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Introduction
SARS-CoV-2, the virus that causes COVID-19, established itself  worldwide within 2 months of  its emer-
gence in Wuhan, China (1). As of  December 23, 2020, over 78 million confirmed COVID-19 cases and 1.7 
million deaths have been reported (2). The enormous health and economic impacts of  this virus have led to 
considerable interest in understanding its origin, spread, and evolution. Generation and analysis of  patho-
gen genomic data have been key components of  this research (3–8) and provide critical insights into not 
only the emergence and spread of  SARS-CoV-2 but also the dynamics of  emerging infections in general.

In the United States, diagnostic capacity for SARS-CoV-2 was limited until early March 2020 due to reg-
ulatory challenges associated with limited Emergency Use Authorization (EUA) for laboratory-developed 
testing. Retrospective analyses of  patient samples using genomic and serological methods now suggests that 
community transmission was occurring in major US cities as early as late January or early February 2020 
(9–11). Ongoing work has continued to deepen our understanding of  SARS-CoV-2, including use of  patho-
gen sequence data to help reconstruct the transmission of  the virus into and around the United States (12).

Coronaviruses, including SARS-CoV-2, possess proofreading activity that limits genetic variability 
(13). This genome replication feature, combined with rapid spread and limited immunity during the early 
phase of  the pandemic, has likely limited evolutionary pressure and contributed to the limited genetic 

The early COVID-19 pandemic was characterized by rapid global spread. In Maryland and 
Washington, DC, United States, more than 2500 cases were reported within 3 weeks of the first 
COVID-19 detection in March 2020. We aimed to use genomic sequencing to understand the initial 
spread of SARS-CoV-2 — the virus that causes COVID-19 — in the region. We analyzed 620 samples 
collected from the Johns Hopkins Health System during March 11–31, 2020, comprising 28.6% of the 
total cases in Maryland and Washington, DC. From these samples, we generated 114 complete viral 
genomes. Analysis of these genomes alongside a subsampling of over 1000 previously published 
sequences showed that the diversity in this region rivaled global SARS-CoV-2 genetic diversity at 
that time and that the sequences belong to all of the major globally circulating lineages, suggesting 
multiple introductions into the region. We also analyzed these regional SARS-CoV-2 genomes 
alongside detailed clinical metadata and found that clinically severe cases had viral genomes 
belonging to all major viral lineages. We conclude that efforts to control local spread of the virus 
were likely confounded by the number of introductions into the region early in the epidemic and the 
interconnectedness of the region as a whole.
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diversity observed in SARS-CoV-2 sequences. Efforts to describe this diversity during the early phase of  the 
pandemic have resulted in multiple clade (or lineage) designation systems including those used by the Glob-
al Information Sharing of  All Influenza Data (GISAID), the NextStrain platform, and COVID-19 Genom-
ics UK consortium (14–16). These approaches are intended to be dynamic and are updated as new diversity 
is observed in the global sequence data. For example, NextStrain clade designations separate viruses that 
originated in China in 2019 (Clade 19) from those that were later introduced into Europe in early 2020 
(Clade 20) (15). Similarly, the Pango nomenclature system provides a dynamic nomenclature system that is 
updated based on newly observed viral lineages (14). Importantly, SARS-CoV-2 clade designations are only 
intended to identify subgroups of  virus sequences that share common genetic features, and further in vitro 
or clinical characterization is required to identify functional differences between clades.

Using sequence data to investigate relationships between virus genetics and patient clinical outcome 
often relies on specimen repositories or agreements with sample collection facilities that provide limited 
access to patient demographic and clinical information. Limited access is due to both logistical challenges 
in obtaining this data and ethical concerns around patient privacy (17). Therefore, although research efforts 
have produced copious amounts of  valuable genetic data and insights into viral circulation (12, 18), studies 
linking pathogen genetics to demographics, disease severity, and other clinical outcomes are less frequent. 
By leveraging existing internal networks and established research protocols, research groups within large 
health systems can fill this gap by rapidly creating and analyzing data sets that link pathogen genomics with 
clinical and demographic outcomes.

To gain insight into regional viral spread and potential associations between pathogen genetics and clin-
ical outcomes, we performed whole genome sequencing of  the SARS-CoV-2 virus from clinical samples in 
the Johns Hopkins Health System (JHHS), which is centered in Baltimore, Maryland, and spans the entire 
Baltimore–Washington metropolitan area. For this work, we primarily used the Oxford Nanopore sequenc-
ing platform, which has been increasingly used during early outbreak investigations to understand emerging 
pathogens (19, 20). This portable platform allowed us to begin sequencing rapidly during an ongoing pan-
demic. To establish SARS-CoV-2 sequencing capacity within the JHHS, we validated and improved upon 
widely used bioinformatic pipelines for identifying single nucleotide polymorphisms from Oxford Nanopore 
sequencing data, making use of  laboratory controls and sequence validation on the Illumina platform. Here, 
we explore the relationship between local sequences and those from the broader national and global epidem-
ic and look for possible associations between clade structure and clinical outcomes.

Results
Characteristics of  SARS-CoV-2 identification in the region. The Baltimore–Washington metropolitan area spans 
Maryland, Washington, DC, and Northern Virginia, and is an area of  high domestic and international 
transit as well as geopolitical importance. The JHHS is spread throughout the region, including 39 hospi-
tals and clinics throughout Maryland and Washington, DC, with a patient population that also includes 
residents of  Northern Virginia. The first detection of  SARS-CoV-2 in the region was reported on March 
5, 2020, by the Maryland Department of  Health, and a State of  Emergency was immediately declared in 
Maryland (21). Two days later cases were reported by the public health departments in Virginia and Wash-
ington, DC. On March 23rd, the Maryland state government instituted regional closure of  nonessential 
businesses, and a stay-at-home order followed on March 30th (Figure 1A).

Molecular diagnosis of  SARS-CoV-2 at the JHH Medical Microbiology laboratory began March 
11th, using the RealStar SARS-CoV-2 RT-PCR kit from Altona Diagnostics, which was granted FDA 
EUA after analytical validation (22). The Altona test targets both lineage B betacoronavirus E genes and 
the SARS-CoV-2 S gene. In the last week of  March, the laboratory also began the use of  the Cepheid 
Xpert Xpress SARS-CoV-2, an assay for which the FDA has granted an EUA and that targets the E 
and N2 genes. The laboratory evaluated a total of  5913 nasopharyngeal swabs and confirmed 620 
COVID-19–positive patients (10.4% overall positivity rate) (Supplemental Table 1; supplemental mate-
rial available online with this article; https://doi.org/10.1172/jci.insight.144350DS1). In total, 603 
positive diagnoses were made with the Altona assay in this time period, and 17 positive diagnoses were 
made with the Cepheid Xpert Xpress SARS-CoV-2 assay. This represented 28.6% of  the 2155 confirmed 
cases in Maryland and Washington, DC, during this period (Figure 1A).

We found that the cycle threshold (CT) value of SARS-CoV-2 diagnostic testing performed using the Alto-
na assay was weakly associated with self-reported days from symptom onset (Spearman’s correlation; P = 0.35) 

https://doi.org/10.1172/jci.insight.144350
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(Figure 1B). The majority of patients diagnosed were older than 30 years (85%; Figure 1C). Gender distribu-
tion was roughly equal within the patient population (49% female, 51% male). Patient home residence was 
captured for 592 of 620 positive tests, with 82% (n = 485), indicating a home address in Maryland, 14% (n = 
80) in Washington, DC, and 1% (n = ≤5) in Virginia. The first 3 digits of patient home zip codes were used to 
understand the geographic distribution of patients from the Baltimore–Washington metropolitan area (Supple-
mental Figure 1). The remaining 23 patients (4%) listed primary residences in 11 different states. A complete 
breakdown of patient demographics and clinical metadata are available in Supplemental Table 2.

Sequenced samples and characteristics of  the virus. We performed whole genome sequencing on 143 
samples from unique patients using residual RNA following the diagnostic PCR (Table 1). Samples 
were sequenced in 2 phases, with the first phase enriched for patients admitted to the ICU (55 samples 
collected March 11–21, containing 14 patients admitted to the ICU), and the second capturing as many 
samples as possible for sequencing, irrespective of  disease severity (of  88 samples collected March 
13–31, 10 were from patients admitted to the ICU).

We performed multiplexed pooled amplicon sequencing as described by the ARTIC network (23) on 
Oxford Nanopore instruments (GridION, MinION). From the 143 sequenced samples, we generated 114 
complete genomes (76%), where complete genomes are defined as having at least 27,000 (out of  29,903) 
unambiguous nucleotides (see Methods). For validation, a subset of  31 samples were also sequenced on an 
Illumina MiSeq using the same amplicons (Supplemental Table 3). Sequenced samples ranged in CT from 
14 to 38. Of  the samples with CT values less than 30, 86% produced complete genomes, compared with 
only 39% of  complete genomes from samples with higher CT values (Figure 2A). This is consistent with 
other SARS-CoV-2 sequencing studies using the Oxford Nanopore platform (3, 24). We found no bias in 
our ability to generate complete genomes across key metadata categories, such as patient age, patient sex, 
and sample collection date (Figure 2, B–D).

Figure 1. COVID-19 diagnostic response during initial SARS-CoV-2 surveillance in the JHHS. (A) Cumulative number of positive tests in Washington, DC, 
and the state of Maryland (white bars) and within the JHHS (black bars). (B) SARS-CoV-2 RT-PCR CT value (S-gene) versus days from patient symptom 
onset. Data fit with LOESS curve (white regression line). Two outliers (days from onset = 5 weeks, CT value = 30 and days from onset = 28 days, CT value = 
31) are not shown. (C) Age distribution of SARS-CoV-2 patients within the JHHS. JHHS, Johns Hopkins Health System; CT, threshold cycle.
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The 114 complete genomes (from 114 distinct individuals) correspond to approximately 18% of JHHS-con-
firmed cases in March. Incomplete genomes were primarily due to amplicon dropout (26 of 34 failed samples), 
leading to stretches of ambiguous base calls across the genome that are also observed — to a lesser extent — in 
our complete sequences (Figure 2E). Despite these ambiguities, SARS-CoV-2 sequences can be grouped into 
clusters (or phylogenetic clades) based on a small number of variant sites in high-quality regions.

The 114 sequences were on average 98.6% complete, and we identified a total of  153 unique, 
unambiguous single nucleotide variants across all sequences (54 synonymous variants, 91 nonsynony-
mous variants, 8 noncoding variants) compared with the Wuhan-Hu-1 SARS-CoV-2 reference genome 
(accession no. MN908947.3), with a range of  2–14 variants per genome (Supplemental Table 4). In 
some samples, we observed a previously identified a cluster of  3 nucleotide mutations starting at posi-
tion 28,881 that always occur together, resulting in 2 amino acid changes. Within the 114 complete 
genomes, 20 had 1 or 2 mixed sites (25%–75% alternate allele frequency), which we replaced with 
IUPAC ambiguity codes (25) because we were interested in consensus genomes for this study. Of  21 of  
these non-N ambiguities, 12 were at putative C-to-T mutations. We identified 5 clusters of  sequences 
based on their polymorphisms, which correspond to phylogenetic clades (Figure 2E). Using the Pan-
go nomenclature system developed by Rambaut et al. (14), we determined that the majority of  our 
sequences (80%) belong to the B.1 lineage (Figure 2F and Supplemental Table 3). Within the estab-
lished lineages (as of  November 13, 2020), we identified 5 small groups of  sequences from our data 
set (3–7 sequences per group) that share 2 or more additional single nucleotide variants (Supplemental 
Figure 2 and Supplemental Table 3).

Variant validation. We developed a rigorous bioinformatics pipeline to validate variant calls used to 
identify lineages and generally improve the quality of  consensus genomes used for downstream analy-
ses. The Oxford Nanopore platform has been widely used to generate SARS-CoV-2 data worldwide (24, 
26, 27), but known issues identifying bases in low-complexity regions (28) may confound these data. To 
detect and correct possible errors, we first compared the results from multiple variant callers (Medaka, 
Nanopolish and a naive Samtools base caller; refs. 29, 30) and found Nanopolish to be most reliable for 
SARS-CoV-2 data, though our pipeline automatically calls variants with multiple callers and reports any 
discrepancies between them (29).

We also validated variants by employing negative controls (NTCs) to eliminate data with any evidence 
of  contamination (see Methods) and by resequencing 31 of  our 114 samples on the Illumina platform. 
Of  the 280 consensus variants (including Ns) identified in these 31 samples using the Oxford Nanopore 
platform, all but 1 were validated by Illumina data. Looking more closely at allele frequencies, 251 sites 
had variant allele frequency greater than 75% in both technologies, whereas 28 sites had greater than 
75% allele frequency in 1 technology but not the other. In every case, this allele frequency discrepancy 
occurred because of  base calling issues in Oxford Nanopore reads in homopolymer regions. Over half  of  
all homopolymer issues occurred at position 3037, which becomes a 5-nucleotide T-homopolymer and has 
previously (31) been identified as a likely problematic site (Supplemental Figure 3 and Supplemental Figure 
4A). The single mismatched variant is in a low-sequence complexity region (position 27,673) and was at 
mixed frequency in Oxford Nanopore data (45%) and 100% frequency in Illumina. The low complexity of  
this region may have led to incorrect base calling in 1 of  the 2 platforms (we also note that only 1 sample in 
our full data set has a variant at this site). However, the strong concordance between Oxford Nanopore and 
Illumina data at all other sites allows us to have high confidence in our sequencing data after accounting for 
homopolymer issues supported by other recent work (32).

In addition to base calling issues in homopolymeric regions, we also observed a strand-specific bias 
to Oxford Nanopore sequencing at some sites (Supplemental Figure 4B). This bias can occur when the 
sequence context is more difficult to base call in one direction, and is corrected in our pipeline by requiring 
that putative variant alleles are found on reads in both directions. It should be noted that both Nanopolish 
and Medaka consensus variant callers generate correct calls with sufficient coverage from both strands and 
this is only an issue if  a significant imbalance in strand coverage arises.

Overall, we were able to show that known Oxford Nanopore issues (28, 32) do not affect SARS-CoV-2 
lineage assignments, and we used our analysis to systematically correct common types of  ambiguities (e.g., 
due to strand bias) in our bioinformatics pipeline, thus increasing the quality and completeness of  our con-
sensus genomes. We also note that the ambiguous base calls observed in most of  our samples at positions 
1001, 24981, and 24982 were due to similar issues in homopolymeric regions (Figure 2E, dark blue).

https://doi.org/10.1172/jci.insight.144350
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Clinical correlates to viral genomics. We performed in-depth chart reviews for all patients with samples select-
ed for sequencing to evaluate potential relationships between the sequence of  the virus and disease presen-
tation. These chart reviews captured patient data including comorbidities, symptoms, and disease severity 
(Supplemental Table 2). We also looked for likely local transmission events, identified by the absence of  
reported travel in the 3 weeks prior to diagnosis, as well as likely travel-related importations from locations 
with known outbreaks in the same time period. In total, 32 (22%) had potential travel exposure from locations 
with early outbreaks, including the United Kingdom, California, Colorado, New York, and Idaho (travel 
history; Figure 3B), and 66 (46%) of  patients reported having been potentially exposed in a high-risk scenario 
(Known COVID contact; Figure 3B). The 111 (78%) individuals that contracted the virus without reported 
travel history suggest that community transmission was occurring at this early stage of  the pandemic.

Similar to larger studies (24), we observed a broad distribution of  patient outcomes across the full diver-
sity of  SARS-CoV-2 mutations. We observed that severe cases, defined as admission to the ICU (including 
patients requiring ventilator support), had viral genomes spread throughout the phylogenetic tree and that 
belonged to each of  the major SARS-CoV-2 lineages (A, A.1, B, B.1, B.1.1, B.1.2) observed globally (Figure 
3A). Similarly, patient phenotypes including sex, race, recent travel, symptoms, and comorbidities were rep-
resented across these lineages, suggesting that susceptibility was independent of  virus lineage (Figure 3B).

The widely examined mutation in the viral spike protein (D614G) has been proposed to have an effect 
on virus transmission (33–35). This mutation is one of  the differentiators of  the B.1 lineage (the A lineage 
and B lineages outside of  B.1 and its sublineages do not have the mutation). In our data set, a similar pro-
portion of  patients infected with virus with and without the mutation had severe disease, again defined as 
admission to the ICU (21.7% vs. 20.2%; P = 0.87). However, our sample size of  114 is much smaller than 

Table 1. Sequenced sample key metadata

Variable Value Sequenced samples (n = 143)

Age

<30 12 (8%)
30–49 60 (42%)
50–69 53 (37%)

70+ 18 (13%)

Sex
Female 58 (41%)

Male 82 (57%)
Unknown 3 (2%)

Race
Black 58 (41%)
White 62 (43%)
Other 23 (16%)

Lung diagnosis
No 112 (78%)
Yes 19 (13%)

Unknown 12 (8%)

Cardiac diagnosis
No 88 (62%)
Yes 43 (30%)

Unknown 12 (8%)

Abnormal chest x-ray
No 102 (71%)
Yes 36 (25%)

Unknown 5 (3%)

Diabetes
No 108 (76%)
Yes 23 (16%)

Unknown 12 (8%)

Immunocompromised
No 122 (85%)
Yes 9 (6%)

Unknown 12 (8%)

Obese
No 112 (78%)
Yes 19 (13%)

Unknown 12 (8%)

See Supplemental Table 2 for complete metadata. “Other” includes < 10 each of American Indian/Alaska Native, 
Hispanic ethnicity (not otherwise specified as Black or White), other race not specified, or unknown.

https://doi.org/10.1172/jci.insight.144350
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the 301 per lineage (B.1 vs. other) that would be needed to detect a 10% difference in ICU admission rates. 
Thus, we are underpowered to show significant correlations between viral genome mutations and disease 
severity. That said, the diversity of  clinical symptoms and patient outcomes observed in lineages spanning 
the global phylogenetic tree suggests that viral mutations are not the main driver of  clinical presentation, as 
has been observed in larger studies with more power to detect correlations (36, 37).

Evaluation of  regional and global SARS-CoV-2 genetic diversity. We compared our sequences from the 
Maryland and Washington, DC, region with others from around the world to better understand how 
the virus entered and spread within the region early in the outbreak. We performed phylogenetic anal-
ysis using JHHS-generated sequences and a globally representative reference data set containing all 
published sequences collected in Maryland, Washington, DC, and Virginia through the end of  March 
2020 (Figure 4A and Supplemental Table 6). We see that sequences from this region fall throughout the 
phylogenetic tree, and belong to both the major A and B lineages, as well as major global sublineages 
A.1, B.1, B.1.1, and B.1.2 (we defined major lineages as lineages or sublineages occurring in >5% of  our 
global data set, see Methods). Bootstrap values throughout the tree are low (Supplemental Figure 6) due 
to minimal accumulated diversity early in the outbreak, but the structure of  the tree suggests there were 
likely 5 or more separate introductions during the first few weeks. Within each observed lineage, we see 
groups of  highly similar or even identical sequences (Figure 2E), suggesting that community transmis-
sion followed the initial introductions.

Figure 2. SARS-CoV-2 samples selected for whole genome sequencing. (A–D) Distribution of CT value (A), age (B), sex (C), and collection date (D) for 
specimens selected for whole genome sequencing (white bars), and specimens that produced complete genomes (black bars). Only specimens with known 
values are included in each plot. (E) Mutations across the SARS-CoV-2 genome in all 114 complete genomes (rows), binned into 60-nucleotide windows. 
Red, single nucleotide variant; light blue, base masked as N due to amplicon dropout; and dark blue, ambiguous base (N) due to variant-calling issues in 
homopolymer regions. Rows are clustered by Hamming distance between sequences and colored by Pango lineage (see Figure 3). (F) Count of complete 
genomes (out of 114) with a variant at each site. Key lineage-defining mutations are labeled. CT, threshold cycle.
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We also looked specifically at viral genetic diversity within the Baltimore–Washington metropolitan 
area compared with the total genetic diversity observed in other regions in the United States and around the 
world. We found that the distribution of  and maximum average pairwise viral diversity observed between 
sequences in the JHHS Maryland data set were comparable with that of  global sequences (JHHS Maryland 
maximum pairwise diversity = substitutions per site; global subsampling =; see also Supplemental Table 6 
and Supplemental Table 7), concordant with our observation that regional sequences belong to all major 
globally circulating clades (Figure 4B and Supplemental Figure 5). This observation may reflect the nation-
al and international connectivity of  the entire greater Washington, DC, area, as well as the travel patterns 
of  individuals in this region, which includes 2 major metropolitan areas and 3 international airports.

Even within Maryland, the JHHS data set (JHHS-MD) had higher mean pairwise genetic distance 
than other data from the state (MD other). Other published sequences from Maryland were submitted by 
public health laboratories, and lower genetic distances may reflect sequencing of  connected clusters of  cas-
es during outbreak investigation. The average pairwise genetic distance is lower in other parts of  the region 
(Washington, DC, and Virginia) than in Maryland, though it is clear that there are sequences from multiple 
lineages present in both locations. It is unclear if  the lower observed average distance in both JHHS and 

Figure 3. JHHS sequences and patient outcome. (A) Maximum likelihood tree of subsampled SARS-CoV-2 global data set and all 114 sequences generated in 
this study. Ambulatory (blue) includes all patients with no known admission to the hospital. Hospital admission (light red) includes admitted patients with no 
known admission to the ICU, including patients administered oxygen. (B) Clinical metadata and virus lineage. Each column represents 1 of the 114 patients with 
virus sequenced in this study, and columns are grouped by disposition within each lineage. Unless otherwise specified: black, yes; white, no; gray, unknown. 
Disposition: black, still in hospital or deceased as of May 15, 2020; dark gray, discharged; and white, never admitted. Race: black, Black; white, White; gray, 
other. “Other” includes < 10 each of American Indian/Alaska Native, Hispanic ethnicity (not otherwise specified as Black or White), other race not specified, 
or unknown. Sex: black, female; white, male. Enrollment criteria (top down): Fever, cough, and shortness of breath. Symptoms (top down): body ache, GI. 
Comorbidities (top down): cardiac disease, lung disease, diabetes, obese, alcohol, history of smoking (current and former smokers), and immunocompromised. 
Outcome (top down): hospital admission, supplementary oxygen, ICU admission, and ventilator administration. JHHS, Johns Hopkins Health System.
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other sequences from Washington, DC, is a reflection of  movement patterns of  individuals within that 
nearby area or simply lower sample size (only 32 sequences from Washington, DC, are in our data set, com-
pared with 82 total sequences from Maryland). Published sequences collected in Virginia suggest its genetic 
diversity falls between that of  Maryland and Washington, DC; but Virginia is a large state, and without 
more detailed location information for these sequences, it is difficult to determine if  the sequences truly 
represent the diversity circulating in the state as a whole (Figure 4B and Supplemental Figure 5).

Examining diversity from other US states that experienced outbreaks early in the epidemic, we see that 
the distribution of  viral diversity in Maryland and Washington, DC, looked very different from diversity 
in states such as Louisiana and Idaho, which show very low mean genetic diversity during this period. 
This could be due to sampling of  specific clusters of  cases as described above (e.g., cases from a ski resort 

Figure 4. Geographical context of sequences from the Baltimore–Washington metropolitan area. (A) Maximum likelihood tree. Filled tips 
belong to sequences generated in this study. Major phylogenetic lineages (defined as lineages from the Pango nomenclature system (14) found in 
greater than 5% of samples in our subsampled global data set) are indicated by color blocks and labeled. (B) Evolutionary divergence in geographic 
groups. Violin plots represent the distribution of pairwise genetic distances between all sequences for samples collected in each listed geographic 
group. Colors are as in A, with filled violins containing sequences from this study. Black vertical lines depict the mean pairwise genetic distance 
between all samples in each regional group. (C) Map of the Baltimore–Washington metropolitan area. The number of sequences in this study with 
home locations in each area as defined by the first 3 digits of the patient zip code (ZIP3 area; Washington, DC outlined in black, all others gray) is 
indicated by shading of that region (darker, more sequences) and pie chart area. Pie charts show the proportion of sequences from each ZIP3 area 
belonging to each major lineage. Sequence counts between 1 and 5 are shown as 5 sequences. MD, Maryland; VA, Virginia; DC, District of Columbia; 
WA, Washington; CA, California; ID, Idaho; LA, Louisiana; NY, New York.
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outbreak in Idaho; ref. 38), or could occur if  early cases in these states were seeded by a single source. This 
stands in contrast to the outbreaks in Washington state and New York, for which sequence data clearly 
shows multiple introductions (5). As expected, the diversity of  the viral population (the full distribution of  
pairwise genetic distances) in New York appears to be similar to that of  the Baltimore–Washington metro-
politan area, as the outbreaks in both regions were seeded multiple times and contain sequences predomi-
nantly belonging to the B.1 lineage (Figure 4, A and B, and Supplemental Figure 5).

Finally, we examined viral genetic diversity within and across our region, separating this area into sub-
regions defined by the first 3 digits of  their zip code (“ZIP3 location”). We found that 3 ZIP3 locations with 
the highest number of  cases in Maryland and Washington, DC, each had sequences from multiple lineages, 
and that all but 1 ZIP3 location had sequences from more than 1 lineage (Figure 4C). We do not observe 
distinct segregation of  viral lineages to particular locations within the region, which highlights both the 
rapid spread of  the virus early in the pandemic and the interconnectedness of  this region.

Discussion
Our genomic data set from the Baltimore–Washington metropolitan area revealed diversity approaching that 
of  the worldwide phylogeny, even in an early phase of  the epidemic. Sequences from the region spanned the 
global phylogeny, suggesting multiple and diverse introductions from regional or international locations. We 
also observe minimal diversity within each of  these specific lineages, suggesting transmission of  the virus 
within local communities after an initial introduction. This pattern of  diversity highlights the connectedness 
of  the region to both the national and global epidemic, and the challenges that confront any control strategy.

The diversity we observe within the region is also visible on smaller geographic scales, with multiple viral 
lineages represented within each ZIP3 location in Maryland and Washington, DC. This suggests significant 
movement of viral lineages within the Baltimore–Washington metropolitan area before regional closures were 
implemented at the end of March, likely due to local transport and a large number of commuters between 
Maryland and Washington, DC. Further research on more recent COVID-19 cases will be needed to under-
stand how national-, state-, and city-based regulations limiting travel and implementing physical distancing rec-
ommendations affected these patterns of spread as well as the impact of subsequent easing of these restrictions.

The diversity of  sequences within this region, combined with detailed clinical metadata obtained 
through the JHHS, allowed us to explore the relationship between the SARS-CoV-2 virus and patient pre-
sentation and outcome. Specifically, we looked for viral genotypes that demonstrated a connection to dis-
ease severity, comorbidities, or patient demographics such as gender and race. We found no clear correla-
tion, but were limited by sample size. It will be important to continue to analyze genomic data alongside 
clinical metadata as the number of  available viral genomes increases to look for potentially subtle associa-
tions between the viral genome and patient characteristics (39).

The analyses described above rely on complete and accurate SARS-CoV-2 sequences. We used a tiled 
amplicon sequencing approach on the Oxford Nanopore platform to generate sequencing data and found 
that we were able to achieve complete genomes for a substantial portion of  samples attempted. As in previ-
ous studies (24), we found that samples with higher virus titer (low CT value) more reliably produced com-
plete genomes, and these values can be used to triage samples for sequencing when resources are limited. 
We also observed some correlation between days from symptom onset and CT value, suggesting that epi-
demiological surveillance may be most effective if  patients are captured early in their course of  infection.

We also performed validation on our sequences by using multiple variant callers to detect variants and 
sequencing a subset of  samples on the Illumina platform. We found that amplicon-based sequencing with 
Oxford Nanopore generates correct consensus genome sequences (compared with Illumina sequences), but 
with some added ambiguities in specific problematic regions, especially homopolymers. We have developed 
a pipeline that corrects and flags these issues, and it is our hope that highlighting them in this paper contrib-
utes to the overall quality of  SARS-CoV-2 sequences generated with this widely used platform that enables 
rapid sequencing in a variety of  settings.

Moving forward, the pipelines established here will be critical to using genomic surveillance to inform 
the COVID-19 public health response. When confronting a new disease, the first genomes are the hardest 
to generate, as they require establishment of  laboratory protocols and bioinformatic pipelines that can pro-
vide accurate and timely information. This has occurred in record time during the COVID-19 pandemic; 
the methods and results presented here will serve as the foundation of  continued molecular surveillance of  
SARS-CoV-2 within the JHHS. Ongoing work will allow us to answer critical questions about not only the 
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evolution of  the virus but also the fundamental mechanisms by which control measures affected its epidem-
ic spread. These efforts complement the information provided by the rapidly growing public databases of  
SARS-CoV-2 sequences by focusing the collection of  genomic data in settings where we can access exten-
sive current and past clinical data to investigate fundamental questions about this evolving virus’s changing 
relationship with human health.

Methods
Data availability. Raw nanopore and Illumina data are deposited at SRA (BioProject PRJNA629390). 
Consensus sequences are deposited at GISAID and Genbank (MT509452-MT509493, and MT646048-
MT646120) under BioProject PRJNA650037 (accession numbers available in Supplemental Table 3).

Specimens and patient data. Clinical specimens used for genetic characterization were remnant nasopha-
ryngeal swabs available at the completion of  standard of  care testing at the Johns Hopkins Hospital clinical 
virology laboratory. In total, 143 samples were selected for analysis based on their distribution throughout 
March 2020 and representation of  the range of  disease severity observed during this period. During this 
period, automated patient metadata extraction was limited to the date a sample was confirmed positive; all 
other data required patient chart reviews. Samples were sequenced in 2 phases, with the first phase enriched 
for patients admitted to the ICU (14 of  55 samples collected March 11–21), and the second a convenience 
sample that captured as many samples as possible for sequencing, irrespective of  disease severity or ICU 
admission (10 of  88 samples collected March 13–31).

Clinical data analysis. Data including patient demographics, symptoms, comorbidities, COVID-19 
exposure, recent travel history, and results of  chest imaging at presentation were abstracted from the 
electronic medical record (EMR). COVID-19 treatment (medication, supplemental oxygen, and invasive 
mechanical ventilation) and outcomes (home observation without inpatient admission, discharge after 
admission, ongoing admission, and death) were also abstracted from the EMR. Race as self-reported by 
the patient and documented in the EMR was collected in prespecified categories. Patients who reported 
(a) contact with an individual known to be COVID-19–infected or (b) high-risk exposure (e.g., healthcare 
worker) were classified as COVID-19–exposed. Comorbidities were assessed based on diagnoses in the 
EMR (i.e., diabetes, obesity, or alcohol use disorder) and further categorized for lung disease (e.g., asth-
ma, COPD), cardiac disease (e.g., valvular heart disease, arrhythmias, hypertension), and immunocom-
promised (e.g., HIV positive, hematologic malignancy, solid organ transplant).

Nucleic acid extraction. Automated nucleic acid extraction was performed using either the NucliSENS easy-
Mag or eMAG instruments (bioMérieux) using software version 2.1.0.1. easyMag or eMAG lysis buffer (2 mL) 
was added to 500 μL of aliquoted viral transport media in a biosafety cabinet in either a BSL-3 or BSL-2 facility 
using BSL-3 biosafety measures. Specimens were incubated for 10 minutes in the lysis buffer prior to automated 
nucleic acid extraction following the off-board lysis bioMérieux protocol, with an RNA elution volume of 50 μL.

Diagnostic reverse transcription PCR (RT-PCR). The Altona Diagnostics RealStar SARS-CoV-2 RT-PCR 
Kit 1.0 was the primary assay used for molecular diagnosis. A subset of  SARS-CoV-2 positives were identi-
fied using the Cepheid Xpert Xpress SARS-CoV-2 GeneXpert platform per manufacturer instructions. All 
samples were processed within 24 hours of  collection.

The RealStar SARS-CoV-2 RT-PCR Kit 1.0 total reaction volume was 30 μL (10 μL extracted sample 
and 20 μL Master Mix). The kit contains 2 premade master mixes, A and B, which contain PCR buffer, 
magnesium salt, primers and probes, reverse transcriptase, and DNA polymerase. The detectors used are 
Cy5 (SARS-CoV-2; S gene), FAM (B-βCoV; E gene), and JOE (Internal Control). CT values for the S gene 
target (Cy5) are reported in Supplemental Table 2. Taqman RT-PCR was performed using the Prism 7500 
Sequence Detection System (Applied Biosystems) at the following cycling conditions: 1 cycle at 55.0°C for 
20 minutes, 1 cycle at 95.0°C for 2 minutes and 45 cycles at 95.0°C for 15 seconds, 55.0°C for 45 seconds 
and then 72.0°C for 15 seconds. Validation of  this assay was performed as described in ref. 22.

Testing on the Cepheid Xpert Xpress SARS-CoV-2 GeneXpert platform was performed in accordance 
with manufacturer’s instructions (40).

Genome sequencing with ARTIC tiled amplicons. Whole genome amplification of  the SARS-CoV-2 genome 
was performed using a modified ARTIC network protocol with the V3 primer set (23). Briefly, cDNA was 
generated from previously extracted RNA remaining after the initial diagnostic RT-PCR assay. No sample 
dilution was performed to normalize samples by CT value ranges, as these data were often incomplete at the 
time of  sample processing. A 2-step reverse transcriptase PCR was performed using random hexamer cDNA 
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synthesis using SuperScript IV (Thermo Fisher, 18091), followed by multiplexed PCR in 2 nonoverlapping 
pools using Q5 DNA polymerase (New England Biolabs, M0491). For Oxford Nanopore sequencing, ampli-
con pools were indexed using the Native Barcoding reagent set (Oxford Nanopore, EXP-NBD104). Indexed 
sample sets of  11 were then pooled, and 20 ng of  the resulting library was used for sequencing on Oxford 
Nanopore GridION instruments using R9.4.1 flow cells and high-accuracy basecalling (Guppy v3.5.2).

For Illumina sequencing, the New England Biolabs NEBNext Ultra II DNA Library Prep Kit for Illu-
mina reagent set was used for library generation from the same starting amplicons as used for Oxford 
Nanopore library preparation. Sequencing adapters were diluted 10-fold for our input range of  5–100 ng of  
DNA. Adapter-ligated DNA was cleaned up without size selection and underwent 8 cycles of  PCR at the 
amplification step. Samples were sequenced on a MiSeq using a 600bp v3 cartridge.

Genome assembly and variant validation. Reference-based genome assembly was performed using the 
ARTIC network bioinformatics pipeline v1.0.0 for COVID-19 (https://artic.network/ncov-2019) with 
modifications. Briefly, base called reads were demultiplexed with Guppy v3.5.2. Reads were mapped to the 
SARS-CoV-2 reference (GenBank accession MN908947.3) with minimap2 v2.17 (41) and coverage was 
normalized across the genome using a custom normalization pipeline (https://github.com/mkirsche/Cov-
erageNormalization; https://zenodo.org/record/4450293#.YCaj9xNKjSw) (42) with coverage_threshold 
150 and parameters --even_strand and --qual_sort. Primer binding regions were masked and variant calling 
was performed with Nanopolish v0.13.2 with a minimum candidate allele frequency of  0.15 (43). Consen-
sus genomes were generated with bcftools v1.9 (44) by mapping called variants to the reference genome, 
and all sites with less than 20x coverage were masked as “N.”

A custom pipeline was used to validate called variants (https://github.com/timplab/jhu-covid-
pipeline; https://zenodo.org/record/4453269#.YCak7hNKjSw) (45). This pipeline made use of  the 
NTC on each sequencing run. Amplicon regions with 1 or more positions with read depth less than 2 
times the 95% quantile of  average amplicon depth in the NTC (minimum threshold = 20) were masked 
as “N,” and any variants also present in the NTC were masked unless the coverage at that variant posi-
tion was more than 5 times the NTC coverage at that position. Additionally, any sequencing runs with 
high coverage in the NTC (>50x depth threshold) were ignored and all samples rerun.

Variants in samples or regions without evidence of  contamination were validated by 2 other variant 
callers: Medaka v0.11.5 (implemented by re-running the ARTIC bioinformatics pipeline) and a naive Sam-
tools (44) variant caller, both with a minimum candidate allele frequency of  0.15. All positions with variant 
caller disagreements or high minor allele frequencies (mixed variants; variant allele frequency 25%–75%) 
were manually inspected in Integrated Genome Viewer (46). Mixed variants found only on 1 sequencing 
strand were ignored (called as reference base), and mixed variants due to deletions in clear homopolymer 
regions were called as the alternate allele in the consensus genome. For the purposes of  creating a con-
sensus genome, candidate variants at less than 25% allele frequency were called as the reference base, and 
variants greater than 75% frequency were called as the alternate allele.

When available, Illumina data were used to confirm or invalidate variants with disagreements. The 
same normalization process was applied to Illumina reads, and variant calling was performed with Free-
Bayes v0.9.21 (47), iVar v1.0 (48), and Samtools. Mixed variants that could not be confirmed with Illumina 
data or (in)validated due to strand bias or homopolymer deletions were replaced with ambiguity codes. 
Final variants were annotated with SnpEff  (49).

Genomes were considered complete if  they had at least 27,000 non-N nucleotide calls (specific IUPAC 
ambiguity codes such as Y or R contributed to reaching the 27,000 threshold). We also required that the 
sequence had fewer than 5 mixed variants, as the cause of  highly mixed samples (perhaps due to contami-
nation, coinfection, or within-host variation) requires further research.

Genomic analyses were performed on the SciScerver science platform (50).
Correlating viral diversity to clinical characteristics. Complete patient records were available for 112 of  the 114 

virus genome sequences evaluated in this study. χ2 tests were performed to evaluate the correlation between 
severe disease, defined as ICU admission, and the presence or absence of  the D614G mutation.

Power calculations were performed using the overall ICU admission rate (21%) to determine the total 
number of patients in relevant clades to detect a 10% difference in disease severity at 80% power. A total of  
301 patients per mutation (602 total) were determined to be necessary to differentiate the impact of the D614G 
mutation on disease severity. With the genetic distribution of the 112 samples analyzed in this study, the power 
to determine a 10% difference in association between virus genotype and disease severity was estimated at 12%.
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Selecting a genomic background data set. For phylogenetic analyses, full-length viral genome sequences 
with collection dates before April 1, 2020, were downloaded from Genbank (51) and GISAID (18) on June 
3, 2020. Multiple sequence alignment was performed using MAFFT v7.458 (52) using parameters --reor-
der --anysymbol --nomemsave --adjustdirection. Sequences with fewer than 75% unambiguous bases were 
excluded, as were duplicate sequences defined as having identical nucleotide composition and collected on 
the same date and in the same country. The resulting data set was trimmed at the 5′ and 3′ ends resulting 
in a multisequence alignment with 29805 nucleotides. This data set was then subjected to multiple itera-
tions of  phylogeny reconstruction using IQ-TREE multicore software version v1.6.12 (53) with parameters 
-m GTR+G -nt 50, and exclusion of  outlier sequences whose genetic divergence and sampling date were 
incongruent using TempEst (54), resulting in a data set with 19,565 sequences.

For computational efficiency, we downsampled this data set homogeneously through time and space, 
by randomly selecting 7 and 34 sequences per month, to obtain global data sets with 1168 (hereafter referred 
to as Global 1K) and 3113 (hereafter referred to as Global 3K) sequences from around the world, respec-
tively. We preferentially selected longer sequences with the fewest number of  gaps in the 5′ and 3′ ends and 
those that had complete dates and the fewest number of  ambiguous bases. We used the high-performance 
computational capabilities of  the Biowulf  Linux cluster at the NIH (http://biowulf.nih.gov) to perform 
these downsampling analyses. After downsampling, we removed any sequences with fewer than 27,000 
unambiguous bases and any remaining sequences deemed GenBank/GISAID duplicates.

To study regional epidemics within the United States, sequences from Washington (WA), California 
(CA), Idaho (ID), Louisiana (LA), and New York (NY) were excluded from the Global 1K and 3K data 
sets. Data from the greater Washington, DC, region (Maryland, Washington, DC, and Virginia) were also 
removed from these global data sets, resulting in final global data sets of  886 (Global 1K) and 2593 (Global 
3K) sequences (Supplemental Table 5 and Supplemental Table 6).

Comparison of  evolutionary divergence. We estimated the evolutionary divergence of several sequence data 
sets from each of the locations selected for regional analysis. Each regional data set consisted of sequences 
removed from the Global 3K data. For Maryland and Washington, DC, we supplemented these to include all 
114 JHHS sequences. We then subsetted these sequences based on whether they were generated as part of this 
study (JHHS-MD and JHHS-DC) or from other laboratories (Maryland other, Washington, DC other). For 
Virginia, we supplemented the removed sequences to include all Virginia sequences in the pre-downsampled 
global data set. The final regional data sets were as follows: JHHS-DC (n = 31); DC other (n = 6); DC = JHHS-
DC + DC other (n = 37); JHHS-MD (n = 83); MD other (n = 8); MD = JHHS-MD + MD other (n = 91); VA 
(n = 50); LA (n = 34); ID (n = 32); NY (n = 35); CA (n = 53); WA (n = 61) (Supplemental Table 6).

To estimate evolutionary divergence, we calculated the pairwise divergence (in base substitutions per site) 
between all pairs of sequences within and between each geographical group. We conducted the analyses through 
the Molecular Evolutionary Genetics Analysis software version 10 (MEGA X) (55, 56) and applied the maxi-
mum composite likelihood mode (57). The rate variation among sites was modeled with a γ distribution (shape 
parameter = 4), and the differences in the composition bias among sequences were considered in evolutionary 
comparisons (58). We included 1st+2nd+3rd+noncoding codon positions, and all with less than 50% site cover-
age, due to alignment gaps, missing data, and ambiguous bases, were eliminated (partial deletion option).

We included the Global 1K and 3K data sets in this analysis to determine the appropriate global refer-
ence data set (out of  more than 60,000 global SARS-CoV-2 sequences published at the time of  analysis) for 
our phylogenetic analyses. Despite the significant difference in number of  sequences, the Global 1K and 3K 
data sets we tested have comparable mean pairwise genetic distances, indicating that the smaller 1K data set 
is representative of  global diversity and is an appropriate selection of  sequences to use as the background 
for our phylogenetic inference (Supplemental Figure 5, Supplemental Table 5, and Supplemental Table 6).

Phylogenetic analysis. We used a customized Nextstrain Snakemake pipeline (12) using augur v9.0.0 
on the final data set, which included the 886 Global 1K data set plus all removed regional groups (includ-
ing all 114 JHHS sequences and all published Virginia sequences), resulting in 1279 sequences used in 
our phylogenetic analysis. We computed the phylogeny with IQ-TREE v1.6.12 (53, 59) with parameters 
-me 0.05 -nt 4 -m GTR -n 4. Trees were rooted on the Wuhan-Hu-1 reference genome in FigTree (60) 
and visualized using ggtree (61) in R (62). Finally, clades were assigned to sequences using Nextstrain 
(15) and the Pango nomenclature system (14) (see Supplemental Table 3). The lineages assigned by the 
Pango nomenclature system were used to discuss viral diversity throughout this manuscript, and we 
defined major lineages (A, A.1, B, B.1, B.1.1, B.1.2) as lineages or sublineages appearing in at least 5% of  
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the sequences in our global subsample. Sublineages were collapsed into these 6 lineages by assigning the 
closest ancestral lineage that belongs to this group (e.g., B.1.37 becomes B.1, whereas B.3 becomes B).

Statistics. Continuous variables were categorized and descriptive statistics used to characterize the study 
population with respect to demographics, travel history, comorbidities, symptoms and disease severity. Pro-
portions were compared using a χ2 test. A P value of  less than 0.05 was considered to be significant. Power 
calculations were conducted for a 2-sample proportions test, based on assumptions of  a 5% false-positive 
(i.e., α) rate and power of  0.8. Analyses were performed using Stata version 14 (StataCorp).

Study approval. All research was conducted under Johns Hopkins IRB protocol IRB00221396, which 
allowed the analysis and presentation of  results under a waiver of  consent.
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