulting in 1122 loci. The LRT was used 
to compare the experimental design including HERV cluster (~ clust.herv) to a reduced model (~ 1) with a 
significance threshold of FDR less than 1 × 10–3. Fragment counts were normalized and transformed (variance 
stabilizing transformation) with DESeq2 and the transformed matrix was used for feature selection. Minimum 
optimal feature selection was performed using randomized LASSO regression with stability selection, described 
by Meinshausen and Bühlmann (95) and implemented in glmnet (96, 97) and c060 (98). LASSO was fit using 
multinomial logistic regression with grouped penalty that ensures multinomial coefficients for a variable are 
either all non-0 or all 0 (a feature is either all-in or all-out). Randomization was performed by reweighting fea-
tures in each subsample by a random weight in (0.1, 1) (weakness = 0.1), and 100 subsamples were used for 
stability selection. Stable features were selected with a proportion threshold of 0.6 and an error rate of 0.05 (error 
= 0.05, pi_thr = 0.6). All relevant feature selection was performed using the Boruta algorithm (99) with random 
forest classifiers from the randomForest package (100). Random forests were grown with 1000 trees (ntree = 
1000) and 1000 importance runs were performed (maxRuns = 1000). A small number of orutave variables after 
1000 iterations were fixed by comparing the median importance with the median importance of the maximal 
shadow attribute. UpSetR was used to visualize overlap of features selected using the 3 approaches.

HERV signatures were tested by constructing support vector machines, implemented in e1071 (101) 
using the selected feature set with 5-fold cross-validation and 100 repetitions. Accuracy was calculated for 
each fold and each repetition and mean accuracy was taken as the average across all folds and repetitions. A 
classification tree was grown by recursive partitioning (102) based on the LASSO signature (17 variables).

Locus-specific HERV characterization. Meta-annotations of  locus-specific HERVs were obtained from 
https://github.com/Liniguez/Telescope_MetaAnnotations. Protein-coding potential of  HERV ele-
ments was calculated based on intrinsic sequence composition using the Coding-Non-Coding Iden-
tifying Tool (CNIT) webserver (103). The nearest gene or gene overlaps were determined using the 
ENSEMBL HG38 annotation, release 99.

HERV immunogenicity prediction. ORFs were identified using Geneious with minimum size of  200 nt and 
start codons ATG; only ORFs in the sense orientation relative to the HERV locus were retained. Possible 
peptides with homology to retroviral proteins were identified using a protein-protein blast (blastp) search 
against NCBI nonredundant protein sequences (nr) database, limited to records assigned by Retroviridae 
(taxid: 11632). All ORFs were used to predict peptides with high binding affinity to MHC class I molecules 
using NetMHCpan version 4.1b. We tested binding affinity to HLA class I alleles with 10 or more samples 
in the TCGA-UVM cohort as predicted by Thorsson et al. (83). HLA-A alleles include HLA-A*02:01, 
HLA-A*03:01, HLA-A*01:01, HLA-A*11:01, and HLA-A*24:02. HLA-B alleles include HLA-B*44:02, 
HLA-B*07:02, HLA-B*18:01, and HLA-B*08:01. ORFs were analyzed using a peptide length of  9. Strong 
binders were selected using the percentile rank of  the elution ligand score (%Rank_EL < 0.500).

Statistics. Differential expression significance was calculated using the Wald test, and multiple test cor-
rection was performed using the Benjamini-Hochberg procedure. Feature selection was performed using 3 
methods: likelihood ratio test, Boruta random forest algorithm (99), and randomized least absolute shrink-
age and selection operator (LASSO) regression. Multiclass support vector machine (SVM) classifiers were 
trained using 5-fold cross validation and 100 repetitions.
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