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Introduction
Immunotherapies have had remarkable success in treating a variety of  malignancies, including meta-
static melanoma. However, many patients do not benefit from these treatments, and mechanisms dif-
ferentiating patient outcomes remain elusive. The immune checkpoint antibodies ipilimumab (IPI) and 
nivolumab (NIVO) block ligation of  the CTLA4 and PD1 inhibitory receptors, respectively, expressed 
on T cells. Consequently, proper T cell receptor (TCR) signaling and acquisition of  effector function 
is restored to tumor-reactive T cells (1). These agents are given systemically, so they also exert effects 
on other, non–tumor-reactive T cell populations, likely altering the immune landscape. However, the 
impact of  these agents on the immune landscape and its potential relation to patient outcomes remains 
underinvestigated.

Combination therapy with IPI and NIVO results in a 55% response rate and 52% overall survival at 
5 years, superior to either single agent, albeit at the cost of  increased immune-related toxicity (2, 3). 
To reduce treatment-related toxicity, the sequential administration of  NIVO and IPI for the treatment of  
metastatic melanoma was evaluated in the Checkmate-064 trial (4). In this trial, significant differences in 
patient outcomes were observed; patients receiving IPI for 12 weeks, followed by NIVO for 12 weeks (IPI 
> NIVO) with subsequent NIVO maintenance had significantly lower response rates and overall survival 
compared with the NIVO > IPI sequence.

BACKGROUND. The reshaping of the immune landscape by nivolumab (NIVO) and ipilimumab (IPI) 
and its relation to patient outcomes is not well described.

METHODS. We used high-parameter flow cytometry and a computational platform, CytoBrute, to 
define immunophenotypes of up to 15 markers to assess peripheral blood samples from metastatic 
melanoma patients receiving sequential NIVO > IPI or IPI > NIVO (Checkmate-064).

RESULTS. The 2 treatments were associated with distinct immunophenotypic changes and had 
differing profiles associated with response. Only 2 immunophenotypes were shared but had 
opposing relationships to response/survival. To understand the impact of sequential treatment 
on response/survival, phenotypes that changed after the initial treatment and differentiated 
response in the other cohort were identified. Immunophenotypic changes occurring after 
NIVO were predominately associated with response to IPI > NIVO, but changes occurring after 
IPI were predominately associated with progression after NIVO > IPI. Among these changes, 
CD4+CD38+CD39+CD127–GARP– T cell subsets were increased after IPI treatment and were negatively 
associated with response/survival for the NIVO > IPI cohort.

CONCLUSION. Collectively, these data suggest that the impact of IPI and NIVO on the 
immunophenotypic landscape of patients is distinct and that the impact of IPI may be associated 
with resistance to subsequent NIVO therapy, consistent with poor outcomes in the IPI > NIVO 
cohort of Checkmate-064.
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Defining biomarkers of  patient outcome for immunotherapy has been the focus of  much recent effort. 
Several biomarkers differentiating patient response to checkpoint inhibition have been described, includ-
ing tumor and infiltrating cell PDL1 expression, tumor mutation burden, expression of  a tumor IFN-γ–
induced gene expression signature, increased levels of  tumor-infiltrating CD8+ T lymphocytes, and others 
(5). Interestingly, there are few biomarkers associated with response to both αPD1 and αCTLA4. For some 
biomarkers, such as TCR diversity, T cell memory subsets, and frequency of  circulating Tregs, there is a 
reciprocal association with response for the 2 therapies (6–9). While useful for identifying rational targets 
for combination therapy, these biomarkers have failed to stratify patient responses well enough to have clin-
ical utility for prediction of  outcome. To accomplish this, multiple biomarkers that capture the complexity 
of  individual immune responses will likely be required. Emerging high-dimension, single-cell technologies 
offer the ability to probe the immune response at an unprecedented depth and define potentially novel 
biomarkers of  outcome.

High-parameter, single-cell technologies are powerful tools to address whether variations in the immune 
landscape may be associated with clinical benefit. Their utility in biomarker discovery has been highlighted 
by recent publications detailing signatures and complex immunophenotypes associated with metastatic 
melanoma patient outcomes. For example, using single-cell RNA sequencing (RNA-Seq), tumor transcrip-
tional signatures associated with immunological exclusion and CD8+ T cell transcriptional states associated 
with checkpoint immunotherapy resistance have been shown (10). Mass cytometry, another high-dimen-
sion, single-cell technology, has also shown promise in discovering immune cell phenotypes associated 
with immunotherapy response/resistance. Using this technology, the frequency of  monocyte populations 
has been shown to be associated with patient response to immunotherapy and overall survival (11).

For the work presented here, we used a potentially new, rapid computing platform for enumerating 
complex cell populations in single-cell data sets, described by combinatorial expression of  up to 15 mark-
ers. Using this approach, we describe the effects of  NIVO and IPI on the peripheral blood immune land-
scape of  metastatic melanoma patients and determine the association of  those effects with response to 
therapy and overall survival. We used high-parameter (22- to 27-color) flow cytometry to assess peripheral 
blood specimens from patients treated with sequential NIVO > IPI or IPI > NIVO. By using paired baseline 
and week-13 specimens, we were able to directly compare the immunophenotypic changes accompanying 
treatment with single-agent NIVO or IPI. We used a potentially novel computational platform, CytoBrute, 
to assess frequencies of  cell types defined by combinatorics for CD4+ and CD8+ T cells and myeloid cells. 
This methodology allowed us to identify clusters of  immunophenotypically related cells that were associat-
ed with each treatment and with patient outcomes.

Results
High-dimension flow cytometry and combinatorics characterize immunophenotypes in metastatic melanoma patients. 
In the Checkmate-064 trial, immunotherapy-naive metastatic melanoma patients received treatment with 
sequential NIVO > IPI or the reverse sequence IPI > NIVO (Figure 1A). To determine how NIVO and 
IPI shaped the immune landscape, we performed high-dimension flow cytometry on baseline and week-13 
PBMC samples (i.e., after the first drug in each sequence). The markers assessed in 4 separate staining pan-
els are shown in Supplemental Table 1 (supplemental material available online with this article; https://
doi.org/10.1172/jci.insight.137066DS1).

We first performed t-Distributed Stochastic Neighbor Embedding (tSNE) analyses to compare treat-
ment regimens and time points (Supplemental Figure 1). While differences were noted between respond-
ers and nonresponders and between week 0 and week 13, the significance of  the changes reported by the 
tSNE analysis was difficult to ascertain — particularly in identifying treatment-induced changes, given 
the nonpaired nature. It was also difficult to exhaustively identify all the changes depicted in a tSNE 
graphic using only visual approaches. We also noted that, for the highly heterogeneous and diverse cell 
populations studied in our flow cytometry panels, tSNE fails to produce clearly separated “islands” of  
cells, further complicating the identification of  cell types that differ by patient group or time point. For 
the tSNE shown, the perplexity was set at 30 and the number of  iterations was 1000. Several variations 
of  the tSNE algorithm with variations in perplexity (of  30, 50, 70) and iterations (of  1000, 1750, 2500) 
were performed with similar results (data not shown).

To evaluate immunophenotypes in a more comprehensive manner, we used CytoBrute, a compu-
tational approach designed for analysis of  high-parameter flow data sets. Briefly, each flow cytometry 
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data file was gated on immune cell lineages (i.e., viable CD3+CD4+, CD3+CD8+, and leukocytes) of  
interest. Data were then analyzed using CytoBrute, which creates Boolean combinations for all pos-
sible phenotypes up to 15 markers and calculates the frequency of  cells expressing each combination 
of  markers. Figure 1B illustrates the basis of  this approach, and Figure 1, C–D, shows how many 
phenotypes can be quantified. Although this approach can theoretically generate up to 14 million 
phenotypes (315 subsets, considering positive, negative, and neutral expression), many of  these cell 
types are exceedingly rare or nonexistent, so we selected the top 1000 most frequent phenotypes per 
sample, for each antibody panel. As each sample had different immunophenotypes comprising the top 
1000, nonoverlapping frequencies were also calculated, resulting in about 100,000 immunophenotypes 
evaluated. The frequencies of  immunophenotypes observed in each panel are depicted as mosaic plots 
in Supplemental Figure 2. Each tile is sized to indicate the proportion of  cells expressing a particular 
phenotype, and tiles are sorted from most frequent phenotypes (upper left corner) to least frequent 
(lower right corner). The tiles are color-coded by the number of  markers defining the phenotype. The 
mosaic plot demonstrates the relevance of  phenotypes defined by a high number of  markers (i.e., phe-
notypes defined by 8–15 markers, green and red boxes, most easily identified for Supplemental Table 
1), which are interspersed among the most frequently observed phenotypes. Notably, there is a small 
proportion of  phenotypes that are rarely observed or absent (gray boxes, lower right corner of  Supple-
mental Figure 2), demonstrating that the majority of  potential immunophenotypes, both frequent and 
infrequent, are represented within the data.

Figure 1. Overview of Approach. (A) PMBC samples were obtained from metastatic melanoma patients treated as part 
of the Checkmate-064 clinical trial. Patients were treated with sequential NIVO > IPI (Cohort A) or IPI > NIVO (Cohort B). 
Samples were collected before treatment (baseline) and after first agent (week 13). The indicated number of samples 
for each cohort and time point, broken down by patient response (responders in blue; nonresponders in red) are given. 
(B) A generalized illustration of how the data were assessed using combinatorics and CytoBrute is shown. Briefly, for 
each cell population (CD3+CD8+ in the example illustration), cells were assessed for single markers and all combinations 
up to 15 markers in complexity. This was performed for 4 separate flow cytometry panels. (C) The number of theoreti-
cal immunophenotypes for 1–15 markers in complexity is shown by blue bars and the corresponding number of actual 
immunophenotypes measured in the data set are shown in red. (D) For the actual immunophenotypes measured, the 
number of positive markers measured at each increment of complexity is shown.
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Changes in the peripheral blood immune landscape follow NIVO or IPI treatment. We assessed the effects 
of  NIVO and IPI on peripheral blood immune cells derived from metastatic melanoma patients by 
assessing baseline and week-13 paired samples using Wilcoxon signed-rank tests. With NIVO treat-
ment, 1744 immunophenotypes increased from baseline (pretreatment), while 2284 were decreased 
at P < 0.05 (Figure 2A). To dissect how the altered immunophenotypes were related, we projected 
significantly changed immunophenotypes into a 2-dimensional Uniform Manifold Approximation and 
Projection (UMAP) and then clustered the data using k-means clustering. As shown in Supplemental 
Figure 3A, 8 clusters were identified among the immunophenotypes increased after NIVO. The fre-
quency for the top 15 markers represented in each of  these clusters is shown in Supplemental Figure 
3B. Orange bars represent markers that are expressed (+); gray bars represent markers that are not 
expressed (–). The length of  the bar denotes the percentage of  immunophenotypes in that cluster 
expressing the corresponding marker. For example, the most common marker in the immunopheno-
types composing cluster 6 is CD38+, expressed by nearly all of  the immunophenotypes in that cluster. 
The second most common marker comprising this cluster is GITR–. Both CD4+ and CD8+ T cells are 
represented in this cluster. Cell types that increased after NIVO include T cells expressing the ectoen-
zymes CD38 and CD39 (clusters 1, 6, and 7) and CD73 (cluster 1), T cells with a naive-like phenotype 
(cluster 2), and cell types that are not well defined by the markers measured (clusters 3–5 and 8). Eight 
clusters were also identified for the immunophenotypes decreasing after NIVO, as shown in Supple-
mental Figure 3C. The phenotypic composition of  these clusters is shown in Supplemental Figure 
3D. Cell types that decreased with NIVO were predominately characterized by expression of  markers 
associated with central memory T cells (e.g., CD45RO+, CCR7+, CD127+, CD95+).

In IPI-treated patients, 4498 immunophenotypes were increased and 2679 were reduced, relative to 
baseline, with a P < 0.05 (Figure 2B). For immunophenotypes increasing after IPI, 8 clusters were identified 
(Supplemental Figure 4A); these were defined by the markers listed in Supplemental Figure 4B. In contrast 
to NIVO-associated changes, many of  these phenotypes were characterized by CD45RO+ and CD95+. 
Nine clusters were identified from the immunophenotypes decreasing after IPI (Supplemental Figure 4C), 
for which the phenotypic breakdown is shown in Supplemental Figure 4D. The majority of  the cells were 
CD4+ and expressed CD127. Several clusters also contained GARP+ immunophenotypes.

NIVO and IPI have distinct impacts on the peripheral immunophenotypic landscape. To better compare the 
immunophenotypic effects of  the 2 drugs, we examined which changes were common to both drugs versus 
unique to only 1 drug. For the 2 treatments, 584 immunophenotypes that changed overlapped (~5%), as 
shown in Figure 2C. Figure 2D shows that, of  the 584 immunophenotypic changes common across drugs, 
281 increased and 244 decreased. However, 56 immunophenotypes had reciprocal changes; these cell pop-
ulations were expanded after IPI but contracted after NIVO. Three additional phenotypes were increased 
after NIVO but decreased after IPI. Supplemental Figure 5A shows the immunophenotypes that increased 
with both treatments fell into 7 clusters. A CD4+CD38+ T cell phenotype predominated in clusters 2, 3, 4, 
and 7 (Supplemental Figure 5B). The 244 immunophenotypes that decreased with IPI or NIVO grouped 
into 7 clusters (Supplemental Figure 5C), which included almost exclusively CD4+ immunophenotypes, 
with the exception of  cluster 7 (Supplemental Figure 5D). Six clusters represented the immunophenotypes 
decreasing after NIVO but increasing after IPI (Supplemental Figure 5E). Clusters 1 and 4 were composed 
of  CD4+OX40+Ki67+ T cells (Supplemental Figure 5F).

We next evaluated whether changes in circulating immunophenotypes could distinguish treatment reg-
imens. To do so, the difference in frequency between week 13 and week 0 (delta value) was calculated for 
each immunophenotype. These delta values were then fed into an elastic net (EN) regularized regression 
model with repeated cross validation. Using paired changes of  the 584 identified overlapping phenotypes 
from all patient samples, the model was able to predict whether paired patient samples were from those 
who received NIVO or IPI with an AUC of  0.867. The corresponding receiver operating characteristic 
(ROC) is shown by the black dotted line in the left panel of  Figure 2E. The model values for individual 
paired samples are shown in the right panel of  Figure 2E. Patient outcomes were added as a color dimen-
sion with responding patients (partial or complete response according to RECIST 1.1 criteria) in blue and 
progressing patients in red. Using the EN model determined by all patient samples, we then determined 
the ROC for responding and progressing patients separately. As shown in the left panel of  Figure 2E, an 
AUC of  0.982 was achieved in responding patients (blue line) and an AUC of  0.714 in progressing patients, 
suggesting that patients who respond to therapy have more distinct immune changes than nonresponders.
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Peripheral blood immunophenotypes at baseline and after treatment are associated with patient outcomes after 
NIVO > IPI sequential therapy. We next sought to determine if  baseline and/or week 13 (after first agent) 
peripheral blood immunophenotypes were associated with patient outcomes. In baseline samples from 
NIVO > IPI–treated patients (left panel, Figure 3A), 260 signatures were associated with both response 
to therapy (P < 0.05, Mann-Whitney U test comparing responders and progressors) and overall survival 
(divided above and below median frequency, P < 0.05, Mantel-Cox test). Each dot represents a significant 
immunophenotype and is colored by the associated P value from the comparison of  frequency differences 
between responders and progressors. The x coordinate is the median frequency of  the immunophenotype 
in progressors and the y coordinate is the corresponding median frequency in responders. The 61 immuno-
phenotypes significantly elevated at baseline in responding patients formed 5 clusters, as shown in Supple-
mental Figure 6A. Cluster 1 consisted of  CD8+CD95+PD1–CD25– T cells, clusters 2 and 4 consisted of  
CD4+CD45RA+CD127+HELIOS–CD73–CD49B–CD38– T cells, and cluster 5 contained CD4+ or CD8+ T 
cells expressing LAG3 (Supplemental Figure 6B). The 199 immunophenotypes that were relatively lower 
in responding patients (and therefore higher in progressing patients) formed 8 clusters, as shown in Sup-
plemental Figure 6C. Clusters 1, 3, and 7 were composed of  CD4+CD38+CD39+CD127–GARP– T cells 
(Supplemental Figure 6D). Clusters 2, 4, 5, 6, and 8 were composed of  CD95+-expressing CD4+ T cells.

After NIVO (week 13), 662 immunophenotypes were found to be associated with patient outcomes in 
those receiving sequential NIVO > IPI treatment (right panel, Figure 3A). In contrast to baseline response–

Figure 2. Nivolumab and ipilimumab differentially impact on peripheral blood immunophenotypes. (A) The median frequency at baseline on the x axis 
and the week-13 median frequency on the y axis is shown for significantly changed immunophenotypes (P < 0.05, Wilcoxon signed-rank test) in nivolum-
ab-treated patient samples. Each dot represents an immunophenotype and is colored by P value. The purple dotted line with a slope of 1 corresponds to 
no change in median frequency. (B) Ipilimumab-treated patient samples are likewise shown. (C) A Venn diagram is shown with the number of significantly 
changed immunophenotypes in each group and the overlap. The 525 immunophenotypes are those overlapping with changes in the same direction in both 
NIVO- and IPI-treated patient samples. (D) The median relative change from baseline to week 13 in nivolumab-treated patient samples on the x axis and 
the relative change in ipilimumab-treated patient samples on the y axis is shown for the 584 overlapping immunophenotypes. The purple dotted lines 
correspond to no change in median frequency. (E) The delta values (week 13 minus baseline) of the 584 overlapping phenotypes were used in an elastic net 
regularized regression model to categorize whether a paired patient sample received nivolumab or ipilimumab treatment. The receiver operator character-
istic (ROC) and resulting AUC for all paired samples is shown by the dotted black line in the left panel. The ROC and AUC for responding patient samples is 
shown in blue and for progressing patient samples in red. The model values for nivolumab and ipilimumab-treated paired patient samples are plotted in 
the right panel. Box plots show median ± quartiles with whiskers indicating range.
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associated immunophenotypes, which were predominately CD4+, nearly all the post-NIVO response–asso-
ciated immunophenotypes were CD8+ — in particular, those found at higher frequencies in responders. 
Among these immunophenotypes, 561 were increased in frequency in responding relative to progressing 
patients. As shown in Supplemental Figure 6E, 10 clusters were formed from these immunophenotypes 
(Supplemental Figure 6F). Combinations of  CCR7+, CD127+, CD45RO+, or CD95+ CD8+ T cells com-
prised clusters 2, 3, 4, 5, 6, 8, and 10. A total of  101 immunophenotypes forming 7 clusters were found 
to be decreased in responding relative to progressing patients (Figure 3A, right panel, and Supplemental 
Figure 6G). As shown in Supplemental Figure 6H, clusters 1, 2, and 6 were composed of  CD8+CD45RA+ 
T cells. Collectively, a number of  immunophenotypes that were associated with patient response and sur-
vival and were grouped into several immunophenotypically related clusters were identified. These included 
elevated levels of  naive-like (CD45RA+, CD127+) T cells and CD8+LAG3+ phenotypes at baseline and 
elevated levels of  central memory–like (CD45RO+, CCR7+, CD127+, CD95+) T cells after NIVO. A popu-
lation of  CD4+CD38+CD39+ T cells at baseline was also associated with progression and shorter survival.

Peripheral blood immunophenotypes at baseline and after treatment are associated with patient outcomes after 
IPI > NIVO therapy. In IPI > NIVO–treated patients, 432 baseline immunophenotypes were associated 
with response to treatment and survival (Figure 3B, left panel). Of  these, 376 were elevated in frequency 

Figure 3. Immunophenotypes associated with patient response are distinct in nivolumab and ipilimumab sequentially treated patients. (A) The 
median frequency of immunophenotypes that are significantly different for both response (determined by Mann-Whitney U test) and overall survival 
(determined by Mantel-Cox test) in nonresponding patients are shown on the x axis and in responding patients on the y axis for nivolumab > ipilim-
umab–treated patient samples. Each dot represents an immunophenotype and is colored by the P value of the comparison between responders and 
nonresponders, for that cell population. The purple dotted line with a slope of 1 corresponds to no change in median frequency. Significantly different 
immunophenotypes in baseline patient samples are shown in the left panel, and significantly different immunophenotypes in week-13 patient samples 
are shown in the right panel. (B) Immunophenotypes for ipilimumab > nivolumab–treated patients are likewise shown. (C) A Venn diagram is shown 
with the number of immunophenotypes significantly different in each cohort and time point. (D) A graph of 1 of the 2 related significantly different 
immunophenotypes overlapping between nivolumab > ipilimumab– and ipilimumab > nivolumab–treated patients at baseline is shown. Frequencies 
of the populations shown are plotted by cohort and response. Each dot represents an individual patient sample. Box plots show median ± quartiles, 
with whiskers indicating range. (E) A survival plot for this immunophenotype is also shown. Patients were stratified based on median frequency of the 
immunophenotype. Nivolumab > ipilimumab–treated patients with greater than median frequencies are shown in blue and less than median frequency 
in green. Ipilimumab > nivolumab–treated patients with greater than median frequencies are shown in red and less than median are shown in purple.
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in responding relative to progressing patients. These 376 immunophenotypes formed 8 clusters and were 
a mixture of  CD4+ and CD8+ T cell populations (Supplemental Figure 7, A and B). Clusters 5 and 8 were 
composed of  CD4+ T cells expressing LAG3+ and GARP+. Fifty-six phenotypes, forming 5 clusters, were 
decreased in frequency in responding patients (Supplemental Figure 7, C and D). All clusters contained 
a predominance of  CD45RO+ and CD95+ immunophenotypes, while clusters 2, 4, and 5 also contained 
CCR7-expressing immunophenotypes.

At week 13, after IPI treatment (Figure 3B, right panel), 668 immunophenotypes were associated with 
treatment response and survival, with 608 elevated and 60 at lower frequencies in responding compared 
with progressing patients (Figure 3B, right panel). As shown in Supplemental Figure 7E, immunopheno-
types higher in relative frequency in responders formed 7 clusters. CD4+ and CD8+ T cell immunophe-
notypes with CCR7+ expression comprised clusters 1, 2, 3, 5, and 7 (Supplemental Figure 7F). The 60 
immunophenotypes with lower frequencies in responders formed 6 clusters (Supplemental Figure 7G). 
These clusters were mixed populations of  CD4+ and CD8+ T cells (Supplemental Figure 7H). Cluster 2 
included T cells expressing CD38 and CD39.

Distinct immunophenotypes are associated with patient response in NIVO > IPI– and IPI > NIVO–treated patients. 
We next compared the immunophenotypes associated with outcome between NIVO > IPI and IPI > NIVO 
patients. As shown in Figure 3C, only 2 (related) immunophenotypes were associated with response in 
both cohorts. The associations were reciprocal between the 2 cohorts. These cells were CD14+CD11C+C-
D33+CD15–CD19–CD66B–PDL1–PDL2+CD163+GAL9–CD80–CD86–41BBL+CD40+OX40L+, and an iden-
tical immunophenotype in which CD66B was not measured. The frequency of  this immunophenotype in 
responding and progressing patients for each treatment cohort is shown in Figure 3D. In NIVO > IPI–treated 
patients, higher frequencies of  these immunophenotypes were associated with progression (P = 0.0164), while 
in IPI > NIVO–treated patients, higher frequencies were associated with patient response (P = 0.0246). This 
was reflected in the survival curves shown in Figure 3E. Frequencies of  these phenotypes above the median 
were associated with shorter survival in NIVO > IPI–treated patients (P = 0.0050; HR 95% CI, 1.681–18.74) 
but with prolonged survival in IPI > NIVO treated patients (P = 0.0463; HR 95% CI, 1.019–9.038).

NIVO-associated immune landscape changes favor response-associated immunophenotypes in the IPI > NIVO 
cohort. In the Checkmate-064 trial, the NIVO > IPI treatment arm had greater rates of  response and overall 
survival compared with the IPI > NIVO treatment arm (4). We hypothesized that the immunophenotypic 
impact of  treatment with NIVO or IPI may have altered the immune landscape in a manner that influenced 
subsequent response or resistance to the second agent. We tested this hypothesis by determining the over-
lap between the immunophenotypes that changed significantly after the first treatment in the regimen and 
those associated with treatment response and survival in the opposing cohort. As depicted in Figure 4A, 
of  the 3959 cell populations that were significantly altered after NIVO, 4 overlapped with those that were 
associated at baseline with response and survival in IPI > NIVO–treated patients. However, none of  the 
markers measured were expressed by the cells in these 4 immunophenotypes (i.e., no positive markers; data 
not shown). An additional 95 overlapping immunophenotypes were found that associated with treatment 
response/patient survival at week 13 in the IPI > NIVO cohort and changed after NIVO treatment. A 
total of  99% (94 of  95) of  these overlapping immunophenotypes were positively associated with response, 
with almost all (93 of  94) immunophenotypes increasing after NIVO, and they were elevated at week 13 in 
responders to IPI > NIVO.

We next evaluated the composition of  the 95 immunophenotypes identified above associated with 
treatment response/patient survival at week 13 in the IPI > NIVO cohort (Supplemental Figure 8A). The 
93 immunophenotypes that were increased at week 13 after NIVO and associated at baseline with response 
in IPI > NIVO (green dots in Supplemental Figure 8A) are described in Supplemental Figure 8B. These 
cells were all CD4+ and predominately CD45RO– and CCR7+. A representative population of  CD4+C-
D45RO–CCR7+ T cells is shown in Figure 5A. The left-most panel shows that most patients had an increase 
in the frequency of  this population after NIVO treatment (P = 0.035). The second panel shows that higher 
frequencies of  this population in IPI > NIVO–treated patients at week 13 were associated with response 
(P = 0.0046). The second to right panel shows that IPI > NIVO patients with greater than the median 
frequency of  CD4+CD45RO–CCR7+ T cells at week 13 have longer overall survival (P = 0.019; HR 95% 
CI, 1.343–27.42). To validate this result, we evaluated changes in the frequency of  this immunophenotype 
in a separate cohort of  metastatic melanoma patients treated with NIVO monotherapy (ClinicalTrials.gov 
identifier NCT01176461). Forty paired patient samples were assessed. The right-most panel of  Figure 5A 
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shows that, in this cohort of  patients treated with NIVO, CD4+CD45RO–CCR7+ T cells also increased in 
frequency after NIVO (P = 0.046).

IPI-associated immune landscape changes favor progression-related immunophenotypes in the NIVO > IPI cohort. In 
a similar assessment of  the overlap between post-IPI changes and NIVO > IPI outcome–associated immuno-
phenotypes, we identified 74 immunophenotypes that were altered by IPI treatment and whose frequency at 

Figure 4. Ipilimumab-induced immunophenotypic changes are associated with lack of response to sequential nivolumab-ipilimumab. (A) A Venn 
diagram is shown with the number of immunophenotypes significantly changed after nivolumab (purple circle) and immunophenotypes significantly 
different for survival and response in ipilimumab > nivolumab–treated patients at baseline (top orange circle) and after ipilimumab (bottom orange 
circle). The direction of change and relative representation in responding patients for overlapping immunophenotypes at baseline (top quadrant plot) and 
after ipilimumab (bottom quadrant plot) is plotted. The number of immunophenotypes significantly increased after nivolumab and lower in ipilimum-
ab-nivolumab responding patients are shown in the top left quadrants. The number of immunophenotypes significantly increased after nivolumab and 
higher in ipilimumab > nivolumab responding patients are shown in the top right quadrants. The number of immunophenotypes significantly decreased 
after nivolumab and lower in ipilimumab > nivolumab responding patients are shown in the bottom left quadrants. The number of immunophenotypes 
significantly decreased after nivolumab and higher in ipilimumab > nivolumab responding patients are shown in the bottom right quadrants. (B) A similar 
Venn diagram, along with quadrant plots, is shown for significant ipilimumab changes and nivolumab-ipilimumab response/survival–associated immuno-
phenotypes. (C and D) Delta values (weeks 13–0) for the 210 immunophenotypes significantly changed after nivolumab or after ipilimumab and associated 
with response/survival in ipilimumab > nivolumab– or nivolumab > ipilimumab–treated patients were used in an elastic net regularized regression model 
to categorize patient response. (C) The ROC and AUC for patients in the nivolumab > ipilimumab–treated cohort are shown. The model values for nonre-
sponding and responding patients are plotted in the bottom right inlay. Box plots show median ± quartiles, with whiskers indicating range. (D) Results for 
ipilimumab > nivolumab–treated patients are likewise shown.
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baseline in the NIVO > IPI treatment arm was associated with response/survival (Figure 4B). Similarly, we 
identified 36 immunophenotypes that were altered by IPI and whose presence at week 13 in the NIVO > IPI 
treatment arm was associated with response/survival (Figure 4B). Supplemental Figure 8, C–E, shows how 
these immunophenotypes cluster into groups of  cell populations.

Unlike the NIVO-associated changes, IPI-associated changes had a negative association with NIVO 
response. At baseline, 92% of  the overlapping phenotypes (68 of  74; Figure 4B) were associated with pro-
gression; 67 of  these immunophenotypes were increased after IPI and were found at relatively lower fre-
quencies in NIVO > IPI responding patients. As shown in Supplemental Figure 8D, these immunopheno-
types were all CD4+CD38+CD39+GARP–CD127– and varied with respect to other markers. A representative 
population from these 67 immunophenotypes, CD4+CD38+CD39+CD127–HELIOS–CD25–LAG3–CXCR3–

CCR4–LAP–GARP– T cells, is shown in Figure 5B. The left-most panel shows that this population was 
increased after IPI (P = 0.039). The second panel shows that significantly higher frequencies of  this popula-
tion are seen in progressing patients in the NIVO > IPI cohort (P = 0.0079). The second to right panel shows 
that patients with greater than median frequency of  this population also have significantly shorter survival 
(P < 0.0001; HR 95% CI, 4.399–69.23). To independently validate the association of  this immunophenotype 
with patient response, we assessed the frequency of  CD4+CD38+CD39+CD127–GARP– T cells in peripheral 
blood samples of  metastatic melanoma patients treated with NIVO monotherapy. Twenty responding and 
47 progressing patient samples were assessed. Shown in the right-most panel of  Figure 5B, elevated levels of  
that immunophenotype were associated with progression of  disease (P = 0.047).

At week 13, all (36 of  36) of  the phenotypes altered by IPI were associated with poor treatment 
response/survival for NIVO > IPI patients. Of  the 36 immunophenotypes identified, IPI increased 
the frequency of  30 of  these cell populations, but patients responding to NIVO > IPI had significant-
ly decreased frequencies of  these cells. Supplemental Figure 8F shows how these immunophenotypes 
clustered, and Supplemental Figure 8, G and H, describes the marker composition of  these clusters. The 
additional 6 overlapping immunophenotypes were decreased after IPI but had elevated frequencies at 
week 13 in NIVO > IPI responding patients. These 6 immunophenotypes included both CD4+ and CD8+ 
T cells and were predominately CD127+, CD95+, CD45RO+, and CCR7+. A representative phenotype 
from these 6 is shown in Figure 5C. The left-most panel shows that this population was significantly 
decreased after IPI (P = 0.011). The middle panel shows that the frequency of  this population at week 13 
in NIVO > IPI patients is significantly higher in responders compared with progressors (P = 0.035). The 
second to right panel shows the survival benefit in patients with more than the median frequency of  this 
population (P = 0.016; HR 95% CI, 1.322–15.49). However, shown in the right-most panel of  Figure 5C, 
in a cohort of  metastatic melanoma patients treated with NIVO, we were unable to confirm a relation-
ship between reduced levels of  these cells and disease progression (P = 0.530).

Changes in identified immunophenotypes correctly classify patient response in a cross-validated EN model. To 
determine if  the changes in overlapping immunophenotypes described in Figure 4, A and B, were suffi-
cient to predict patient outcomes, we used patient delta values for the 209 overlapping immunopheno-
types and an EN model with leave-one-out (LOO) cross validation. As shown in Figure 4C, responding 
and progressing patients in the NIVO > IPI–treated cohort were accurately categorized with an AUC 
of  0.918. Figure 4D shows that patients in the IPI > NIVO–treated cohort were correctly categorized 
as responders or progressors, but with lesser sensitivity and specificity, resulting in an AUC of  0.786. 
These results further support the importance of  immunophenotypic changes resulting from treatment 
and their relation to patient response.

Discussion
In the current study, we used a potentially novel and powerful approach to analyzing high-dimension flow 
cytometry data to assess the impact of  the immune checkpoint inhibitors NIVO and IPI on the peripheral 
blood immune landscape. By assessing the frequencies of  complex immunophenotypes in lieu of  dimen-
sion-reduction analytical methods (e.g., tSNE), we were able to more precisely identify treatment-associ-
ated changes in the immunophenotypic landscape, identify response-associated immunophenotypes, and 
assess their relationships. Collectively, these data suggest that IPI and NIVO alter the peripheral blood 
immunophenotypic landscape of  patients in distinct ways. Furthermore, IPI-associated alterations over-
lapped with immunophenotypes associated with progression of  disease and shorter survival in the NIVO 
> IPI cohort. Although the overlap occurred with the patient responses to sequential NIVO > IPI noted 
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at week 25, overall responses deviated little from week-13 responses (after NIVO alone) (4). These results 
suggest that IPI-associated immune landscape changes may impair responses to subsequent NIVO and may 
explain the lower response rate and shorter survival seen in the IPI > NIVO cohort.

While the emergence of  single-cell, high-dimension technologies has increased the ability to probe 
the antitumor immune response, approaches to analyze the complex data generated have failed to keep 
pace. Dimension-reduction techniques such as principal component analysis and tSNE are commonly used 
to visualize high-parameter data, but these techniques do not report the specific combination of  markers 
expressed by cell types. A critical, unanswered question in high-parameter data analysis is whether clustering 
and dimension-reduction algorithms sufficiently capture all the cell types that differ across study groups. 

Figure 5. Ipilimumab-induced immunophenotypic changes are associated with lack of response to sequential nivolumab > ipilimumab. (A) A representative 
immunophenotype increased after nivolumab and having an increased frequency in responding patients is shown. The left-most graph shows the paired 
frequency changes in nivolumab-treated patients (significance determined using Wilcoxon signed-rank test). Responding patients are represented by blue 
lines, nonresponding patients with red lines, and nonevaluable patients in black. The second to left graph plots the week-13, postipilimumab frequencies 
of this population comparing responding and nonresponding patients. Box plots show median ± quartiles, with whiskers indicating range. Significance was 
determined by Mann-Whitney U test. The third panel is a survival plot for this immunophenotype. Patients were stratified based on median frequency of the 
immunophenotype at week 13. Patients with greater than median frequencies are shown in orange and less than median frequency in green. Significance was 
determined by Mantel-Cox test. The right-most graph shows the paired frequency changes in an independent validation cohort of nivolumab-treated patients. 
Significance was determined by Mann-Whitney U test. (B) A representative immunophenotype increasing after ipilimumab and having decreased frequency 
at baseline in nivolumab > ipilimumab responding patients is likewise shown. (C) A representative immunophenotype decreasing after ipilimumab and having 
increased frequency at baseline in nivolumab > ipilimumab responding patients is likewise shown.  
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Classically, to exhaustively examine cell phenotypes in lower-parameter flow cytometry data sets, analysis 
has been performed by using combinatorics, a method that constructs all possible phenotypes from the mark-
ers measured. For example, using combinatorics, an n-color flow cytometry experiment would report the 
number of  cells expressing each combination of  expression (+) or lack of  expression (–) for the n markers, 
resulting in 2n phenotypes. The use of  a neutral condition for each marker allows assessment of  shorter and 
simpler phenotypes (12), resulting in 3n phenotypes. The identification of  simple phenotypes is critical for 
generating translatable discoveries from high-parameter technology. It would be unnecessarily complex and 
expensive to develop clinical tests to detect cell populations that are defined by much more than 3 markers, 
when simpler surrogates might readily be identified within a high-parameter data set. While combinatorics 
offers a means to precisely identify and quantify all cell subsets in a sample, it is computationally intensive. 
Even for a 10-parameter experiment measuring 1 million cells, combinatoric analysis using the R-based 
flowType algorithm requires 4 hours; in comparison, the same analysis is completed by the CytoBrute plat-
form within 2 seconds. The improvement in computational time is attributable to the unique and proprietary 
distributive computing approach CytoBrute uses, and this approach is adaptable to other R-based algorithms 
and applications, including machine learning–based analysis of  high-parameter data sets.

There are shortcomings in this study that impact the interpretation of  the data. Rather than using 
traditional FDR approaches, we used a non–multiple comparison–adjusted P value of  < 0.05 as a determi-
nation of  significance. This approach was taken for several reasons. First, the number of  samples available 
for assessment were limited, and in turn, the lower threshold of  P values obtainable was limited. Second, 
the combinatoric nature of  the CytoBrute approach creates nonindependent measurements, which would 
be highly overcorrected if  using traditional multiple comparison corrections. However, given (a) the use 
of  LOO cross validation in EN models, (b) the validation of  important identified immunophenotypes in 
an independent cohort, and (c) our focus on demonstrating that the impact of  IPI and NIVO are distinct 
and that the immune landscape changes induced by IPI are associated with lower response to NIVO and 
shorter survival in the IPI > NIVO cohort, the conclusions of  this study are supported by the data. Many 
response-associated immunophenotypes not overlapping with treatment changes were also identified that 
have not yet been evaluated in a validation cohort. While beyond the scope of  this study, these represent 
potentially important biomarkers and are the subject of  future validation efforts.

Several thousand significant changes in peripheral blood immunophenotypes were observed after 
NIVO or IPI treatment, highlighting the systemic impact of  these agents. These changes were largely 
distinct, with only < 5% overlap in significantly changed immunophenotypes. Of  the few overlapping 
immunophenotypes, both treatments increased populations of  CD4+CD38+CD39+CD127–GARP– T 
cells, which were found to be associated with poor outcomes. This population was also associated with 
progression in an independent cohort of  NIVO-treated patients, validating the importance of  this pheno-
type in patient response. To our knowledge, this population of  T cells has not been previously described. 
CD39 is an ectonucleotidase that converts extracellular ATP into adenosine and has been the focus of  
many studies demonstrating its roles in generating an immunosuppressive tumor microenvironment, 
resulting in its emergence as a potential therapeutic target (13–18). CD38 also functions as an ectoen-
zyme, both as a hydrolase and converting NAD+ to cyclic ADP-ribose. It is being assessed as a target in 
combination with immunotherapy (19, 20). In agreement with our data, CD38 expression was recently 
shown to be upregulated after immunotherapy and was found to be associated with negative outcomes 
in a murine checkpoint inhibition model and in human patients (21). Based on the current knowledge 
of  the function of  CD38 and CD39, and our observation that CD4+CD38+CD39+ immunophenotypic 
clusters are associated with poor patient outcomes, we hypothesize that this population generates an 
immunosuppressive microenvironment through the ectoenzymatic activity of  CD38 and CD39. Investi-
gations of  mechanistic relationship to patient response, the function of  this population, and the efficacy 
of  targeting it are warranted by the data presented in this study and are ongoing.

In addition to the low level of  overlap of  immunophenotypic changes, no immunophenotypes associat-
ed with patient outcomes were found to be shared between the treatment sequences, with the exception of  
2 related immunophenotypes. This further highlights the distinct impact of  the 2 therapies. The 2 overlap-
ping immunophenotypes were reciprocally associated with patient outcomes in the 2 cohorts. Based on the 
expression of  CD14, CD11b, and CD33, these cells are likely of  myeloid origin (22) and expressed a mixed 
inflammatory (e.g., 41BBL+, CD40+) (23, 24) and suppressive phenotype (e.g., PDL2+, CD80–, CD86–) 
(25–27). While beyond the scope of  the present study, this cell population will be further interrogated in 
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functional assays to determine potential mechanisms by which it could be associated with the disparate 
outcomes in the 2 treatment cohorts.

T cell phenotypes associated with memory subsets were consistently and significantly associated with patient 
outcomes in both treatment cohorts. In the NIVO > IPI cohort, responding patients had higher frequencies of T 
cells with a naive phenotype (CD4+CD45RA+CD127+) at baseline and central memory phenotypes (CD4/8+C-
D45RO+CD127+CD95+CCR7+) after NIVO. Conversely, at baseline, progressing patients had more differentiat-
ed effector T cells (CD4+CD45RO+CD95+) and higher frequencies of CD8+CD45RA+ T cells after NIVO. These 
data suggest that the formation of memory T cell phenotypes may be important for the efficacy of NIVO. In 
contrast, in the IPI > NIVO cohort, responding patients had increased frequencies of CD4/8+CD45RO+CD95+ 
and CD4+CD45RA+CD95+ T cells at baseline and increased frequencies of CD4+CD45RO–CCR7+ T cells after 
IPI. Several other immunophenotypic clusters were found to be associated with patient response and survival, 
including CD4+CD45RA+CD127+, CD4+CD45RO+CD95+, and CD8+LAG3+ T cell populations. Taken with 
data presented, showing a lack of overlap in treatment-associated changes and outcome-associated immunophe-
notypes between the 2 cohorts/treatments and published literature (6–9), it is increasingly clear that the systemic 
immune impact and the mechanisms by which CTLA4 and PD1 blockade function are distinct.

Collectively, these data suggest that the impact of  IPI and NIVO on the immunophenotypic landscape 
of  patients is distinct and that the impact of  IPI may be associated with resistance to subsequent NIVO ther-
apy, consistent with poor outcomes in the IPI > NIVO cohort of  Checkmate-064. In further support of  this 
interpretation, in clinical trials, the response rates to NIVO in patients progressing after IPI are lower than 
those in IPI-naive patients (28–32). However, these response rates are compared across different studies, and 
lower response rates to NIVO in IPI-refractory patients may result from selection of  immunotherapy-resis-
tant patients. Response rates in the NIVO > IPI cohort were similar to concurrent NIVO and IPI, suggesting 
that concomitant IPI does not negatively impact NIVO efficacy. Regardless, the data presented herein raise 
concerns about the negative impact of  IPI treatment before NIVO and warrant consideration in patient 
treatment decisions. Future studies will investigate immunophenotypic changes occurring with concurrent 
treatment and associated patient outcomes. Furthermore, studies will need to address whether the immune 
landscape changes resulting from IPI are normalized over time and the duration that takes to occur. Future 
investigations will also need to investigate the function of  and potential value as biomarkers of  immune cell 
populations that are associated with treatment outcomes in this study.

Methods
Patient samples and processing. Cryopreserved peripheral blood mononuclear cells (PBMC), obtained from 
samples collected at baseline and week 13 of  the CA209-064 clinical trial (ClinicalTrials.gov identifier 
NCT01783938), were thawed, washed, and stained for flow cytometry in a single batch. Viability for all 
samples was > 85%. Samples were fixed in 0.5% paraformaldehyde. Baseline and week-13 PBMC obtained 
from patients treated with NIVO monotherapy as part of  the CA209-006 clinical trial (ClinicalTrials.gov 
identifier NCT01176461) were similarly assessed in validation experiments.

Flow cytometry. Four, 24+ parameter antibody panels (Supplemental Table 1) were developed using 
ColorWheel software, an automated flow cytometry panel design tool that proposes candidate panels based 
on spillover-spreading error, dye brightness, and antigen density (33). Data were collected on a custom BD 
FACSymphony A5 30-parameter flow cytometer, using a 96-well plate reader.

Data analysis. After compensation for overlap in fluorescent spectra, removal of events representing fluores-
cence aggregates, and exclusion of cell doublets and dead cells, we identified fluorescence intensity thresholds 
(i.e., gates) that distinguished positive from negative expression of each marker studied. A general data clean-
up and gating strategy is shown in Supplemental Figure 9. Fifteen markers were chosen from each panel for 
further analysis, based on the strength of antibody staining, variability across donors, and biological interest. 
CytoBrute (RocketML), an adaptation of the R-algorithm FlowType based on RocketML’s rapid computing 
technology, was then used to measure the number of cells expressing every individual marker and every com-
bination of 2–15 markers within the data file. CytoBrute reported the top 1000 most frequent combinatorial 
phenotypes in each data file, along with those found among the top 1000 in some patients but not the others. In 
total, approximately 80,000 cell populations were compared across patient groups and time points.

Many of  these populations were not independent (i.e., one population shared markers with another); 
therefore, we developed approaches to better characterize and summarize the results of  group-wise com-
parisons. We clustered cell populations using the UMAP R package with default settings to group similar 
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phenotypes (34). Specifically, we determined cluster number by calculating a consensus from all nongraph-
ical methods included in the Nbclust R package (35) and then employed an unsupervised clustering algo-
rithm (k-means) to identify clusters.

Statistics. To compare the longitudinal immunologic effects of  IPI and NIVO, univariate P values for 
each measured immune feature were calculated from week-0 and week-13 samples, within each treat-
ment regimen, using a paired Wilcoxon test. Similarly, we identified associations between immunophe-
notypes and treatment response by grouping patients as responders or progressors using RECIST 1.1 
criteria as reported for the Checkmate-064 trial (4) and performing Mann-Whitney U tests comparing 
the frequencies of  phenotypes across groups. Kaplan-Meier survival curves were also generated to com-
pare patients with high (above the median) and low (below the median) frequencies of  immunopheno-
types of  interest. Survival curves were compared using Mantel-Cox test (logrank) and HR determined 
using a Mantel-Haenszel test.

Common methodologies for multiple comparison adjustments are not appropriate for our data set 
because the phenotypes generated by CytoBrute are not independent. Moreover, nonparametric statistical 
testing was used, and, as such, the lowest achievable P values would not reach significance with traditional 
multiple comparison adjustments. Therefore, we used the above statistical tests to screen for populations 
differing across study groups at the P < 0.05 level and then confirmed results for select populations using 
a validation cohort of  patients and/or by feeding populations into EN regularized regression models (36) 
with LOO cross validation. EN regularized regression was performed with the R package glmnet (37). The 
EN algorithm was chosen for its ability to handle a feature set with high collinearity. For a given EN model, 
the cv.glmnet function was used to obtain a lambda value within 1 standard error of  the minimum mean 
cross-validated error in order to avoid overfitting. To robustly identify the altered immune features, we 
repeated this process a total of  100 times. For each patient, we then averaged model predictions for every 
model of  the 100 in which they were part of  the test set to get a final blinded prediction for each patient. We 
used this final prediction to calculate a ROC and AUC using the pROC R package (38). Finally, we record-
ed the total number of  times a given immune feature was included in all 100 models to get a frequency of  
selection, a proxy for the importance, or predictive power of  that feature.
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