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BACKGROUND. Tuberculosis (TB) kills more people than any other infection, and new diagnostic 
tests to identify active cases are required. We aimed to discover and verify novel markers for TB in 
nondepleted plasma.

METHODS. We applied an optimized quantitative proteomics discovery methodology based on 
multidimensional and orthogonal liquid chromatographic separation combined with high-resolution 
mass spectrometry to study nondepleted plasma of 11 patients with active TB compared with 10 
healthy controls. Prioritized candidates were verified in independent UK (n = 118) and South African 
cohorts (n = 203).

RESULTS. We generated the most comprehensive TB plasma proteome to date, profiling 5022 proteins 
spanning 11 orders-of-magnitude concentration range with diverse biochemical and molecular 
properties. We analyzed the predominantly low–molecular weight subproteome, identifying 46 
proteins with significantly increased and 90 with decreased abundance (peptide FDR ≤ 1%, q ≤ 0.05). 
Verification was performed for novel candidate biomarkers (CFHR5, ILF2) in 2 independent cohorts. 
Receiver operating characteristics analyses using a 5-protein panel (CFHR5, LRG1, CRP, LBP, and SAA1) 
exhibited discriminatory power in distinguishing TB from other respiratory diseases (AUC = 0.81).

CONCLUSION. We report the most comprehensive TB plasma proteome to date, identifying novel 
markers with verification in 2 independent cohorts, leading to a 5-protein biosignature with potential 
to improve TB diagnosis. With further development, these biomarkers have potential as a diagnostic 
triage test.
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Introduction
The tuberculosis (TB) pandemic continues relentlessly, killing more humans than any other infectious dis-
ease, and progress in its containment is lagging behind other major diseases, such as HIV and malaria (1). 
A fundamental issue with controlling the global pandemic is the inadequacy of  current diagnostic tests for 
TB, which have multiple limitations, such as insufficient sensitivity, high cost, and reliance on laboratory 
infrastructure (2, 3). The World Health Organization (WHO) has defined the characteristics of  an optimal 
TB diagnostic, including low cost, use of  a nonsputum sample, high sensitivity and specificity, as well as 
stability at extremes of  temperature and humidity, and it may include both rule-in and rule-out tests (4). 
However, development of  a point-of-care test suitable for resource-limited settings faces multiple challenges 
in the pathway from discovery to validation and implementation, such as translation between platforms, 
application across different populations, and the disease heterogeneity of  TB.

Proteins have been proposed as viable diagnostic candidates given their phenotypic relevance and sta-
bility under specified conditions. Blood plasma contains a wide spectrum of  proteins that may serve as 
biological signatures of  physiological status during homeostasis or its perturbation (5). For example, the 
plasma matrix encompasses tissue leakage proteins, thus providing systemic and organotypic insight about 
specific immunopathologic features, such as lung tissue destruction, relevant to active TB (6, 7). Further-
more, plasma protein signatures are highly amenable for translation to rapid test devices, and this technol-
ogy is rapidly evolving, including colorimetric gold nanoparticles on paper-based devices, label-free biosen-
sors, and nanofluidic disposable chips (8, 9). Extensive proteomic discovery research has been conducted 
in TB. Although this has identified novel diagnostic markers for the active disease (10–16) and progression 
from latent disease (17), an optimal diagnostic panel has yet to be defined (18). Other analytes, such as 
matrix degradation products, have been found by a hypothesis-driven approach (7, 19) but conversely have 
not been identified by mass spectrometry–based strategies. This implies that improved discovery strategies 
are required to increase the plasma proteome coverage, thus improving the prospect of  capturing novel 
protein markers with potential clinical utility.

Current limitations to mainstream serum or plasma proteomics pipelines partly stem from the pre-
dominance in protein mass (>95%) of  the top 20 most abundant proteins. These high-abundance proteins 
either mask the presence of  or are noncovalently bound to lower abundance proteins with potential clinical 
relevance. In an effort to overcome this limitation, an initial serum/plasma depletion step to remove such 
high-abundance proteins is typically employed before the mass spectrometry–based analysis. This plasma 
proteome analysis strategy has been used in samples from patients with TB (11, 13, 20–24). However, 
this approach will result in the inadvertent loss of  a wide spectrum of  physiologically important proteins, 
including those typically encountered in lipid microvesicles, such as exosomes, proteases and their cleavage 
products, and native peptides such as hormones (25, 26). Consequently, an alternative methodological 
approach has been optimized, wherein the entire repertoire of  secreted and exosome-enriched proteins, 
including the high-abundance carrier and immunoglobulin proteins, and their derivative proteotypic pep-
tides are subjected to multidimensional or orthogonal liquid chromatographic separation combined with 
high-definition mass spectrometry analysis (Figure 1) (27–29). The present study optimized critical aspects 
of  this methodology to generate a highly comprehensive plasma proteome coverage to capture potentially 
novel biomarkers in active TB.

Results
Proteomic analysis of  nondepleted plasma identifies numerous modulated proteins in TB. For each sample, 4 pro-
tein segments were generated from plasma by HP-SEC partitioning under highly chaotropic mobile phase 
conditions. Then, each HP-SEC segment was subjected to downstream 2D LC tandem mass spectrome-
try (LC-MS) analysis to achieve a comprehensive profile of  the nondepleted plasma proteome (Supple-
mental Figure 1; supplemental material available online with this article; https://doi.org/10.1172/jci.
insight.137427DS1). The HP-SEC fractionation traces were highly reproducible (Supplemental Figure 2). 
All 4 segments from 1 set of  7 plasma samples, comprising 4 samples from active TB patients and 3 from 
healthy donors, and 1 master pool (Set A, Supplemental Table 1) were profiled to generate an exploratory 
in-depth plasma proteome in TB (Figure 2). Samples included in this first stage were obtained from donors 
from South Africa and Peru. The samples from Peru were collected prospectively to match BMI and age 
of  the donors from South Africa (Supplemental Table 1). A total of  5022 nonredundant proteins (peptide 
FDR ≤ 5%) were identified, from which 3577 were quantified across all 8 samples. Only quantified pro-
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teins profiled at a strict 1% FDR were subjected to further bioinformatic and statistical analysis. Proteins 
profiled in the subproteome contained in segment 4 presented the widest distribution of  molecular weight, 
ranging from 5 kDa to 630 kDa (Figure 2A). A total of  53% of  the quantified proteins had reported circu-
lating levels in the literature or the human plasma data set (integrated) from the reference PaxDb4.1 protein 
abundance database (30, 31). Based on these reported circulating levels, the plasma proteomic profile cov-
ered abundance levels of  11 orders of  magnitude (Figure 2B), representing classical, tissue leakage, and 
signaling proteins (32). Furthermore, 905 profiled proteins were annotated as exosome-, microvesicle-, or 
microparticle-derived proteins (33). The actual abundance dynamic range is expected to be larger, as the 
LC-MS signal intensity observed for many proteins with unknown native concentration levels was below 
that of  proteins with the lowest reported concentrations (30).

PCA demonstrated that this plasma proteome could distinguish between controls and patients with 
active TB (Figure 2C). Overall, 62% of  the variance was explained by PC1 and PC2. The master pool was 
a combination of  plasma from healthy control and TB patients and clustered in the center of  control and 
diseased groups. One TB patient profile (reporter ion at m/z 121) clustered with the control group, and 
review of  the clinical data showed that although the Mycobacterium tuberculosis (M. tuberculosis) sputum cul-
ture was positive, the plasma C-reactive protein (CRP) level was normal and the chest x-ray showed no con-
solidation, suggesting very early disease, in contrast to all other patients who had lung inflammation. This 
demonstrates that proteomic profiling reflects disease heterogeneity that is consistent with clinical features.

Similar to the PCA, Spearman’s correlation showed clustering between TB and controls but with 
reporter ion at m/z 121 clustering with controls (Figure 2D). Defined patterns of  protein expression associ-
ated with the disease status were observed in 2 clusters. Cluster blue includes proteins with reduced abun-
dance in the TB group while cluster magenta contains proteins with increased abundance in the TB group. 
Gene ontology enrichment analysis indicated regulation of  immune response to external stimulus mainly 
through the innate response, including the complement pathway and phagocytosis.

Recently, analytical models such as Linear Models for Microarray Data (limma) have been translated 
to proteomic data sets from large-scale gene expression data (34). Empirical Bayes approaches have been 
proven to be particularly powerful with small sample numbers by using the full data sets to reduce observed 
sample variances toward an estimate while allowing for variance distribution (35–37). This statistical 
approach results in a more realistic distribution of  biological variances compared with other methods. Fur-
thermore, limma offered the best statistical properties when compared with generalized linear model and 
mixed models in the context of  multiplexed isobaric quantitative proteomics (34). Statistical assessment 
of  differential expression showed 119 proteins were significantly modulated (nominal P ≤ 0.05) (Supple-
mental Table 2). However, after FDR correction for multiple comparisons, no significant differences were 
retained. Therefore, we increased the sample size to identify TB biomarker proteins with high confidence.

In-depth analysis of  segment 4 identifies multiple new TB biomarkers. Robust statistics are crucial at 
the discovery stage of  biomarker identification to increase chances of  later validation. Considering 
that HP-SEC segment 4 captured the most diverse range of  protein molecular weight (Figure 2A), 
we interrogated this segment further to increase statistical power. Reported simulations for statistical 
power in proteomic studies, including power curves estimated for iTRAQ relative ratios (37), predict 
that a minimum of  9 biological or clinical replicate samples per group are needed to achieve a statis-
tical power of  0.9 when an effect size of  1.5 is considered (37, 38). Therefore, 10 healthy control and 
11 active TB plasma samples were analyzed. These samples were randomly allocated into 3 iTRAQ 
experiments (Supplemental Figure 3A) and analyzed as 3 independent MS experiments. A maximum 
of  1248 proteins were quantified at 1% FDR, and 426 proteins were common to the 3 MS runs (Sup-
plemental Figure 3B). The overall relative protein expression variation was evaluated using the com-
mon proteins profiled across the 3 independent iTRAQ experiments. The relative standard deviation 
(RSD) was more than 25, which accounts for the combined technical and biological variation (Sup-
plemental Figure 3C). Using an alternative approach to estimate the mean-variance relationship in 
the data, the locally weighted regression (LOWESS) trend was calculated using the function voom 
(39) from the limma R package, analyzing the same group of  proteins (Supplemental Figure 3D). The 
square-root-standard-deviation, sqrt(SD), was more than 1.4, and the LOWESS voom trend indicated 
a degree of  heteroscedasticity in the data, where greater log2 relative expression values were related to 
higher variation. The range of  RSD and sqrt(SD) estimated across these 3 multidimensional experi-
ments indicated a good overall method performance.

https://doi.org/10.1172/jci.insight.137427
https://insight.jci.org/articles/view/137427#sd
https://insight.jci.org/articles/view/137427#sd
https://insight.jci.org/articles/view/137427#sd
https://insight.jci.org/articles/view/137427#sd
https://insight.jci.org/articles/view/137427#sd
https://insight.jci.org/articles/view/137427#sd
https://insight.jci.org/articles/view/137427#sd
https://insight.jci.org/articles/view/137427#sd


4insight.jci.org      https://doi.org/10.1172/jci.insight.137427

C L I N I C A L  M E D I C I N E

The data sets generated were inspected to evaluate batch effects and data distribution. Sixty percent of  
the variance was explained by the batch (Supplemental Figure 4A). The group effect was then distinguish-
able when considering dimensions PC2 and PC3 (~17% variance, Supplemental Figure 4B). Batch effect 
correction was performed using normalization to the master pool or by ComBat (40) (Supplemental Figure 
4, C and D, respectively), with ComBat providing the best reduction of  batch effects. Statistical assessment 
of  significant differential protein expression using limma revealed 136 proteins significantly modulated (q ≤ 
0.05; Supplemental Table 3). Proteins with significantly increased and reduced abundance were identified in 
patients with active TB infection (Figure 3A). In addition to the identification of  proteins known to be regu-
lated during the active TB immunopathology, such as CRP, serum amyloid A (SAA), S100A8, retinol binding 
protein 4 (RBP4), MMP14, and diverse apolipoproteins, novel proteins were found, such as disks large homo-
log 4 (DLG4), pulmonary surfactant-associated protein B (SFTPB), complement factor H related 5 (CFHR5), 
and secreted phosphoprotein 2 (SPP2).

Further data mining of  the output from segment 4 was performed to interpret biologically relevant pat-
terns in pulmonary TB. Weighted gene coexpression network analysis (WGCNA) (41) was used to explore 
relationships between clusters of  highly correlated proteins (color modules) and specific sample traits. Tech-
nical and biological variables of  batch, smoking history, and ethnicity were evaluated as possible confounders 
in the data using hierarchical clustering. The resulting dendrogram demonstrated that disease status was the 
primary determinant of  sample clustering (Supplemental Figure 5A). To select highly interconnected proteins 
exhibiting the strongest correlation with the disease status, detection of  modules was performed (Supplemen-
tal Figure 5B). The dendrogram of the topological overlap matrix representing clusters of  highly intercon-
nected proteins with assigned color modules and association to particular traits demonstrated that the protein 
module turquoise was strongly associated with disease status (Figure 3B, Z score = –0.87; P = 2 × 10–7). A 
total of  189 proteins were contained in the turquoise module (Supplemental Table 4), of  which 129 (65.8%) 
were common to the differentially expressed proteins defined with limma (7 protein unique to limma and 60 
unique to WGCNA). GO enrichment was performed using the package clusterProfiler (42) on the turquoise 

Figure 1. Overview of the plasma proteomic 
discovery and validation strategy of potential 
TB biomarkers. (A) Identification and quan-
tification of plasma proteins were performed 
using a quantitative multidimensional protein 
identification approach, which comprises a 
series of fractionation steps at both protein 
(denaturing high-performance–size exclusion 
chromatography, HP-SEC) and peptide levels 
(offline high pH C4 HPLC followed by online low 
pH C18 ultrahigh-performance LC, UPLC). Initial 
plasma prefractionation using HP-SEC produces 
5 segments depending on the molecular size. 
Only segments 1 to 4 were included in this 
study because these included most of the 
protein contents. (B) Bioinformatic processing 
prioritized markers, which were then measured 
by ELISA or Luminex in plasma or serum sam-
ples from 2 cohorts. Discovery and validation 
stages involved multiple ethnicities. iTRAQ, 
isobaric tags for relative and absolute quantita-
tion; nESI-FTMS, nano-electrospray ionization 
Fourier-transform mass spectrometry. 
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module and demonstrated that proteins profiled were mainly associated with a variety of  intracellular and 
secretory vesicles, extracellular matrix, blood microparticles, and lipoprotein particles (Figure 3C). Analysis 
revealed 4 main hubs for the top 20 biological processes: inflammatory/acute-phase response, exocytosis/
vesicle-mediated transport, lipid transport, and proteolysis (Figure 4).

To generate the most robust list of  candidates for validation, we identified proteins in common between 
the module turquoise derived from WGCNA and significant by empirical Bayes moderated t-statistics in 
limma, thereby combining coexpression analytical approaches and t-statistics. Combining the approaches, we 
identified 26 common proteins with increased and 20 proteins with reduced abundance, with a high predicted 
significance (full list, Supplemental Table 5; log2 fold change ≥ |0.5|; WGCNA: Z score ≥ |0.65| and P ≤ 

Figure 2. In-depth quantitative plasma proteome profiling in TB. (A) Violin plots with median and interquartile range show molecular weight frequency dis-
tributions of proteins quantified (peptide confidence ≤ 1% FDR) in each independent HP-SEC segment. The number of proteins with relative quantitative data 
in all profiled samples is indicated. Four plasma samples from TB patients, 3 healthy controls, and 1 master pool were analyzed. (B) Abundance of quantified 
proteins from all HP-SEC segments. Only proteins with circulating levels reported in the reference PaxDb4.1 protein abundance database or in the literature 
were annotated. Proteins considered as classical plasma proteins are indicated in red, tissue leakage proteins in green, proteins with signaling functions in 
purple, and proteins associated with extracellular vesicles in yellow. Concentrations of detected proteins span 11 orders of magnitude. (C) Principal compo-
nents analysis (PCA) based on quantified proteins from all HP-SEC segments of 8 profiled samples. iTRAQ tags and groups are indicated. Overall, TB patients 
were separated from healthy controls by the principal components PC1 and PC2, collectively explaining the 62% of total variance. The TB sample labeled with 
tag 121 clustered with the healthy control samples. The master pool, a combination of all samples, was located in the center of the samples. (D) Log2-trans-
formed relative protein expression heatmap of all proteins profiled in the 4 HP-SEC segments. Purple indicates TB patients and green healthy controls. Pear-
son correlation was used for clustering of proteins and Spearman’s for samples. Two clusters were defined based on the relative protein expression, and Gene 
Ontology (GO) analysis of these was performed using g:Profiler. Cyan, downregulated proteins; magenta, upregulated proteins.
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0.05; limma: q ≤ 0.05). This highly stringent approach is likely to omit numerous other differentially regulated 
proteins but maximizes the chance of  subsequent validation for diagnostic use. Proteins in this list are asso-
ciated with a wide range of  biological processes, including acute inflammatory response, defense response to 
bacterium, lipid localization, cell adhesion, and regulation of  peptidase activity (Figure 5).

Host plasma proteins exhibit increased abundance in TB and other respiratory diseases. Circulating levels of  5 
proteins among the top 15 proteins with increased expression levels (Supplemental Table 5) were subjected 
to independent verification with ELISA or Luminex array. CRP and SAA1 were included in the verification 
panel because these are considered established major acute-phase effectors and are expected to increase in 
individuals with pulmonary TB. LBP and LRG1 have been described in other proteomic TB profiles (11, 43, 
44); therefore, the expression of  these proteins in specific cohorts may add valuable information for the design 

Figure 3. Detailed profiling of segment 4 identifies a differential plasma proteome in TB infection. Analyses of 
common quantified proteins (peptide confidence FDR ≤ 1%) derived from HP-SEC segment 4 across 3 iTRAQ experi-
ments studying 10 controls and 11 TB patients (n = 426 proteins). (A) Volcano plot representation of plasma proteins 
differentially expressed in TB defined by limma with FDR correction (q ≤ 0.05). Pink indicates upregulated proteins and 
blue downregulated. Gene names of significantly regulated proteins with log2 fold change ≥ |0.5| are shown. (B) WGCNA 
cluster dendrogram of quantified proteins into distinctive modules defined by dendogram branch cutting. Color mod-
ules indicate protein clusters of highly interconnected proteins associated with the disease status. Correlation score 
and significance demonstrates that module turquoise is strongly correlated to TB status. ME, Module Eigengenes. (C) 
GO enrichment of proteins included in the module turquoise (n = 189). Dots represent the top 20 enriched cellular com-
ponent organization terms. Dot color indicates significance (P value Benjamini-Hochberg adjusted), and size represents 
the number of differential proteins in the significant gene list associated with the GO term.
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of a multimarker panel. Newly identified proteins from our analysis, such as CFHR5, were additionally select-
ed for verification. Proteins closely biologically associated with the selected proteins were excluded for further 
verification, such as SAA2, since independency is recognized to benefit performance of  multimarker panels. 
In addition to these selected candidates, the 7 most consistently divergently regulated proteins, analyzed by 
fold change, derived from the profile of  HP-SEC segments 1 to 3, protein fantom (RPGRIP1L), fibrino-
gen-like protein 1 (FGL1), cartilage oligomeric matrix protein (COMP), small conductance calcium-activated 
potassium channel protein 2 (KCNN2), tumor necrosis factor ligand superfamily member 11 (TNFSF11), 
E3 ubiquitin-protein ligase listerin (LTN), and interleukin enhancer binding factor 2 (ILF2), were included to 
compare verification efficiency between the smaller and larger discovery groups.

First, we studied a UK-recruited independent cohort of  mixed ethnicity from the Multifunctional Inte-
grated Microsystem for rapid point-of-care TB IdentifiCation (MIMIC) study, for verification of  selected 
candidates. CFHR5, LRG1, LBP, SAA1, and CRP showed significantly increased levels of  expression in 
patients with active TB when compared with healthy controls or latently infected individuals (Figure 6, 
A–E). Evaluation of  the markers selected from the initial discovery experiment on 7 samples showed that 
RPGRIP1L, FGL1, COMP, KCNN2, and TNFSF11 failed verification (Supplemental Figure 6). LTN 
(Supplemental Figure 7, P = 0.04) abundance was significantly higher in patients with TB. Additionally, 
ILF2, identified from segment 3 analysis, showed elevated abundance in patients with latent TB and active 
TB compared with healthy donors (Figure 6F, P = 0.0005). Consequently, 2 out of  7 proteins were success-
fully verified from the smaller discovery group, whereas all were verified from the larger discovery group. 
In addition to the proteins being elevated in TB, patients with ORDs also exhibited elevated abundance in 
all verified markers (Figure 6, A–F).

Diagnostic performance of  individual and combined verified markers was evaluated using receiver 
operator characteristic (ROC) curves. ROC curves were generated based on 2 different comparisons: circu-
lating level of  markers in patients with active TB versus HCs (Figure 7A) and patients with active TB versus 
ORDs (Figure 7B). In both cases, the best performance was achieved by combining the 5 markers (CFHR5, 
LRG1, LBP, SAA1, and CRP). The AUC was 0.93 (95% confidence interval: 0.89–1.00, P ≤ 0.001) for TB 
versus HCs and 0.81 (95% confidence interval: 0.68–0.94, P = 0.001) for TB versus ORDs, thus demon-
strating that only the combination of  markers allowed the discrimination of  active TB from HCs and 
ORDs. Although ILF2 abundance was significantly upregulated in the active TB and ORD patients from 
this cohort (Figure 6F), it did not contribute toward a better diagnostic performance of  the panel.

We then further verified the biomarkers in a South African cohort, which included HIV-uninfected and 
HIV-infected patients with active TB and ORDs. Again, the novel diagnostic marker CFHR5 exhibited sig-
nificantly increased abundance in HIV-uninfected patients. In HIV-coinfected patients, CFHR5 was elevat-
ed compared with HCs, but not significantly different from healthy HIV-infected individuals, although this 
group had limited numbers (Figure 8A). CFHR5 showed no significantly increased abundance in ORDs, 
irrespective of  HIV status. Again, the interpretation may be due to limited sample numbers reducing sta-
tistical power. LBP and SAA1 both showed increased abundance in the active TB group regardless of  HIV 
status. This trend was observed relative to the ORD group HIV un- and coinfected (Figure 8, B and C). 
CRP showed increased abundance in TB compared with HC and ORD groups, irrespective of  HIV status 
(cohort data previously published, ref. 7). In this cohort, ILF2 and LRG1 could not be measured because 
of  sample exhaustion and were thus excluded from the panel. A summary of  the analytes tested in each 
cohort and verification results is presented as Supplemental Table 6.

ROC curves generated by comparing circulating levels of  CFHR5, LBP, SAA1, and CRP in TB patients 
versus ORDs in the HIV-uninfected group showed that the best performance was achieved by combining 
markers (Figure 9A, AUC 0.89 [95% confidence interval: 0.80–0.98, P ≤ 0.001]). Similarly, in the context 
of  HIV-associated TB, the combination panel performed best and provided a surprisingly high discrimina-
tion between active TB and ORDs (Figure 9B, AUC 0.98 [95% confidence interval: 0.94–1.00, P ≤ 0.001]). 
By contrast, the combination of  markers did not improve the diagnostic performance when the active TB 
group was analyzed against the HCs relative to analysis of  CRP alone (Supplemental Figure 8). Finally, 
we evaluated whether our 4-protein panel correlated to sputum mycobacterial load in the South African 
cohort. Mean Z scores were calculated from CFHR5, LBP, SAA1, and CRP levels in patients with TB 
(HIV negative) and compared with the bacterial burden in sputum. A significant positive correlation was 
observed (Spearman’s coefficient r = 0.37, P = 0.03).

https://doi.org/10.1172/jci.insight.137427
https://insight.jci.org/articles/view/137427#sd
https://insight.jci.org/articles/view/137427#sd
https://insight.jci.org/articles/view/137427#sd
https://insight.jci.org/articles/view/137427#sd


8insight.jci.org      https://doi.org/10.1172/jci.insight.137427

C L I N I C A L  M E D I C I N E

Discussion
We applied a unique nondepletion-based quantitative proteomics method (q3D LC-MS) to generate the 
most comprehensive TB plasma proteome to date. Statistical power was increased by studying 1 HP-SEC 
segment in additional patients, and combined WGCNA and limma analysis approaches identified numer-
ous novel host biomarkers with high confidence. We verified a subset of  biomarkers in 2 separate cohorts, 
with a high success rate. Diagnostic accuracy for TB was maximized by use of  a multimarker panel. These 
markers are frequently also increased in other respiratory conditions, and therefore host biomarkers are 
likely to be of  greatest use in a rule-out panel.

Translation of  novel biomarkers for clinical utility is challenging, involving a stepwise process where 
most candidates fail to reach the bedside. Verification of  new candidates typically relies on antibody-based 
assays, requiring change of  platform from mass spectrometry to immunoassays before field-testing, and 
this is frequently a point of  failure. We completed this transition for 3 new analytes, thereby supporting 
the robustness of  the approach. Validation will require quantification of  the additional 15 entirely new 
biomarkers in the top candidates (Figure 5, Supplemental Table 5) identified by the combined WGCNA 
and limma approaches and interlaboratory collaboration across large cohorts from multicenter biobanks, 
including analysis of  how biomarkers relate to disease severity and change over time.

Plasma is a complex matrix to analyze, and high-abundance protein depletion is the most common 
strategy to address this complexity (5, 27–29, 45, 46). However, depletion may inadvertently coremove 

Figure 4. Physiological changes in pulmonary TB are reflected in the plasma proteome. Functional enrichment analysis of the biological processes was 
performed on the 189 proteins strongly associated with the TB status and identified by WGCNA. Gene concept network (cnet plot) depicts the linkages of 
proteins and the top 20 biological process terms enriched in the turquoise module. Upregulated and downregulated proteins were included. Green-to-red 
coding next to the network indicates the log2 fold change. Proteins in bold were selected for validation. LBP, lipopolysaccharide binding protein; LRG1, 
leucine rich alpha-2-glycoprotein 1; SAA1, serum amyloid A1.
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important analytes noncovalently bound to high-abundance proteins (26). In this study, sample prepara-
tion was principally based on the use of  orthogonal chromatographic hyperfractionation instead of  deple-
tion. Such a strategy entailed the dissolution of  120 μL neat plasma with 7 M guanidine/10% methanol 
that stabilized the protein content and was subjected to HP-SEC separation as part of  the hyperfraction-
ation pipeline. The use of  multidimensional liquid chromatographic approaches as part of  the isobaric 
quantitative proteomics pipeline has gained increasing prominence in translational research studies (47). 
Such approaches compensate for the complexity of  biological specimens in capturing and analyzing very 
low-abundance proteins of  clinical significance. Furthermore, they are amenable to laboratory automation 
and scale-up, thus improving analysis throughput, accuracy, and precision (47, 48). In line with this, the 
collective attributes of  the present study method facilitated the analysis of  proteins encompassed in blood 
microparticles, such as exosomes and other lipid vesicles (27, 28), along with protease-derived cleavage 
proteins and soluble proteins. The efficacy of  our approach was demonstrated by the profiling of  over 5000 
proteins from only 120 μL plasma per patient, compared with the identification of  a maximum of  800 pro-
teins in similar TB discovery studies from larger volumes of  plasma (16, 20, 49). Most importantly, howev-
er, the deep proteome coverage achieved also coded for a wide spectrum of  biological and disease-specific 
pathways and networks of  physiological relevance to TB. Encompassed in these pathways and networks 
were many novel proteins of  potential clinical significance.

Analysis of  the entire proteome from HP-SEC segments 1 to 4 using 7 samples was underpowered for 
biomarker discovery, with only 2 out of  7 candidates subsequently being validated in a larger cohort. There-
fore, detailed profiling was focused on the subproteome segment 4, which is primarily enriched for low–
molecular weight proteins and protein degradation products, recapitulating multiple biological processes 
(28, 29, 50–52). In-depth profiling of  this segment from 10 HCs and 11 pulmonary TB patients provided 

Figure 5. Top candidate biomarkers for active TB link to multiple biological processes. Chord plot for plasma proteins strongly correlated to active TB 
and identified by combining outputs from WGCNA and limma. This plot links these proteins via ribbons to their associated biological processes. Blue-to-
red coding next to the proteins indicates the log2 fold change. GO enrichment for biological process was performed in g:Profiler, and only significant terms 
(FDR q ≤ 0.05) are shown. Plot generated with the R package GOplots.
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much greater statistical power, consistent with mathematical estimations (38). The high-dimensional data 
produced from isobaric labeling-based relative quantification (iTRAQ or tandem mass tag) poses bioinfor-
matic processing challenges (34). Small sample sizes, incomplete data sets, and batch effects across experi-
ments create difficulties in the effective detection of  protein abundance changes (35). Batch effects are par-
ticularly relevant to multiplexing of  iTRAQ experiments. In our study, ComBat correction performed better 
than the most common strategy of  normalizing to a common reference sample (Supplemental Figure 4). 
Complementary analysis using limma and WGCNA on the adjusted data resulted in a powerful approach 
producing a set of  robust markers for verification (Supplemental Table 5), with 3 out of  3 tested proteins 
successfully converting to an immunoassay platform, compared with 2 out of  7 from the smaller sample set 
(Set A profile). Thus, this methodology led to the identification and independent verification of  known and 
novel candidate biomarkers of  TB infection.

WGCNA identified 1 coexpression module as strongly associated with the group TB (turquoise mod-
ule, P = 2 × 10–7), containing 189 proteins. Ninety-five percent of  the differentially expressed proteins 
identified with limma were common to this module, showing excellent concordance between analytical 
strategies. Notably, over 60% of  the coexpressed proteins showed decreased abundance in the active TB 

Figure 6. Novel TB biomarkers are validated in an independent UK cohort of mixed ethnicity. Two novel TB biomarkers were significantly upregulated in 
TB infection measured by Luminex or ELISA in serum from an independent UK-based cohort. (A) CFHR5 is increased in TB and also significantly increased 
in other respiratory diseases (ORDs). ATBI, active TB infection. Four known TB potential markers were measured and were significantly elevated in TB: (B) 
LRG1, (C) LBP, (D) SAA1, and (E) CRP. (F) ILF2, a novel analyte from segment 3, was elevated in TB and ORDs. Box displays 25% and 75% percentiles with 
line showing median and whiskers displaying minimum to maximum values. Differences were considered significant when P < 0.05 and calculated from 
Kruskal-Wallis test and Dunn’s multiple-comparisons test. HC, healthy controls (n = 30); LTBI, latent TB infection (n = 30); PTBI, pulmonary TB infection (n 
= 32); ORD, other respiratory diseases (n = 26).
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group, suggesting that studying these proteins may provide additional insight into disease processes in 
TB, and analysis should not purely focus on proteins of  increased abundance. GO enrichment of  module 
turquoise revealed regulation of  biological processes associated with responses to external stimulus (q = 2 
× 10–3) encompassing acute-phase/inflammatory (q = 5.2 × 10–6) and humoral responses (q = 9.2 × 10–5). 
Within this module, CRP, LBP, SAA1, SAA2, S100A8, S100A9, SERPINA3, and HP are involved in the 
activation of  the acute-phase and inflammatory response, which are well described in TB (20, 53, 54). This 
concordance supports the overall validity of  our methodology.

Connected to the acute-phase hubs, proteolysis (q = 1.1 × 10–6) and lipid transport and localization (q = 
1.4 × 10–5) were significantly enriched. Proteolysis is consistent with the extensive pulmonary destruction 
that occurs in human TB (55). Among the proteins with increased abundance in this hub, ECM1 was pre-
viously reported as elevated in saliva of  patients with TB (56), MMP14 is expressed in TB granulomas (57), 
and PSMB8 may be part of  the regulatory cascade of  the blood transcriptome of  patients with TB (58). 
Among the proteins found with decreased abundance, TIMP2 is an inhibitor of  matrix metalloproteinases, 
and so reduced levels may increase matrix degradation (55). Lipid metabolism was another major signal 
expressed, and the role of  lipids and cholesterol in TB immunopathology remains poorly characterized. 
Cholesterol uptake and catabolism are central for maintenance of  the pathogen in the host and contribute 
to pathogenesis and virulence (59). However, the low circulating lipid profiles in patients with pulmo-
nary TB may be a consequence of  the disease or may have wider biological implications. Apolipoproteins 
are associated with lipid transport and form lipoprotein particles such as HDL, LDL, and VLDL. Serum 
HDL-C concentrations negatively correlate with the radiological extent of  disease and smear positivity 
in pulmonary TB (60). Decreased circulating concentrations of  apolipoproteins are consistently reported 
in different serum/plasma proteomic profiles for pulmonary TB (11–13), in agreement with our findings. 
Further data mining of  these biological processes may identify host-directed therapy targets.

To verify newly identified biomarkers, well-characterized TB cohorts with complementary profiles and 
from geographically diverse populations are required (4). We studied 2 different cohorts for verification, 1 
recruited in the United Kingdom and 1 in South Africa. From the subset of  proteins analyzed by ELISA or 
Luminex, 7 proteins were successfully validated. LBP, CFHR5, CRP, and SAA were consistently increased 
in TB cases in both cohorts. Statistically significant differences were observed despite the wide interindivid-
ual variation in biomarker concentrations, which is expected from clinical TB, which has a wide spectrum 
of  disease severity. ILF2 was only verified in the MIMIC cohort because of  sample exhaustion, while LTN 

Figure 7. Combination of 5 protein markers discriminates patients with TB in a UK-based cohort. ROC curves were generated using SPSS v.25, for 
individual proteins (CFHR5, LBP, SAA, CRP, and ILF2) and after binary logistic regression for combined analytes. AUC was estimated under nonparamet-
ric assumption. TB was set as the positive test outcome and the test direction such that larger test result indicates a more positive test. ROC curve for 
TB infection versus HCs shows good discrimination, with the multiplex panel most discriminatory (A), while the ROC curve for TB infection versus ORDs 
shows individual analytes are not differentiating, but a combined multiplex panel generates an AUC of 0.813 (B).
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and LRG were only evaluated in the South African cohort. CFHR5, ILF2, and LTN are novel protein 
candidate biomarkers for TB identified by the discovery phase and all were successfully verified. Consistent 
with our findings, a recent report identified ILF2 as a potential biomarker in pediatric TB by bioinformatic 
mining of  gene expression data sets (61).

Evaluation of  the performance of  a subset of  markers indicated that combination rather than individ-
ual markers provided a better diagnostic ability. In the UK-based cohort, ROC analysis demonstrated that 
the multimarker panel comprising CFHR5, LRG1, CRP, LBP, and SAA1 performed well in ROC analysis 
against HCs (AUC = 0.93). However, the discriminatory power was reduced but still significant when com-
pared against ORDs (AUC = 0.81). Clinically, differentiation against other respiratory conditions is the key 
comparator for TB diagnosis. Host biomarkers are often limited by lack of  specificity, and our findings rein-
force the importance of  choosing correct control groups for verification analysis (18). In the South African 
cohort including patients with and without HIV infection, the multimarker panel comprising LBP, CFHR5, 
CRP, and SAA yielded its best performance when patients with TB were compared with ORDs (AUC = 
0.98). This is an important finding from a clinical perspective, as diagnosing TB in HIV-infected patients is 
generally more challenging than in nonimmunocompromised individuals (2). Furthermore, performance 
of  our panel in both cohorts (United Kingdom and South Africa) comparing ATBI to ORD groups was 
similar to a different recently validated host response signature (IL-6, IL-8, IL-18, and VEGF, AUC = 0.80) 
(62). This suggests our preliminary signature can be further refined by testing of  remaining highly signifi-
cant candidates that have not yet been studied. The primary difference between the groups is that the UK 
cohort were hospitalized patients, whereas the South African cohort were outpatients, and therefore the 

Figure 8. CFHR5 is validated as a new diagnostic marker of TB in HIV coinfection, and multiplex analysis performs well against other respiratory 
conditions. (A) CFHR5 was significantly upregulated during ATBI in a previously reported South African cohort, in both HIV-uninfected and HIV-infected 
individuals. Three other potential TB markers were also elevated: (B) LBP, (C) SAA1, and CRP (previously reported). Box displays 25% and 75% percentiles 
with line showing median and whiskers displaying minimum to maximum values. Differences were considered significant when P < 0.05 and calculated 
from Kruskal-Wallis test and Dunn’s multiple-comparisons test. HC-HIV (n = 16), ATBI-HIV (n = 53), and ORD-HIV (n = 13). HC, healthy controls (n = 60); 
PTBI, pulmonary TB infection (n = 39); ORD, other respiratory diseases (n = 22); HIV, HIV coinfection.
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better performance in South Africa may reflect the fact the patients were less unwell. For utility of  a point-
of-care test, outpatients with respiratory symptoms will be the primary target group.

Significant efforts have been directed toward defining an optimal plasma protein biosignature for active 
TB, and recently, extensive testing of  candidate proteins identified by predefined discovery panels, such as 
those measured with Luminex, has shown that multicomponent or multifactorial signatures could give a 
greater performance than immunological markers despite the heterogeneity of  clinical presentation (62, 
63). Inclusion of  novel markers that represent the biological diversity of  the host response to the M. tubercu-
losis infection in diagnostic panels may be crucial to achieve the analytical performance required to translate 
to effective point-of-care devices. From our top list of  46 proteins identified by both limma and WGCNA 
from the discovery phase (Supplemental Table 5), 21 proteins are entirely novel candidates and involved in 
a wide range of  biological processes. Consequently, verification and integration with known markers may 
improve the performance of  the existing signatures. This list recapitulated several potential diagnostic bio-
markers identified in a range of  reported plasma proteomic TB signatures (11, 13, 14, 20, 44, 64), including 
1 signature for TB progression (17), 1 for cured pulmonary tuberculosis (21), and 1 for multidrug-resistant 
TB (65), demonstrating the ability of  our proteomic and bioinformatic approach to detect proteins associ-
ated with the disease status, independent of  differences in discovery platforms or patient cohorts. However, 
further verification of  all the candidates that we identify here is required to refine the current panel.

Translation of such markers to point-of-care tests with adequate performance will require the development 
of multiplex lateral flow assays, and such platforms are currently emerging (66, 67) yet will require careful devel-
opment. Any assay used as a rule-out test would need population-based studies to confirm the specificity against 
standard current clinical practice and emerging blood protein-based signatures. Due to the overlap between TB 
and other respiratory conditions, the host biomarkers identified are potentially best utilized as a rule-out triage 
test before performing more specific and expensive rule-in tests (68). In the future, analysis of other proteins that 
are differentially abundant will become increasingly achievable, given the continuous advancements of LC-MS 
methods in terms of throughput and analytical confidence. When combined with machine learning approaches, 
LC-MS–based assays may transform specificity and sensitivity in the diagnosis of TB.

In summary, we developed a nondepletion-based proteomic methodology to deeply profile plasma 
and identify novel biomarkers. We present a unique statistical and bioinformatic pipeline for discovery and 

Figure 9. Combination of 4 protein markers discriminates TB patients with HIV coinfection. ROC curves were generated using SPSS v.25, for individual 
proteins (CFHR5, LBP, SAA1, and CRP) and after binary logistic regression for combined analytes. ROC curve for TB infection versus ORDs in HIV-uninfect-
ed individuals shows optimal performance from the combined host panel, with AUC of 0.888 (A). Analysis of TB infection versus ORDs in HIV-coinfected 
individuals produced an AUC of 0.976 from the combined panel (B).
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selection of  candidates for verification that uses both statistical significance and correlation of  expression 
patterns to clinical traits. We report numerous novel analytes, with potential to be translated for clinical 
utility. We have verified a subset of  biomarkers from segment 4 by independent antibody-based assays to 
generate a preliminary diagnostic panel, and similar interrogation of  segments 1 to 3 is likely to generate 
further novel biomarkers. Taken together, developing these host biomarkers into a multiplex lateral flow 
assay has potential for a near-patient TB rule-out test that fulfills the WHO product characteristics. Such an 
assay could be a powerful tool to address the global TB pandemic.

Methods

Study participants
This study included participants from 3 different cohorts. The participants from the South African cohort 
were recruited at Ubuntu HIV/TB clinic in Cape Town from June 2012 to February 2014 and were of  Black 
African ethnicity. Written informed consent was obtained, HIV testing was offered, and chest radiographs 
were performed as per routine practice. The diagnosis of  active TB was based on sputum smear or culture 
positivity, Gene Xpert results (where available), and chest x-ray examination. For the control group, all spu-
tum samples were smear and culture negative for acid-fast bacilli. Plasma samples from this cohort were 
retrospectively selected from a cohort collected and previously described (7). Participants from this cross-sec-
tional study were categorized into 6 groups: (i) HIV-uninfected patients without ATBI (HIV– ATBI–), (ii) 
HIV-uninfected patients with ATBI (HIV– ATBI+), (iii) HIV-uninfected patients without active TB but with 
symptoms attributable to other respiratory infectious disease (HIV– ORD), (iv) HIV-infected without ATBI 
(HIV+ ATBI–), (v) HIV-infected with ATBI (HIV+ ATBI+), and (vi) HIV-uninfected patients without active TB 
but with symptoms attributable to ORD (HIV+ ORD). Microbiological confirmation of  the infectious agent 
was not available for the HIV–/HIV+ ORD groups because of  limitations in local diagnostic capability. A ran-
domly selected subset of  11 plasma samples from male participants belonging to the groups HIV– ATBI– and 
HIV– ATBI+ was used for discovery (Supplemental Table 1). A larger set of  203 samples from all 6 groups and 
including those used for discovery constituted the South African verification cohort, and the demographic 
description of  this group has been previously reported with a CONSORT diagram (7).

Participants from the Peruvian discovery cohort were prospectively recruited at clinics in Lima, Peru, 
to match demographic features such as sex, age, and BMI of  participants from the South African cohort. 
Recruitment was conducted during 2015. The diagnosis of  active TB was based on a TB symptom ques-
tionnaire, sputum smear positivity, culture positivity using microscopic observation drug susceptibility cul-
ture, and chest x-ray. Healthy control individuals were Quantiferon negative. In total, 10 samples from this 
cohort were selected for the discovery stage of  this study (Supplemental Table 1).

A second independent cohort was included for verification of  proteomic candidates comprising a sub-
set of  118 participants from the MIMIC cross-sectional study conducted in the United Kingdom. Recruit-
ment was performed from June 2014 to February 2017. All the participants were HIV uninfected, and 4 
categories were defined for this cohort: (i) HCs, (ii) LTBI, (iii) ATBI, and (iv) ORDs. HCs were asymp-
tomatic individuals without a history of  previous active TB or TB contact and no evidence of  TB infection 
on routine screening tests (negative IFN-γ release assay and/or tuberculin skin test result). Participants 
with LTBI were defined based on a positive IFN-γ release assay and/or tuberculin skin test result, without 
evidence of  active disease after clinical evaluation. All active pulmonary TB cases were individuals with 
symptomatic respiratory infection that were microbiologically confirmed to have TB based on any of  the 
following criteria: sputum smear positive, sputum culture positive for M. tuberculosis, or PCR test positive 
for M. tuberculosis. The control group ORDs were symptomatic individuals with microbiologically con-
firmed respiratory tract infection caused by a pathogen (viral or bacterial) other than M. tuberculosis, without 
a history of  previous active TB (Supplemental Table 7). The microbiological composition of  this group was 
31% influenza A/B, 15% Streptococcus pneumonia, 8% respiratory syncytial virus, 8% Staphylococcus aureus, 
4% Mycoplasma pneumonia, 4% human metapneumovirus, 4% H1N1 influenza A, 4% methicillin-resistant 
Staphylococcus aureus, and 22% unidentified organism.

Plasma processing
Venous blood was collected in sodium citrate vacutainer tubes and plasma prepared according to standard 
operating procedures at the site of  recruitment and stored at –80°C. Aliquots of  120 μL of  plasma were 
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liquid fixed with 380 μL of  7 M guanidine hydrochloride and 10% methanol and stored at –20°C until SEC 
fractionation was performed for the discovery stage. Aliquots of  20 μL of  the individual samples available 
for discovery including control and active TB groups was combined to generate a master pool aimed to 
control batch effects across different MS experiments. All the plasma samples included in the verification 
stage were divided into 100 μL aliquots to reduce freeze-thaw cycles when received and stored at –80°C 
until analysis.

Multidimensional plasma proteomic analysis
High-performance size exclusion chromatography. A general overview of  the plasma proteomic method is pre-
sented in Supplemental Figure 1A. Plasma samples used for discovery, including 4 aliquots of  the master 
pool, were individually subjected to HP-SEC prefractionation under optimized conditions of  the method 
reported previously (28). Five columns were serially connected: 2 Shodex KW-804 columns, 8.0 mm inter-
nal diameter (I.D.) × 300 mm; 1 Shodex KW-802.5 column, 8 mm I.D. × 300 mm; and 2 Shodex KW-804 
columns, operated at 45°C and 1.5 mL/min under isocratic elution with 6 M guanidine hydrochloride and 
10% methanol. Four protein HP-SEC segments were collected in a peak-dependent fashion detected at 280 
nm and then stored at –20°C until further analysis. HP-SEC separations are presented in Supplemental Fig-
ure 2, A–E. The BEH450 SEC Protein Standard Mix (Waters) and an aliquot of  1 control plasma sample 
were run for day-to-day quality control of  the separation variation (Supplemental Figure 2F). Variation of  
retention times was within 2SD for all samples excepting 1 (Supplemental Figure 2G). Protein segments 
were dialysis purified using 3 kDa MWCO Slide-A-Lyzer cassettes according to manufacturer’s specifica-
tions (Thermo Fisher Scientific), with exchanges of  4 volumes of  4 L of  ultrapure water every 12 hours in 
a cold room environment (4°C). The resulting dialysates were completely lyophilized using the Edwards 
Modulyo EF4-174 freeze dryer and Thermo Savant Micro Modulyo-115 benchtop freeze dryer. Protein 
extracts were stored at –80°C under argon atmosphere.

Trypsin digestion. Total protein lyophilized extracts obtained from each HP-SEC segment were recon-
stituted with 0.5 M triethylamonium bicarbonate and 0.05% sodium dodecyl sulfate and sonicated on ice. 
Protein extracts were then centrifuged for 10 minutes at 16,000g and 4°C, and protein content in the super-
natants was estimated using the NanoDrop ND-1000 spectrophotometer (Thermo Fisher Scientific) using 
the A280 program. Then, 120 μg of  protein, volume adjusted, was reduced with 2 μL of  50 mM Tris-2-car-
boxymethyl phosphine and incubated for 1 hour at 60°C. Reduced samples were then alkylated using 1 μL 
of  200 mM methylmethane thiosulphonate and incubated 10 minutes at room temperature. Digestion was 
conducted to a ratio of  1:40 enzyme/substrate with trypsin MS grade (Pierce, Thermo Fisher Scientific) 
overnight for 16 hours at 37°C in the dark.

Stable isotope labeling. iTRAQ 8-plex tags were equilibrated at room temperature, and isopropanol was 
added accordingly to ensure more than 60% organic phase during labeling. Each tag was added to the 
appropriate trypsinized sample; then the labeling reaction was conducted for 2 hours at room temperature. 
The reaction was stopped with 8 μL of  5% ammonium hydroxylamine. Samples were dried and stored at 
–20°C until chromatographic separation. The master pool was labeled using the tag 113, and the samples 
were allocated randomly to the remaining tags as presented in Supplemental Figure 2A.

Offline alkaline RP-HPLC peptide fractionation. Offline peptide fractionation was based on high pH (0.08% 
v/v NH4OH) RP chromatography using the Kromasil C4 column (3.5 μm, 2.1 mm × 150 mm) and on the 
Shimadzu HPLC system previously described in the HP-SEC section. iTRAQ-labeled tryptic peptides were 
analytically reconstituted and pooled with 100 μL of  mobile phase, then centrifuged at 16,000g at room 
temperature for 10 minutes. Supernatant was injected and separated at a flow rate 0.30 mL/min and 30°C. 
The fractions were collected in a peak-dependent fashion detected at 215 nm. Peptide fractions were dried 
at room temperature with a speedvac concentrator for 4–5 hours and stored at –20°C until LC-MS analysis. 
Highly hydrophilic and hydrophobic fractions from the extreme regions of  the chromatographic traces 
were pooled and further cleaned using Gracepure SPE C18-AQ 100 mg/1 mL cartridges (Grace).

LC-MS analysis. The LC-MS experiments were performed on the Dionex Ultimate 3000 UHPLC sys-
tem coupled to the high-resolution nano-ESI-LTQ-Velos Pro Orbitrap-Elite mass spectrometer (Thermo 
Fisher Scientific). Higher energy collisional dissociation (HCD) and collision-induced dissociation (CID) 
fragmentation for each of  the collected fractions was performed. For the analytical separation the Acclaim-
PepMap RSLC, 75 μm × 25 cm, nanoViper, C18, 2 μm particle column (Thermo Fisher Scientific) with 
trap cartridge retrofitted to a PicoTip emitter (FS360-20-10-D-20-C7) was used for multistep gradient elu-
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tion. MS characterization of  eluting peptides was conducted between 380 and 1500 m/z. The top 10 +2 and 
+3 precursor ions were further characterized by tandem MS (MS/MS). Full MS scans and MS/MS scans 
were acquired at a resolution of  30,000 full width at half  maximum (FWHM) (complete plasma proteome) 
or 60,000 FWHM (detailed analysis segment 4) for profile mode and 15,000 FWHM for centroid mode, 
respectively, with the lock mass option enabled for the 445.120025 m/z ion (DMSO). Data were acquired 
using Xcalibur software (Thermo Fisher Scientific). Conditions for ionization, CID and HCD fragmenta-
tion, and ion detection were reported in a previous work (28).

MS data processing. Target decoy searching of  raw mass spectra data was conducted with the Proteome 
Discoverer 1.4 software (Thermo Fisher Scientific). SequestHT was used for the target decoy search for tryp-
tic peptides, allowing 2 missed cleavages, 10 ppm mass tolerance, and minimum peptide length of  6 ami-
no acids. A maximum of 2 variable (3 equal) modifications, oxidation (M), deamidation (N, Q), and phos-
phorylation (S, T, Y), were set as dynamic modifications, as static modifications were set: iTRAQ8plex (any 
N-terminal), Methylthio (C), and iTRAQ8plex (K). Fragment ion mass tolerance was set to 0.02 Da for the 
Fourier-transform–acquired HCD spectra and 0.5 Da for the ion trap–acquired spectra. FDR was estimated 
with Percolator (64 bit), and validation was based on q < 0.01 for high confidence or q < 0.05 for moderate 
confidence. All spectra were searched against a concatenated FASTA file including the reviewed UniProtKB 
SwissProt human proteome and the reference proteome (SwissProt and TrEMBL) for M. tuberculosis (strain 
ATCC 25618 / H37Rv), both retrieved on August 4, 2017. All peptide spectrum matches of  reporter ions and 
iTRAQ ratios were exported to.txt at 1% FDR or 5% FDR peptide confidence and 50% coisolation exclu-
sion threshold. Protein grouping was allowed and maximum parsimony principle was applied. Only unique 
peptides were considered for quantification downstream analysis. Raw precursor ion intensities from unique 
peptides were imported to R (version 3.3.1) and median adjusted. Median-normalized peptide intensities 
were log2 transformed, and values were averaged to obtain the mean relative expression for each protein. Only 
proteins with relative quantification reported in all the samples were included for statistical analysis. The MS 
proteomics data have been deposited to the ProteomeXchange Consortium via the PRoteomics IDEntifica-
tion Database (69) partner repository with the data set identifier PXD020212.

ELISA and Luminex assays
Proteins selected for verification from the proteomic discovery experiments were measured in 2 different 
cohorts using ELISA or Luminex assays. ELISA measurements comprised candidates for which there are 
commercially available kits, such as RPGRIP1L, FGL1, COMP, ILF2, KCNN2, LTN1, LRG1, and SFT-
PB (2B Scientific Ltd and Caltag Medsystems Ltd). One Luminex multiplex assay was custom-made for 
analysis of  LBP, COMP, TNFSF11, and CFHR5 and 2 single-plexes for SAA1 and CRP (Protavio Ltd). 
The coefficient of  variation for the ELISAs was no more than 12% and for the Luminex assays was no 
more than 15%. Assays were performed according to manufacturers’ directions.

ROC curves and AUC analysis
Performance of  the validated candidates was in the first instance assessed by calculating ROC curves for 
individual proteins and combined proteins in each verification cohort. The statistical package SPSS v.25 
(IBM) was used for this purpose. ROC analysis was conducted by setting pulmonary TB as a positive test, 
and binary logistic regression probabilities were calculated when analysis of  combined markers was per-
formed. Coordinates of  the curves were exported to estimate potential cutoff  values.

Statistics
Differentially expressed proteins were determined using linear modeling limma (70) followed by FDR cor-
rection for multiple-correction testing. WGCNA-based analysis was applied to the data sets resulting from 
the detailed profile of  segment 4 to interpret biologically relevant patterns of  protein expression in plasma 
of  patients with pulmonary TB. The WGCNA R package was used to explore the correlation relationships 
between clusters of  highly correlated proteins (color modules) and specific sample traits. The batch effect 
was corrected to increase the analysis power with ComBat (40). Networks of  highly interconnected pro-
teins were constructed using a soft-thresholding power of  0.9, and modules were identified using a mini-
mum module size of  15. Module significance was calculated as a measurement of  the correlation between 
biological traits, such as disease or group, ethnicity, and smoking status, and the protein expression profiles. 
Visualization tools available from this package were used to identify modules strongly correlated to biolog-
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ically relevant covariates. Functional enrichment analysis was conducted using the option g:GOSt available 
in the tool g:Profiler (71). Only GO terms with an FDR-adjusted P value (cutoff  0.05) were considered. 
Significant GO terms were summarized by removing redundant terms using the tool REVIGO (72). We 
generated cnet plots using the R package clusterProfiler (73).

For ELISA and Luminex measurements, differences between groups were analyzed by Kruskal-Wallis 
test and using Dunn’s multiple-comparisons correction. Data were analyzed with Prism 8 (GraphPad). A P 
≤ 0.05 was considered statistically significant. For the ROC analyses, the nonparametric method was used 
to estimate the standard error of  the AUC, and the confidence interval was set at 95%.

Study approval
All clinical studies were conducted according to Declaration of  Helsinki principles. All participants gave 
written informed consent before inclusion in any of  the clinical studies here included. The South African 
cohort was recruited under the study approved by the University of  Cape Town Research Ethics Committee 
(HREC, REF 516/2011). The prospective enrollment of  participants in the Peruvian study was approved by 
the Universidad Peruana Cayetano Heredia Institutional Review Board (SIDISI 65314). The MIMIC study 
was funded by the Technology Strategy Board UK/Innovate UK and approved by the National Research 
Ethics Service Committee South Central (Ref 13 SC 0043). University of  Southampton Ethics and Research 
Governance Online approval for transporting samples to the United Kingdom was granted (approval 17758).
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