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Introduction
Fibrosis is a final common pathway of  injury that underlies the pathogenesis of  tissue damage in many 
chronic diseases (1). Thought to be primarily mediated by scar-producing cells called myofibroblasts, fibro-
sis leads to replacement of  healthy parenchymal cells with pathological extracellular matrix, a process that 
not only reduces organ function but also leads to capillary loss and further tissue damage (2, 3). Reflecting 
its important role as a driver of  chronic organ injury, fibrosis is estimated to account for nearly half  of  all 
deaths in the developed world (1). Despite its critical role in driving chronic tissue damage and dysfunction, 
few safe and effective antifibrotic therapies exist, sparking intense interest in better understanding the sig-
naling pathways that contribute to fibrogenesis.

Despite the myriad insults that can occur across different tissues, a set of  conserved profibrotic 
pathways is largely responsible for the scarring that ensues (1, 4). Recent reports have implicated the 
closely related transcription cofactors Yes-associated protein (YAP) and transcriptional coactivator with 
PDZ-binding motif  (TAZ) as critical drivers of  the fibrogenic response (5–15). YAP/TAZ signaling is acti-
vated by multiple cues, including TGF-β (16) and tissue stiffening (17–19), both of  which are important 
features of  fibrosing organs (20, 21). Working independently and via interactions with other profibrotic 
pathways, such as TGF-β (7, 22–24), EGFR (13, 14), MRTF (25), and Wnt signaling (12), YAP and TAZ 
play important roles as coordinators of  profibrotic signaling.

Fibrotic diseases account for nearly half of all deaths in the developed world. Despite its 
importance, the pathogenesis of fibrosis remains poorly understood. Recently, the two 
mechanosensitive transcription cofactors YAP and TAZ have emerged as important profibrotic 
regulators in multiple murine tissues. Despite this growing recognition, a number of important 
questions remain unanswered, including which cell types require YAP/TAZ activation for fibrosis 
to occur and the time course of this activation. Here, we present a detailed analysis of the role 
that myofibroblast YAP and TAZ play in organ fibrosis and the kinetics of their activation. 
Using analyses of cells, as well as multiple murine and human tissues, we demonstrated that 
myofibroblast YAP and TAZ were activated early after organ injury and that this activation was 
sustained. We further demonstrated the critical importance of myofibroblast YAP/TAZ in driving 
progressive scarring in the kidney, lung, and liver, using multiple transgenic models in which YAP 
and TAZ were either deleted or hyperactivated. Taken together, these data establish the importance 
of early injury-induced myofibroblast YAP and TAZ activation as a key event driving fibrosis in 
multiple organs. This information should help guide the development of new antifibrotic YAP/TAZ 
inhibition strategies.
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Although the role of  YAP and TAZ as profibrotic molecules has been established, a number of  key ques-
tions remain unanswered. Firstly, the specific cell type(s) responsible for YAP/TAZ-mediated fibrogenesis 
remain(s) nebulous because many of  the initial reports documenting the importance of  YAP and TAZ used 
systemically administered pharmacological inhibitors (6, 15, 24). Although several follow-up conditional 
transgenic mouse studies have since been performed, none have definitively examined the importance of  
myofibroblasts in mediating the profibrotic effects of  YAP and TAZ in multiple organs (9, 14). Secondly, the 
kinetics of  YAP/TAZ activation after organ injury have not been well studied, and yet this information is 
necessary to guide the timing of  YAP/TAZ inhibitor initiation as a potential antifibrotic strategy.

Here, we examined the role of  myofibroblast YAP/TAZ activation in organ fibrogenesis. Using mouse 
models of  kidney, lung, and liver fibrosis, as well as human biopsy samples, we demonstrated that in myo-
fibroblasts, YAP/TAZ activation was a key step that occurred early after injury in multiple organs in mice 
and humans. We further demonstrated that myofibroblast-specific deficiency of  LATS1 and LATS2, the 
Hippo pathway kinases that inhibit YAP/TAZ, strongly augmented myofibroblast YAP/TAZ activation 
after organ injury and exacerbated fibrosis. In contrast, myofibroblast-specific deletion of  YAP/TAZ 
reduced scarring. Taken together, our data established a critical and conserved role for myofibroblast Hippo 
pathway inactivation (and subsequent YAP/TAZ activation) in driving organ fibrosis.

Results
Human organ fibrosis is associated with YAP and TAZ activation. Fibrosis is a prominent histopathological 
finding in the setting of  chronic kidney transplant injury in humans (2–4, 26). Thus, to explore whether 
YAP and TAZ are activated after human organ injury, we examined a set of  18 archival human trans-
plant kidney biopsies that had undergone bulk RNA-Seq (unpublished observations). These 18 samples 
consisted mostly of  clinically indicated biopsies performed for new onset allograft dysfunction, as well as 
several protocol biopsies collected as part of  an independent, prospective cohort study (see Methods for 
more details). Our cohort consisted of  12 males and 6 females, with the mean age being 51 ± 12 years, 
and the biopsies being performed on average 4.4 ± 3.3 years after transplant. The serum creatinine at the 
time of  the biopsy was 165 ± 52 μmol/L, and the calculated estimated glomerular filtration rate (eGFR) 
was 39 ± 13 mL/min/1.73 m2.

Of  the 18 biopsies analyzed, 9 had minimal-mild interstitial fibrosis (ci [interstitial fibrosis] 0–1) 
and 9 had moderate-severe fibrosis (ci 2–3), as determined by a blinded pathologist review. We found 
that a YAP-associated transcriptional signature (27) was enriched in the moderate-severe fibrosis group 
(YAP gene set variation analysis [GSVA] enrichment score: 0.13 ± 0.05 for moderate-severe fibrosis vs. 
–0.13 ± 0.11 for minimal-mild fibrosis, P < 0.05, 2-tailed Student’s t test), suggesting that YAP activa-
tion may be a feature of  fibrosing kidneys. We next stained a set of  archival kidney transplant biopsies 
obtained serially from a transplant recipient whose allograft demonstrated increasing fibrotic burden 
over time (Figure 1). Consistent with our RNA-Seq findings, we noted a progressive increase in nuclear 
YAP and TAZ staining (a marker of  YAP/TAZ activation) in α-smooth muscle actin–positive (SMA+) 
fibroblasts (Figure 1). Taken together, our data suggests that fibroblast YAP and TAZ are activated in 
the fibrosing human kidney after injury.

To determine whether this finding is restricted to the kidney or is more representative of  human organ 
fibrosis in general, we next examined a recently published single-cell RNA-Seq data set derived from non-
fibrotic and fibrotic human lungs (28). In line with our findings in human transplant kidneys, the YAP-as-
sociated transcriptional signature was also increased in fibroblasts isolated from fibrotic versus nonfibrotic 
human lungs (adjusted P = 2.8 × 10–7).

Fibrosis is associated with YAP/TAZ activation in multiple organs. We next turned to well-established 
mouse models of  organ fibrosis to dissect this fibroblast YAP and TAZ activation event in more detail. We 
first examined mice undergoing left-sided unilateral ureteral obstruction (UUO), a model of  kidney fibro-
sis (29). Seven days after UUO surgery, the left kidney demonstrated significant fibrosis (Figure 2A and 
Supplemental Figure 1; supplemental material available online with this article; https://doi.org/10.1172/
jci.insight.146243DS1). We noted that α-SMA+ myofibroblasts demonstrated increased YAP and TAZ 
nuclear localization, indicating that fibrotic injury was associated with myofibroblast YAP/TAZ activa-
tion in this model (Figure 2, B and C). Consistent with our histological findings, we also demonstrated 
increased expression of  YAP/TAZ target (Figure 2, D–G) and fibrosis-associated genes (Figure 2, H–K). 
We found similar results in mice with bleomycin-induced lung fibrosis (Supplemental Figure 2).

https://doi.org/10.1172/jci.insight.146243
https://insight.jci.org/articles/view/146243#sd
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Finally, we analyzed 3 publicly available single-cell RNA-Seq data sets, 1 from murine lungs after bleo-
mycin injection (30), and 2 from murine livers damaged with CCl4 (31, 32). Consistent with our find-
ings, lung fibroblasts isolated 21 days after bleomycin injection (when fibrosis is present) demonstrated 
an increased YAP transcriptional signature compared with lung fibroblasts isolated from uninjured mice 
(Supplemental Figure 3A). Similarly, portal fibroblasts and hepatic stellate cells isolated from CCl4-induced 

Figure 1. Progressive myofibroblast YAP/TAZ activation occurs during human kidney fibrogenesis. (A) Serial biopsies collected from the same renal allograft at 
different times intratransplant and after transplant revealed a progressive increase in interstitial fibrosis, as evidenced by increased picrosirius red staining over 
time. Black arrows point to increased deposition of collagen (pathologic matrix), whereas black arrowheads identify tubular basement membrane. Black scale bar: 
100 μm. (B) Kidney sections were costained with antibodies directed against α-smooth muscle actin (α-SMA, green) and YAP (red) with DAPI (blue) nuclear coun-
terstaining. Each dot in the graph represents a single image (n = 5 images day 0, n = 13 images day 9, and n = 12 images month 2). White arrows point to α-SMA+ 
myofibroblasts with predominantly nuclear YAP staining. White scale bar: 25 μm. The percentage of α-SMA+ myofibroblasts with predominantly nuclear YAP 
staining was quantified. (C) Kidney sections were similarly analyzed for nuclear TAZ localization in α-SMA+ myofibroblasts (α-SMA: green, TAZ: red, DAPI: blue). 
Each dot in the graph represents a single image (n = 4 images day 0, n = 5 images day 9, and n = 11 images month 2). White scale bar: 25 μm. One-way ANOVA with 
post hoc Tukey’s test was used for comparisons. Data shown as mean ± SEM. *P < 0.05.

https://doi.org/10.1172/jci.insight.146243
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Figure 2. Activation of myofibroblast YAP and TAZ after renal fibrotic injury. Male C57BL/6 mice underwent sham (n = 6) or left-sided unilateral uret-
eral obstruction (UUO, n = 6) surgery. Mice were euthanized 7 days after surgery. (A) Kidney sections were stained with picrosirius red (PSR) to quantify 
fibrillar collagen (n = 6 kidneys/group). Black scale bar: 100 μm. (B) To quantify myofibroblast YAP activation, kidney sections were costained with 
antibodies targeting α-smooth muscle actin (α-SMA, green) and YAP (red) with nuclear DAPI counterstaining (blue). White scale bar: 10 μm (C) Similar 
staining was done to detect myofibroblast TAZ activation (α-SMA: green, TAZ: red, DAPI: blue). White arrows depict green α-SMA+ cells that have 

https://doi.org/10.1172/jci.insight.146243
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fibrotic livers expressed higher levels of  YAP-regulated genes compared with their counterparts isolated 
from control livers (Supplemental Figure 3, B–D).

YAP/TAZ are activated in myofibroblasts early after injury. To assess when YAP/TAZ activation occurs 
after injury, we next examined mouse kidneys at various time points after disease onset. For this purpose, 
we subjected mice to unilateral left-sided ischemia/reperfusion injury (IRI), a model of  progressive fibrosis 
in which ischemic acute kidney injury leads to fibrotic chronic kidney disease (Figure 3A) (29, 33). Immu-
nofluorescence staining with antibodies directed against α-SMA, YAP, and TAZ demonstrated an increase 
in nuclear YAP and TAZ localization in α-SMA+ myofibroblasts by day 4 after IRI, when fibrosis has just 
begun to appear, suggesting that myofibroblast YAP/TAZ activation is an early event after kidney injury 
(Figure 3, A–C). Given that cellular stiffening is a key driver of  YAP/TAZ activation (17–19), we next 
examined the stiffness of  renal interstitial α-SMA+ myofibroblasts using atomic force microscopy. Consis-
tent with our finding of  increasing myofibroblast YAP/TAZ activation after IRI, we noted a progressive 
increase in interstitial α-SMA+ cell stiffness over the course of  the 14-day experiment (Supplemental Figure 
4). Because myofibroblasts are derived from a number of  interstitial α-SMA– cell populations, including 
pericytes and quiescent α-SMA– fibroblasts (34, 35), we also measured the stiffness of  α-SMA– cells in the 
renal interstitium. Similar to our observations in α-SMA+ cells, we noted a progressive stiffening of  these 
interstitial α-SMA– cells as well (Supplemental Figure 4). Finally, we examined downstream expression of  
the YAP/TAZ-inducible genes Ccn2 and Ccn1 and found an increase in transcript levels at 4 days, with a 
further rise by 14 days after IRI (Figure 3, D and E). A similar pattern was noted when the expression of  
collagen transcripts was examined (Figure 3, F and G).

To confirm our findings, we examined a publicly available bulk RNA-Seq data set in which mouse 
kidneys were sampled at multiple time points after IRI, ranging from 2 hours to 12 months after injury (33). 
Consistent with our own findings, the same YAP transcriptional signature we found to be elevated in other 
fibrotic tissues (Supplemental Figure 3) was also increased early after IRI in mouse kidneys and remained 
elevated at 28 days after injury (Supplemental Figure 5) (33).

Myofibroblast YAP/TAZ deficiency attenuates organ fibrosis. To examine the significance of  myofibro-
blast YAP/TAZ activation after organ injury, we next generated Yapfl/fl Tazfl/fl mice expressing a tamox-
ifen-inducible Cre recombinase under the control of  the mouse type 1 (α1) collagen (Col1a1) promoter. 
These mice were subjected to UUO-induced kidney fibrosis (Figure 4), bleomycin-induced lung fibrosis 
(Figure 5, A–C), and CCl4-induced liver fibrosis (Figure 5, D and E). The timing of  organ injury and 
tamoxifen administration for each model is summarized in Supplemental Figure 6. Tamoxifen was 
administered either during (UUO and bleomycin) or at the beginning (CCl4) of  the fibrogenic period 
after each type of  injury (between days 0 and 6 after UUO, between days 7 and 13 after bleomycin, and 
between days 8 and 12 after CCl4) (36, 37). In all 3 models, myofibroblast-specific YAP/TAZ deficiency 
was associated with a reduction in organ fibrosis (Figures 4 and 5 and Supplemental Figure 8). Further-
more, in bleomycin-injured mice, knockdown of  YAP and TAZ resulted in improved lung function, as 
evidenced by an increase in arterial blood oxygenation (Figure 5A).

Finally, we confirmed the above phenotypes with a second Cre driver, using Yapfl/fl Tazfl/fl mice express-
ing a tamoxifen-inducible Cre recombinase under the control of  the mouse type 1 (α2) collagen (Col1a2) 
promoter (Supplemental Figure 7A). Col1a2-Cre/ERT+/– Yapfl/fl Tazfl/fl mice again demonstrated a marked 
protection against UUO-induced fibrotic injury (Supplemental Figure 7).

Overactivation of  fibroblast YAP/TAZ exacerbates fibrotic injury. A key mechanism controlling YAP and 
TAZ activity is phosphorylation by the inhibitory Hippo pathway kinases LATS1 and LATS2 (38). We 
therefore tested whether deficiency of  LATS1/2 in myofibroblasts would further exacerbate fibrotic injury 
by generating Col1a2-Cre/ERT+/– Lats1fl/fl Lats2fl/fl mice and subjecting them to both UUO-induced kidney 
or bleomycin-induced lung injury. Details of  the experimental design are again summarized in Supple-
mental Figure 6. Myofibroblast-specific LATS1/2 deficiency led to a significant upregulation of  YAP/
TAZ activity, as demonstrated by an increase in YAP and TAZ nuclear localization (Supplemental Figures 
9 and 10) and augmented expression of  YAP/TAZ-inducible genes (Supplemental Figure 9, C and D).  

predominant red YAP or TAZ nuclear staining. White scale bar: 10 μm. The mRNA levels of the YAP/TAZ-inducible genes (D) Ankrd1, (E) Ccn2, (F) Ccn1, 
and (G) Serpine1, as well as those of the fibrosis-associated genes (H) Col1a1, (I) Col3a1, (J) Col4a1, and (K) Acta2 were examined using qPCR of cDNA 
prepared from whole kidney homogenates. Transcript levels were normalized to the housekeeper transcript Gapdh. A 2-tailed Student’s t test was used 
for comparisons. Data shown as mean ± SEM. *P < 0.05.
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Figure 3. Myofibroblast YAP and TAZ are progressively activated during renal fibrogenesis. Male C57BL/6 mice underwent sham (n = 4) or left-sided 
unilateral ischemia/reperfusion injury (IRI, n = 8) surgery. IRI mice were euthanized at early (4 days, n = 4) or late (14 days, n = 4) time points after injury. 
Sham-operated mice were euthanized at 14 days after surgery. (A) Kidney sections were stained with picrosirius red to quantify fibrotic injury. Black scale 
bar: 100 μm. (B) To quantify myofibroblast YAP activation, kidneys were costained with antibodies directed against α-smooth muscle actin (α-SMA, green) 
and YAP (red) with nuclear DAPI counterstaining (blue). White scale bar: 10 μm. (C) Myofibroblast TAZ activation was similarly assessed after costaining for 
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As expected, this increase in myofibroblast YAP/TAZ activation was associated with increased patholog-
ical matrix deposition in both the obstructed kidney (Figure 6, A–C, and Supplemental Figure 9, E–G) 
and the bleomycin-injured lung (Figure 6, D and E). Taken together, our data suggest that myofibroblast 
YAP and TAZ, and their upstream Hippo pathway regulators, are important modulators of  organ fibrosis.

Discussion
YAP and TAZ, the downstream effectors of  the Hippo pathway, have emerged as critical drivers of  organ 
fibrosis. To date, however, the specific cell types that require YAP/TAZ activation for scarring to occur 
have remained unclear. Here, we demonstrated that YAP and TAZ were activated in myofibroblasts early 
after organ injury in mice and humans. We corroborated findings in our mouse and human samples with 
analyses of  publicly available RNA-Seq data sets in mouse and human organs with a particular focus on 
myofibroblasts. Next, using transgenic mice in which YAP and TAZ were either deleted or hyperactivat-
ed in a myofibroblast-specific manner, we demonstrated that this early activation of  myofibroblast YAP/
TAZ activity is a critical event driving scarring in multiple organs. Taken together, our results establish the 
importance of  the myofibroblast Hippo pathway and its effectors YAP and TAZ in mediating fibrogenesis 
after tissue injury.

Emerging evidence suggests that YAP and/or TAZ contribute to injury-induced organ damage by pro-
moting inflammation (39) and fibrosis (5, 6, 8, 11, 27, 40–42). In particular, a growing body of  evidence 
has shown that YAP and/or TAZ can activate myofibroblast matrix production through TGF-β–dependent 
and –independent mechanisms of  action (5–10, 22, 23). In particular, several groups have used transgenic 
approaches to demonstrate that stromal cell YAP and/or TAZ appear to play critical roles in mediating 
fibrosis of  the kidney and heart (9, 43, 44). Our findings are broadly in line with these reports, as we showed 
that myofibroblast YAP/TAZ deficiency protected against injury-induced fibrosis of  the kidney, lung, and 
liver, whereas myofibroblast YAP/TAZ overactivation induced by LATS1/2 deficiency exacerbated inju-
ry-induced scarring. Interestingly, Xiao et al. found that YAP/TAZ hyperactivation in cardiac fibroblasts 
induced by Lats1/2 knockout resulted in cardiac scarring even in uninjured mice (44), a finding that we did 
not observe in the kidney or lung when we knocked out Lats1/2. Many potential explanations for this dis-
crepancy exist, including differences in the genetic targeting strategy used and the timing of  tissue analysis 
after Lats1/2 knockout. However, it is also possible that the regulation of  fibrogenesis, and thus the impor-
tance of  (myo)fibroblast YAP and/or TAZ, may be tissue and even context specific. Clearly, future studies 
are required to better understand this complex process.

The biology of fibrogenesis has remained unclear, in part because the transgenic strategies used to target 
matrix production have largely focused on precursor cells that, after injury, differentiate into myofibroblasts, 
the dominant cells responsible for matrix production. Unfortunately, no single marker can be used to identify 
relevant precursor cell populations in different organs. Thus, choosing the myofibroblast precursor population 
to target when aiming to delete genes of interest is critical because it may influence the results obtained. Indeed, 
as alluded to above, differences in the targeting strategy used may account for differences observed between our 
study and others (44, 45). Our goal was to understand the role of myofibroblast YAP and TAZ in the regula-
tion of fibrotic responses across multiple organs, so we chose type 1 collagen promoter–driven Cre transgenic 
mouse lines, reasoning that type 1 collagen is predominantly expressed in myofibroblasts after organ injury. 
Although type 1 collagen is expressed by a variety of other cell types to a lesser degree (46), using this targeting 
strategy, we were able to focus as much as possible on the downstream effector cells (myofibroblasts) to avoid 
missing any relevant precursor cell populations that contribute to myofibroblast generation. We were thus able 
to not only delete but also overactivate myofibroblast YAP and TAZ to study the role of the Hippo pathway in 
myofibroblasts in driving organ fibrosis. This systematic approach demonstrated that myofibroblast YAP/TAZ 
and their upstream Hippo kinase regulators are likely critical in regulating fibrogenesis in multiple tissues after 
injury. Combined with our time course studies demonstrating an early increase in myofibroblast YAP/TAZ 
activity after tissue injury, our results established myofibroblast Hippo pathway inactivation (and subsequent 
activation of YAP/TAZ) as an important pathway driving injury-induced organ fibrosis.

α-SMA (green), TAZ (red), and DAPI (blue). White arrows depict green α-SMA+ cells that have predominantly red YAP or TAZ nuclear staining. White scale 
bar: 10 μm. (D–G) The mRNA levels of the YAP/TAZ-inducible genes (D) Ccn2 and (E) Ccn1 and the fibrosis-associated genes (F) Col1a1 and (G) Col3a1 were 
examined using qPCR of cDNA prepared from whole kidney homogenates. Transcript levels were normalized to the housekeeper transcript Gapdh. One-way 
ANOVA with post hoc Tukey’s test was used for comparisons. Data shown as mean ± SEM. *P < 0.05. d4, 4 days after-IRI. d14, 14 days after IRI.
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Figure 4. Myofibroblast-specific YAP/TAZ deficiency attenuates unilateral ureteral obstruction–induced kidney fibrosis. Myofibroblast-specific YAP/
TAZ-deficient mice (Col1a1-Cre/ERT+/– Yapfl/fl Tazfl/fl) and their WT littermates (Col1a1-Cre/ERT–/– Yapfl/fl Tazfl/fl) were randomized to sham surgery (n = 3 
Col1a1-Cre/ERT+/– Yapfl/fl Tazfl/fl and n = 5 Col1a1-Cre/ERT–/– Yapfl/fl Tazfl/fl) or left-sided unilateral ureteral obstruction (n = 12 Col1a1-Cre/ERT+/– Yapfl/fl Tazfl/fl 
and n = 7 Col1a1-Cre/ERT–/– Yapfl/fl Tazfl/fl). Tamoxifen was administered between days 0 and 6 after surgery to activate expressed Cre recombinase. Left kid-
neys were harvested 7 days after surgery. (A) Kidney sections were stained with antibodies directed against α-smooth muscle actin (α-SMA), YAP, or TAZ, 
and nuclei were counterstained with DAPI to assess for successful YAP and TAZ excision in myofibroblasts. White arrows depict α-SMA+ cells expressing 
YAP. White arrowheads depict α-SMA+ cells without significant YAP expression. Note the lack of red YAP and TAZ staining in myofibroblasts of YAP/
TAZ-KO animals (Col1a1-Cre/ERT+/– Yapfl/fl Tazfl/fl). White scale bar: 10 μm. Kidney sections were next stained with (B) picrosirius red (PSR) to label fibrillar 
collagen, (C) Masson’s trichrome to stain extracellular matrix, or (D) an antibody directed against α-SMA. Black scale bar: 100 μm. One-way ANOVA with 
post hoc Tukey’s test was used for comparisons. Data shown as mean ± SEM. *P < 0.05.
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In the current study, we knocked out both YAP and TAZ from myofibroblasts, based on findings from 
our group and others showing that YAP and TAZ play redundant roles in the regulation of  fibroblast 
responses to TGF-β, a critical profibrotic stimulus, as well as fibroblast activation in general (5, 23, 47). 
Nevertheless, it is possible that YAP or TAZ may play a dominant role in some settings, and so future stud-
ies examining the specific effects of  YAP or TAZ knockout may be useful. It is important to note, however, 
that most published data suggest that YAP and TAZ are regulated by the same pathways and mediate their 
effects primarily through the same TEAD family of  transcription factors. As such, specifically targeting 
YAP or TAZ has proven to be very difficult, and thus most pharmacological strategies under development 
take a combined YAP/TAZ inhibitory approach.

Although our focus in the current study was on myofibroblast YAP and TAZ, the broader roles that 
these two proteins play after tissue injury are complex and still being unraveled. Indeed, several studies 
have shown that in epithelial cells, YAP and/or TAZ are important for proliferative responses after injury, 
suggesting that YAP/TAZ may play an important role in tissue regeneration, rather than fibrosis (48–50). 
In contrast, other studies have suggested that epithelial YAP/TAZ activity is important in driving fibrosis 
(25, 41, 51), at least in part via the secretion of  profibrotic molecules that act in a paracrine fashion on 
neighboring fibroblasts (25). Clearly, YAP and TAZ have multiple and highly nuanced effects, which likely 
depend upon the cell types being studied, as well as the specific settings of  interest. While beyond the scope 
of  the current manuscript, future studies are needed to carefully dissect out the specific roles that YAP and 
TAZ play not only in different cell types but also in different contexts, such as tissue injury, regeneration, 
and/or fibrosis.

In summary, using a wide range of  mouse and human tissues, we demonstrated that inactivation of  
the myofibroblast Hippo pathway and subsequent activation of  its downstream effectors YAP and TAZ are 
critical events in driving fibrosis after injury in multiple different organs. Taken together, our data point to 
myofibroblast YAP/TAZ activation as a potential target for novel antifibrotic therapies, at least in certain 
settings. Given the importance of  fibrosis in the pathogenesis of  multiple chronic diseases (1), these find-
ings could have widespread impact.

Methods

Human kidney biopsy study 1 (RNA-Seq)
We analyzed data from a convenience sample of  18 archived human transplant kidney biopsy samples 
stored at St. Michael’s Hospital. All biopsies were reported in a blinded fashion by a renal pathologist 
according to Banff  Criteria. Interstitial fibrosis scores were reported as follows: ci0 (<5% of  cortex was 
fibrotic), ci1 (5%–25% cortex was fibrotic), ci2 (26%–50% cortex was fibrotic), and ci3 (>50% cortex was 
fibrotic) (52).

RNA extraction, cDNA library preparation, and RNA-Seq data processing. Ten 10 μm thick sections were cut 
from FFPE kidney biopsy blocks or from CryoMatrix-embedded, unfixed, frozen tissue. RNA was extract-
ed using either a QIAGEN RNeasy FFPE kit (catalog 73504) for FFPE tissue or a QIAGEN Mini Plus kit 
(catalog 74134) for fresh frozen tissue. Library preparation was performed using commercial kits (Epicen-
tre, EPI-MRZG12324, and Illumina, 15032615 and 15032619), and cDNA libraries were then prepared 
(Illumina TruSeq RNA sample preparation kit v2, RS-122-2001, or TruSeq Stranded Total RNA Library 
Prep Kit, RS-122-2301 and RS-122-2302). Libraries were then sequenced using an Illumina HiSeq 2000 

Figure 5. Myofibroblast-specific YAP/TAZ deficiency attenuates bleomycin-induced lung and CCl4-induced liver fibrosis. Myofibroblast-specific YAP/
TAZ-deficient mice (Col1a1-Cre/ERT+/– Yapfl/fl Tazfl/fl) and their WT littermates (Col1a1-Cre/ERT–/– Yapfl/fl Tazfl/fl) were randomized to saline or bleomycin 
injections (n = 7 saline Col1a1-Cre/ERT–/– Yapfl/fl Tazfl/fl, n = 4 saline Col1a1-Cre/ERT+/– Yapfl/fl Tazfl/fl, n = 19 bleomycin Col1a1-Cre/ERT–/– Yapfl/fl Tazfl/fl, n = 10 
bleomycin Col1a1-Cre/ERT+/– Yapfl/fl Tazfl/fl). Tamoxifen was administered between days 7 and 13 after saline/bleomycin injection, and lungs were harvest-
ed on day 14. (A) Arterial blood pO2 levels just prior to euthanization. Lung sections were stained with (B) H&E for Ashcroft injury scoring (a measure of 
lung fibrosis), or (C) an antibody directed against type 1 collagen. Scale bar: 100 μm. (D and E) Myofibroblast-specific YAP/TAZ-deficient mice (Col1a1-
Cre/ERT+/– Yapfl/fl Tazfl/fl) and their WT littermates (Col1a1-Cre/ERT–/– Yapfl/fl Tazfl/fl) were randomized to corn oil (n = 8 Col1a1-Cre/ERT–/– Yapfl/fl Tazfl/fl and 
n = 4 Col1a1-Cre/ERT+/– Yapfl/fl Tazfl/fl) or CCl4 injections (n = 12 Col1a1-Cre/ERT–/– Yapfl/fl Tazfl/fl and n = 9 Col1a1-Cre/ERT+/– Yapfl/fl Tazfl/fl). Tamoxifen was 
administered between days 8 and 12 after the initiation of corn oil/CCl4 injections to activate expressed Cre recombinase. Livers were harvested 6 weeks 
after the first corn oil/CCl4 injection. Liver sections were stained with (D) picrosirius red (PSR) to label fibrillar collagen or (E) Masson’s trichrome to stain 
extracellular matrix. Scale bar: 100 μm. One-way ANOVA with post hoc Tukey’s test was used for comparisons. Data shown as mean ± SEM. *P < 0.05. 
pO2, partial pressure of oxygen; BLM, bleomycin.
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Figure 6. Myofibroblast-specific LATS1/2 deficiency augments renal and lung fibrosis. Myofibroblast-specific LATS1/2-deficient mice (Col1a2-Cre/
ERT+/– Lats1fl/fl Lats2fl/fl) and their WT littermates (Col1a2-Cre/ERT–/– Lats1fl/fl Lats2fl/fl) were randomized to sham surgery (n = 6 Col1a2-Cre/ERT–/– Lats1fl/fl  
Lats2fl/fl and n = 4 Col1a2-Cre/ERT+/– Lats1fl/fl Lats2fl/fl) or left-sided unilateral ureteral obstruction (UUO, n = 6 Col1a2-Cre/ERT–/– Lats1fl/fl Lats2fl/fl and n = 6 
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or 3000 machine. The resulting RNA-seq data was processed with our in-house pipeline (53). Data were 
deposited in GEO (accession GSE135327).

Human kidney biopsy study 2 (analysis of YAP and TAZ nuclear localization)
We analyzed 3 archived FFPE human kidney biopsies stored at St. Michael’s Hospital. The 3 for-cause 
biopsies were collected serially from the same transplant kidney, with the first obtained at the time of  
implantation (day 0), the second 9 days after transplant, and the third 2 months after transplant. Interstitial 
fibrosis was quantified as per the Banff  histologic system described above by a blinded pathologist.

RNA-Seq analyses of published data sets
GSVA (54) was performed in R (v3.6.3) using the GSVA package (v1.34.0, default parameters), using 
a recently published Yap transcriptional gene set (27) applied to sample data provided in fragments per 
kilobase of  transcript per million mapped reads (FPKM). GSVA scores were then imported into GraphPad 
Prism (v8.4.3) for further analysis and figure generation. In addition to our own RNA-Seq data derived 
from our human kidney biopsy study 1, we performed GSVA on RNA-Seq data sets derived in relevant 
models of  fibrotic organ injury published by independent groups as described below.

Bulk RNA-Seq data generated from kidneys obtained at multiple time points after surgery in mice with 
IRI or sham-operated mice were obtained from GEO (GSE98622) (33). GSVA scores for the YAP tran-
scriptional signature described above were then calculated.

Single-cell RNA-Seq data from mouse lung at baseline and 21 days after bleomycin injury were obtained 
from GEO (GSE104154) (30). UMI counts of  FACS-sorted myofibroblasts [EPCAM–CD31–CD45–TBX4 
(TdTomato)+ αSMA (GFP)+] were extracted using the provided annotations, log-normalized in Seurat 
using a scale factor of  10,000, and scaled on all genes.

Single-cell RNA-Seq data from mouse liver at baseline and 6 weeks after CCl4 injury were obtained 
from GEO (GSE137720) (31). Raw counts were imported into R (v3.6.3), and barcodes were retained if  a 
minimum of  500 features had nonzero counts and less than 10% of  counts were from mitochondrial genes. 
Data were subsequently analyzed using Seurat (v3.1.5) (55). Similarly, single-cell RNA-Seq data generated 
from liver tissue of  mice with hepatic fibrosis (CCL4-induced) or untreated controls were obtained from 
GEO (GSE132662) (32). Cells with less than 1000 transcripts, less than 500 genes, and a mitochondrial 
content greater than 15% were excluded. Hepatic stellate cells and myofibroblasts were identified using 
marker genes supplied in the manuscript, and these populations were subsetted to a smaller object and sub-
jected to GSVA for enriched YAP transcriptional signature genes in fibrotic versus control livers.

Single-cell RNA-Seq data derived from human lung tissue of  20 pulmonary fibrosis and 10 nonfi-
brotic lungs were obtained from GEO (GSE135893) (28). Using Seurat (v3.2.1), cells with less than 1000 
transcripts, less than 1350 genes, and a mitochondrial content greater than 25% were excluded. A smaller 
object was generated from the 4 identified fibroblast populations and subjected to GSVA for enriched YAP 
transcriptional signature genes in fibrotic versus control lungs.

In each instance, GSVA was performed on remaining cells using GSVA (v1.34.0, default parameters) as 
described above. Density plots of  GSVA scores for baseline and postinjury myofibroblasts were produced 
using the R package ggplot2 (v3.3.2), and score distributions were compared by 2-tailed Welch’s t test using 
the base R t.test() function, or the moderated 2-tailed t test computed by Limma (56).

Animal experiments
Mice were kept on a 12-hour light/12-hour dark cycle with ad libitum access to food and water. WT 
C57BL/6 mice were purchased from Charles River Laboratories (stock no. 027). Two strains of  tamox-
ifen-inducible myofibroblast-specific YAP/TAZ-deficient mice were generated for these studies. Yapfl/fl 

Col1a2-Cre/ERT+/– Lats1fl/fl Lats2fl/fl). Tamoxifen was administered between days 0 and 6 after surgery to activate expressed Cre recombinase. Left kidneys 
were harvested 7 days after surgery. Kidney sections were also stained with (A) picrosirius red (PSR) to label fibrillar collagen and antibodies directed 
against (B) type 1 collagen or (C) α-smooth muscle actin. (D and E) Myofibroblast-specific LATS1/2-deficient mice (Col1a2-Cre/ERT+/– Lats1fl/fl Lats2fl/fl) and 
their WT littermates (Col1a2-Cre/ERT–/– Lats1fl/fl Lats2fl/fl) were randomized to saline or bleomycin injections (n = 4 saline Col1a2-Cre/ERT–/– Lats1fl/fl Lats2fl/fl, 
n = 4 saline Col1a2-Cre/ERT+/– Lats1fl/fl Lats2fl/fl, n = 12 bleomycin Col1a2-Cre/ERT–/– Lats1fl/fl Lats2fl/fl, n = 9, bleomycin Col1a2-Cre/ERT+/– Lats1fl/fl Lats2fl/fl). 
Tamoxifen was administered between days 7 and 13 after saline/bleomycin injection, and lungs harvested on day 14. Lung sections were stained with (D) 
PSR to label fibrillar collagen or (E) an antibody directed against type 1 collagen. Scale bar: 100 μm. One-way ANOVA with post hoc Tukey’s test was used 
for comparisons. Data shown as mean ± SEM. *P < 0.05. BLM, bleomycin. 
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Tazfl/fl mice (on a mixed background) (57) were crossed with C57BL/6J mice containing a tamoxifen-in-
ducible Cre recombinase expressed under the control of  either the proα1(1) collagen promoter (Col1a1-
Cre/ERT, The Jackson Laboratory, stock no. 016241) or the proα2(I) collagen promoter (Col1a2-Cre/
ERT, The Jackson Laboratory, stock no. 029567). Breeding was continued to generate Col1a1-Cre/
ERT+/– Yapfl/fl Tazfl/fl mice and Col1a2-Cre/ERT+/– Yapfl/fl Tazfl/fl mice and their corresponding WT lit-
termate Col1a1-Cre/ERT–/– Yapfl/fl Tazfl/fl and Col1a2-Cre/ERT–/– Yapfl/fl Tazfl/fl controls. Col1a2-Cre/
ERT+/– ROSA26 mTmG+/– Yapfl/fl Tazfl/fl mice (n = 3) and their WT reporter-labeled controls (Col1a2-
Cre/ERT+/– ROSA26 mTmG+/– mice, n = 3) were also generated to document myofibroblast-specific 
YAP knockout. To explore the effects of  YAP/TAZ activation, Lats1fl/fl Lats2fl/fl mice (on a mixed back-
ground, a gift of  James Martin, Baylor College of  Medicine, Houston, Texas, USA) (44) were crossed 
with mice containing the tamoxifen-inducible Col1a2-Cre/ERT promoter to generate Col1a2-Cre/
ERT+/– Lats1fl/fl Lats2fl/fl mice as well as their WT littermate Col1a2-Cre/ERT–/– Lats1fl/fl Lats2fl/fl controls.

UUO. Six- to eight-week-old mice underwent sham or left-sided UUO surgery. Briefly, a left-sided flank 
incision was made in anesthetized mice, and the left kidney and ureter were identified. The left ureter was 
then obstructed with two 4-0 silk suture ties just distal to the renal pelvis. Seven days after surgery, mice 
were euthanized and the left kidneys harvested.

IRI of  the kidney. C57BL/6 mice (age 6–8 weeks old, n = 8) underwent left-sided unilateral IRI sur-
gery as per our previously published protocols (29). During the entire procedure, the core temperature of  
the mice was maintained between 34°C and 36°C with a heating pad. After induction of  anesthesia with 
inhaled 2% isoflurane, a left-sided flank incision was made, followed by exposure of  the pedicle of  the 
left kidney. Hilar vessels were cross-clamped for 45 minutes. Clamps were then removed, allowing the left 
kidney to reperfuse. Sham-operated mice (n = 4) served as healthy controls. Ambient postoperative air 
temperature was maintained between 30°C and 32°C until mice had fully recovered. Mice were euthanized 
at various time points after surgery (4 days after IRI, n = 4; 14 days after IRI, n = 4; 14 days after sham 
surgery, n = 4), and left kidneys were harvested.

Bleomycin-induced lung fibrosis. Twelve-week-old male mice were anesthetized with isoflurane and then 
received a single intratracheal injection of  either saline or bleomycin (0.05 U, Sigma-Aldrich) dissolved in 
saline. Mice were followed for 14–21 days and then euthanized. Arterial blood oxygenation was measured 
using a blood gas machine just prior to euthanization (ABL825, Radiometer).

CCl4-induced liver fibrosis. Eight-week-old male mice received twice weekly i.p. injections of  corn oil or 
CCl4 dissolved in corn oil (1:10 dilution v/v in corn oil, 2 μL/g body weight, Sigma-Aldrich). Mice were 
followed for 6 weeks and then euthanized.

Tissue collection, preparation, and histochemistry
At study end, the kidneys, lungs, and/or livers of  all mice were harvested. Samples of  each kidney were 
immersion fixed in 10% neutral buffered formalin, embedded in cryostat matrix (Tissue-Tek, VWR), 
and/or stored in liquid nitrogen. Human and mouse sections were stained with H&E (Leica Biosyste-
ms), picrosirius red (Sigma-Aldrich) to label fibrillar collagen, or Masson’s trichrome (Sigma-Aldrich) 
to stain fibrotic matrix. Ashcroft scoring of  lung injury/fibrosis was performed on H&E-stained sec-
tions as previously described (42).

Immunofluorescence staining
FFPE kidney sections were stained with an Alexa Fluor 488–conjugated antibody directed against 
α-SMA (184675, Abcam) and an antibody directed against YAP (14074, Cell Signaling Technology) 
or TAZ (83669, Cell Signaling Technology). Primary antibody was detected with CF647-conjugated 
donkey anti-rabbit IgG (20047, Biotium) followed by nuclear counterstaining with DAPI. Images were 
taken using a Zeiss LSM 700 inverted laser scanning confocal microscope (58, 59). The percentage of  
cells with predominantly nuclear YAP or TAZ was calculated as per our previously published proto-
cols (24, 60). Briefly, cells were manually categorized by a blinded observer as having YAP or TAZ 
localized predominantly in the nucleus, predominantly in the cytoplasm, or neither (24, 60). A mini-
mum of  50 cells per section were examined per replicate using a modified published protocol (60). In 
some experiments, YAP staining intensity was measured using Fiji (NIH).
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IHC
Formalin-fixed tissues were embedded in paraffin and sectioned before staining with picrosirius red (Sig-
ma-Aldrich) or antibodies against α-SMA (M085129-2, Dako) and type I collagen (1310-01, Southern 
Biotechnology) (24, 61–63). Four random, nonoverlapping 20× cortical images were taken by a blinded 
observer using an upright Olympus light microscope, and then analyzed in a blinded fashion using Aperio 
ImageScope software as previously described (24, 61–63).

Quantitative reverse-transcription PCR
RNA was collected from mouse kidney and lung tissues. The RNA was then reverse transcribed, and lev-
els of  Col1a1, Col3a1, Col4a1, Acta2, Ankrd1, Ccn2, Ccn1, Serpine1, and/or Gapdh were quantified. Primer 
sequences are summarized in Supplemental Table 1. Experiments were performed in triplicate. Data anal-
yses were performed using the Applied Biosystems Comparative Ct method. All values were referenced to 
the mRNA transcript levels of  the housekeeper gene Gapdh.

Hydroxyproline content measurement
Hydroxyproline content was measured using a commercial assay kit (K226-110, Biovision), following a 
slightly modified version of  the manufacturer’s protocol (42). Briefly, tissue was homogenized (10 mg per 
100 μL water) and hydrolyzed with the addition of  100 μL of  10 N concentrated NaOH to 100 μL of  the 
sample followed by heating at 120°C for 1 hour. After alkaline hydrolysis, the vials were placed on ice to 
cool. Then, 100 μL of  10 N concentrated HCl was added to neutralize residual NaOH. The samples were 
then vortexed followed by centrifugation at 10,000g for 5 minutes to pellet insoluble debris. Supernatant 
was then heated at 65°C to enable evaporation, and then chloramine-T concentrate was added to the wells 
and incubated at room temperature for 20 minutes. To visualize hydroxyproline concentration, 50 μL of  
developer solution was added to each well and incubated at 37°C for 5 minutes, followed by addition of  50 
μL of  DMAB concentrate solution and incubation at 65°C for 45 minutes. Sample absorbance was mea-
sured at 560 nm using a SpectraMax M5e Multimode plate reader (Molecular Devices). A standard curve 
was generated using known concentrations of  trans-4-hydroxyl-L-proline. Hydroxyproline concentrations 
from experimental samples were then calculated and normalized to the total amount of  soluble protein 
isolated from 1 mg of  liver tissue.

Atomic force microscopy force spectroscopy
Cell stiffness evaluation was carried out on frozen kidney sections at different time points, using a slightly 
modified version of  our previously published protocol (64). The sections were thawed at room temperature 
for at least 30 minutes, and then were either fixed with 4% paraformaldehyde for 4 minutes at room tempera-
ture or not fixed. In order to identify α-SMA+ myofibroblasts, sections were stained with an antibody directed 
against α-SMA as described above. A single force curve was acquired per interstitial α-SMA+ or α-SMA– cell, 
with a minimum of 15 (for sham animals) and 50 (for UUO animals) randomly chosen cells per section. 
Every curve was performed by positioning the tip above the cell nucleus. The indentation depth was set at 
500 nm in order to measure the cell’s mechanical properties and to reduce the contribution of  the underlying 
surface. The atomic force microscopy measurements were performed using a spherical tip (diameter 20 μm) 
attached to a silicon nitride cantilever (elastic constant 0.038 N/m and the nominal resonance frequency of  10 
kHz, NovaScan). Force-curves were performed at room temperature in the liquid phase using a commercial 
Bruker Resolve atomic force microscope combined with an inverted optical microscope. Cantilever deflection 
and z-piezo movements were detected at each indentation step to produce a force-displacement curve by 
knowing the cantilever spring constant (65). Cell stiffness was determined by fitting the data with a Hertzian 
model of  surface indentation (66) as we performed previously (64).

Statistics
Statistical analyses of  RNA-Seq data sets are described above. A minimum of  3 independent experi-
ments were performed for all in vitro studies. Data presented are mean ± SEM. Between-group differ-
ences were measured using a 2-tailed Student’s t test or 1-way ANOVA with post hoc Tukey’s analysis 
where appropriate. Statistical analysis was performed using GraphPad Prism for Mac 6.0. P < 0.05 was 
considered significant.
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Study approval
The human kidney biopsy studies were approved by the St. Michael’s Hospital Research Ethics Board 
(REB 16-118). The requirement for written informed consent was waived because the study met the criteria 
for waiver of  consent as outlined in the Tri-Council Policy Statement 2 Guidelines (Canada) and Personal 
Health Information Protection Act (Ontario). All animal studies were approved by the St. Michael’s Hospi-
tal Animal Ethics Committee and conformed to the Canadian Council on Animal Care guidelines.

Data availability
RNA-Seq data are deposited in NCBI’s GEO (GSE135327).
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