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Introduction
Gastric cancer (GC) is a heterogeneous disease with diverse clinical, histological, and molecular charac-
teristics (1). When diagnosed at early stages, GC can be effectively treated with endoscopic or surgical 
resection with or without adjuvant therapy. However, survival outcomes can vary widely among patients 
receiving the same treatment for disease of  the same stage (2, 3). There is a critical unmet need for accurate 
prognostication tools beyond the current staging system to better guide adjuvant treatment. On the other 
hand, the prognosis for advanced GC is extremely poor, with a median survival less than 1 year. New, effec-
tive treatments are needed to prolong survival for patients with metastatic disease.

Recent whole-genome and transcriptome studies have significantly improved our understanding 
of  the pathobiology and molecular alterations of  GC. The Cancer Genome Atlas (TCGA) divided 
GC into 4 subtypes based on genomic characteristics: EBV, microsatellite instability (MSI), genomi-
cally stable (GS), and chromosomal instability (CIN) (4). The Asian Cancer Research Group (ACRG) 
proposed another molecular classification system of  4 subtypes that demonstrated distinct prognoses, 
most notably between microsatellite-stable/epithelial-mesenchymal transition (MSS/EMT) subtypes 
(5). Subsequent studies defined alternative patient clusters that largely overlapped with ACRG subtypes 
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and in part validated these findings (6, 7). The existing subtypes are focused on cancer cell–intrinsic 
molecular characteristics of  the tumor (8–10).

Solid tumors are a complex ecosystem that does not only consist of  neoplastic cells, but also includes a 
variety of  nonmalignant cell types, such as stromal and immune cells, which together with soluble factors 
and extracellular matrix constitute the tumor microenvironment (TME) (11). The TME plays an important 
role in cancer progression, metastasis, therapeutic response, and resistance (12, 13). Specific features of  the 
TME have been shown to provide useful prognostic and predictive information in multiple cancers (14–17). 
More importantly, various components of  the TME represent potential therapeutic targets (18). Immu-
notherapy, and in particular, immune check inhibitors, has been the most promising treatment strategy in 
the past decade (19, 20). However, the response rates remain relatively low at around 15% in the phase III 
KEYNOTE-062 trial (21). Novel strategies and combination therapies are needed to improve response and 
survival. This will require a deeper understanding of  the TME and its clinical significance.

In this work, we conducted a systematic evaluation of  the cellular composition and prognostic land-
scape of  the TME in GC. We proposed a TME-based risk score and validated its prognostic and pre-
dictive significance in multiple independent cohorts using both gene expression profiles (GEPs) and IHC 
measurements. Further, we devised what we believe to be a novel patient classification system based on 
TME characteristics and showed that these subtypes were associated with distinct molecular, genomic, and 
cytokine profiles. Critically, our proposed TME subtypes demonstrated complementary prognostic value to 
established molecular subtypes.

Results
Development of  the TME risk score. The TME plays a critical role in cancer progression and metastasis and may 
be targeted to improve therapeutic response and survival. Here, we conducted a systematic investigation into 
the prognostic landscape and therapeutic relevance of  major stromal and immune cells in the TME of  GC. 
Details about the study design and patient cohorts can be found in the Methods, the Supplemental Methods, 
Supplemental Figure 1 (supplemental material available online with this article; https://doi.org/10.1172/
jci.insight.136570DS1), and Table 1. In the ACRG cohort, the abundance levels of  3 cell types, namely, NK 
cells, endothelial cells, and fibroblasts, was significantly associated with overall survival in Cox regression 
analysis (P < 0.0005, Supplemental Figure 2A). Their prognostic value was independent of  pathological 
stage and adjuvant chemotherapy (P < 0.03, Supplemental Figure 2B). Consistently, the same 3 cell types 
were the most important variables among TME cell types for predicting overall survival using the random 
survival forest algorithm (Supplemental Figure 2C). Thus, among major cellular components in the TME, 
NK cells, fibroblasts, and endothelial cells were identified as the most robust prognostic markers in GC.

There was a high positive correlation (Pearson’s r = 0.73) between the abundance of  fibroblasts and endo-
thelial cells in the TME (Supplemental Figure 2D). Given the collinearity and similar adverse effects on prog-
nosis, we combined the endothelial cells and fibroblasts into a stroma score by taking the square root of  their 
product to reflect the overall stroma status (Figure 1A). As expected, the stroma score was highly correlated 
the endothelial cell and fibroblast abundance (both Pearson’s r > 0.91) but did not correlate with the NK cell 
abundance (Pearson’s r = –0.28, Supplemental Figure 2D). We further explored the correlation of  NK cell 
abundance and the stroma score with other cell types or established signatures. The abundance of  NK cells 
weakly or moderately correlated with T cell and CD8 T cell abundance and the T cell–inflamed signature (22) 
(Supplemental Figure 3, A and B). On the other hand, the proposed stroma score highly correlated with the 
EMT score (5, 23), fibroblast signatures (24), and the estimated fraction of  stromal cells by the ESTIMATE 
algorithm (25) in all GEP cohorts (Supplemental Figure 3C). Bivariate analysis revealed independent, oppo-
site prognostic effects of  the NK cells (HR [95% CI], 0.42 [0.27–0.65], P = 0.00011) and stroma score (HR 
[95% CI], 1.37 [1.08–1.73], P = 0.009). Based on these results, we defined a continuous TME risk score as the 
ratio of  the stroma score to NK cell abundance, which summarizes the overall prognostic effects of  the TME 
based on the expression of  50 marker genes (Supplemental Table 1 and Figure 1A).

Validation of  the TME risk score as an independent prognostic factor. In multivariable Cox regression analy-
sis, the continuous TME risk score was an independent prognostic factor for overall survival when adjusted 
for clinicopathologic factors, including age, sex, stage, Lauren histology type, and use of  adjuvant chemo-
therapy in the ACRG cohort (Table 2). We independently confirmed the prognostic value of  the TME risk 
score in 2 additional microarray gene expression cohorts (Figure 1, B–E). In both GEP validation cohorts, 
the TME risk score was significantly correlated with survival (Figure 1B), adjusting for clinicopathologic 
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factors as well as microsatellite status (Supplemental Table 2). A meta-analysis of  the 3 GEP cohorts indi-
cated that the TME risk score was a strong prognostic factor (HR [95% CI], 1.42 [1.30–1.55], P < 0.0001, 
Figure 1B). In addition, we confirmed the independent prognostic effects of  NK cell abundance and stroma 
score in the combined GEP validation cohorts (Supplemental Figure 4A). To stratify patients into low- and 
high-risk groups, we defined a cutoff  value for the TME risk score (cutoffGEP = 1.78) based on the ACRG 
cohort while controlling for major confounding factors, i.e., treatment and stage (Supplemental Figure 5A). 
In all 3 GEP cohorts, we observed significantly worse survival in the high TME risk group (HR ranges from 
2.21 to 3.47, all P < 0.01, Figure 1, C–E).

To further validate its prognostic value, we retrospectively analyzed data in 3 IHC cohorts and 
assessed the association of  our TME risk score with overall survival. Consistent with the results in GEP 
cohorts, the continuous TME risk score was significantly correlated with overall survival in all 3 IHC 
cohorts with an overall HR [95% CI] of  1.32 [1.22–1.42] (P < 0.0001, Figure 1F). In addition, we con-
firmed the independent prognostic effects of  NK cell abundance and stroma score in the combined IHC 
validation cohorts (Supplemental Figure 4B). Similar to that in the gene expression analysis, we defined 
an optimal cutoff  value for the TME risk score (cutoffIHC = 0.59, Supplemental Figure 5B) based on the 
SMU1 cohort. Again, patients in the high TME risk group had significantly worse overall survival in all 

Table 1. Clinicopathologic and treatment information for patients in the GEP and IHC cohorts

GEP cohorts IHC cohorts
ACRG GSE15459 GSE84437 TCGA STAD SMU1 SMU2 SYSU

No. of patients 300 192 433 415 247 234 272
Median age in yrs (range) 64 (24–86) 67 (23–92) 62 (27–86) 67 (30–90) 57 (23–90) 55 (21–77) 58 (24–82)
Male (%) 199 (66) 125 (65) 296 (68) 268 (65) 177 (72) 143 (61) 175 (64)
Stage (%)A

 I 30 (10) 31 (16) – 57 (15) 31 (12) 37 (16) 45 (17)
 II 96 (32) 29 (15) – 123 (32) 56 (23) 35 (15) 50 (18)
 III 95 (32) 72 (38) – 169 (43) 135 (55) 129 (55) 137 (50)
 IV 77 (26) 60 (31) – 41 (11) 25 (10) 33 (14) 40 (15)
T (%)A

 T1 0 – 11 (3) 22 (5) 21 (9) 32 (14) 34 (13)
 T2 186 (62) – 38 (9) 88 (22) 36 (15) 19 (8) 22 (8)
 T3 91 (31) – 92 (21) 181 (45) 6 (2) 31 (13) 8 (3)
 T4 21 (7) – 292 (67) 115 (28) 184 (74) 152 (65) 208 (76)
N (%)A

 N0 38 (13) – 80 (18) 123 (31) 73 (30) 63 (27) 91 (33)
 N1 131 (44) – 188 (43) 112 (28) 40 (16) 53 (23) 110 (40)
 N2 80 (27) – 132 (30) 79 (20) 82 (33) 62 (26) 45 (17)
 N3 51 (17) – 33 (8) 82 (21) 52 (21) 56 (24) 26 (10)
M (%)A

 M0 273 (91) – – 367 (93) 222 (90) 201 (86) 232 (85)
 M1 27 (9) – – 27 (7) 25 (10) 33 (14) 40 (15)
Location (%)
 Antrum 155 (52) – – 155 (39) 124 (50) 116 (50) 103 (38)
 Body 107 (36) – – 143 (36) 40 (16) 45 (19) 80 (29)
 Cardia 32 (11) – – 97 (24) 49 (20) 40 (17) 76 (28)
 Whole 6 (2) – – 2 (1) 34 (14) 33 (14) 13 (5)
Lauren (%)
 Intestinal 146 (49) 99 (52) – 176 (72) 199 (81) 158 (68) 100 (37)
Diffuse/mixed 151 (51) 93 (48) – 69 (28) 48 (19) 76 (32) 172 (63)
Chemotherapy (%) 144 (48) – – – 104 (42) 148 (63) 126 (46)
Median follow-up (mo.) 80 74 116 22 83 77 87

A dash indicates that data are not available. AThe version of TNM staging system for ACRG, GSE15459, and GSE84437 was the American Joint Committee 
on Cancer (AJCC) 6th edition (56). The version of the TNM staging system for the IHC cohorts is from the AJCC 8th edition. The version of TNM staging 
system for the TCGA cohort from the AJCC 6th or 7th edition (56, 57).
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3 IHC cohorts (HR ranges from 2.18 to 3.17; all P < 0.0005, Figure 1, G–I). In multivariable Cox analy-
sis, the prognostic value of  the continuous TME risk score was independent of  major clinicopathologic 
factors in the IHC cohorts (Table 2).

We investigated whether the proposed TME risk score would provide any additional prognostic infor-
mation to clinical risk factors. In the combined IHC cohort, we compared the goodness of  fit for the com-
posite Cox regression model (TME risk score and stage) with the model only including stage by the likeli-
hood-ratio test, which was statistically significant (composite model, χ2 = 235.4 vs. stage only, χ2 = 187.6, P 
= 4.67 × 10–12), indicating the additive value of  the TME risk score for prognostication. We also quantified 
the relative improvement in accuracy for prediction of  5-year overall survival between the 2 models, which 
showed a continuous net reclassification index of  23.3%.

Finally, we examined the prognostic significance of  the TME risk score at different stages and in different 
treatment subgroups. Within every pathologic stage (I–IV), a higher TME risk score was consistently associ-
ated with worse survival in the combined GEPs (Supplemental Figure 6) as well as IHC cohort (Figure 2). In 
addition, the prognostic value of  the TME risk score was confirmed in patients who underwent surgery alone 
without adjuvant chemotherapy in the ACRG and each IHC validation cohort (Supplemental Figure 7).

Figure 1. Prognostic significance of the TME risk score in the GEP and IHC cohorts. (A) The formula to define the TME risk score. The abundance level of 
each cell type is calculated by taking the average expression of preselected marker genes listed in Supplemental Table 2. (B) Increased TME risk score was 
significantly correlated with inferior overall survival in all 3 GEP cohorts (ACRG, n = 300; GSE15459, n = 192; and GSE84437, n = 433). A fixed-effect model 
indicated a strong overall prognostic effect of the TME risk score. Cox regression was used to measure the prognostic effects of the TME risk score. (C–E) 
The high TME risk group was associated with worse overall survival in these cohorts (ACRG, n = 300; GSE15459, n = 192; and GSE84437, n = 433). The GEP 
cutoff value for TME risk score was defined by optimizing the Cox regression P value in the ACRG cohort. (F–I) Same as in C–E with for 3 IHC cohorts (SMU1, 
n = 247; SMU2, n = 234; and SYSU, n = 272). The IHC cutoff value was defined by optimizing the Cox regression P value in the SMU1 cohort. HRs and CIs 
were estimated by Cox regression. P values were generated by log-rank test.
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Association between the TME risk score and benefit from chemotherapy. We tested the ability of  the TME risk 
score to predict the benefit of  adjuvant chemotherapy in patients with nonmetastatic GC (stage I–III) by 
merging the ACRG and 3 IHC cohorts. Before conducting the statistical test, the patients with or without 
adjuvant chemotherapy were matched with regard to 5 clinicopathologic factors to mitigate the potential 
selection bias in retrospective cohorts. As shown in Figure 3A, patients with a high TME risk score derived 
a significant survival benefit from adjuvant chemotherapy (HR [95% CI], 0.53 [0.41–0.69], P < 0.0001). On 
the other hand, patients at a low TME risk score did not benefit from adjuvant chemotherapy (HR [95% CI], 
1.11 [0.65–1.91], P = 0.705, Figure 3B). A formal interaction test between the TME risk group and treatment 
was statistically significant (P = 0.0148), indicating a predictive effect for the benefit from adjuvant chemo-
therapy. Similar results were observed using all the patients without matching (Supplemental Figure 8).

Identification of  the TME subtypes. To elucidate the molecular and genomic characteristics related to 
the prognostic cell types in TME, we divided patients into 4 TME subtypes based on the abundance level 
of  NK cells and stroma score (Figure 4A). The TME subtypes were associated with distinct prognoses, 
with a similar pattern between the combined GEP cohort and combined IHC cohort (both P < 0.0001, 
Figure 4, B and C). Specifically, patients in the NK-high and stroma-low subgroup had the best progno-
sis; patients in the NK-low and stroma-high subgroup had the worst prognosis; the remaining 2 subtypes 
were associated with intermediate prognoses. Some representative examples of  IHC images for 4 TME 
subtypes are shown in Figure 4D.

Complementary value of  the TME subtypes to ACRG molecular subtypes. We compared the proposed TME 
subtypes with the established ACRG subtypes for GC, which were defined by cancer cell–intrinsic molec-
ular features. While the ACRG MSI and MSS/EMT subtypes were enriched with patients predicted to be 
NK high and stroma high, respectively, the distribution of  the TME subtypes within the ACRG MSS/non-
EMT subtypes was relatively balanced (Figure 5A). Importantly, we found that the TME subtypes provided 
complementary prognostic value to the ACRG subtypes (Figure 5, B–D). Within the ACRG MSI subtype, 
which is known to have favorable outcomes, our TME subtypes can still distinguish subgroups of  patients 
with distinct prognoses (P < 0.0001, Figure 5B). Similarly, within the ACRG MSS/non-EMT subtypes, 
patients were divided into 4 different prognostic groups by the TME subtypes (P = 0.0024, Figure 5C).

Complementary value of  the TME subtypes to intrinsic subtypes for GC. We found that 2 TME subtypes with 
a high stroma score were enriched for the G-DIF intrinsic molecular subtype and vice versa (Supplemental 
Figure 9A). This relation is expected given our current understanding of  GC. Within the G-INT subtype, 
the prognostic effect of  the TME subtypes was well preserved (Supplemental Figure 9B). For the G-DIF 

Table 2. Multivariable Cox regression analysis of overall survival using the TME risk score and clinicopathologic factors

ACRG cohort Combined IHC cohort
Variable HR (95% CI) P value HR (95% CI) P value
TME risk score 1.42 (1.22–1.66) 7.6 × 10–6,A 1.34 (1.24–1.45) 1.9 × 10–13,A

Age 1.03 (1.01 – 1.04) 0.0022B 1.00 (0.99–1.01) 0.95
Sex
 Female 1.00 – 1.00 –
 Male 1.26 (0.89–1.79) 0.2 0.92 (0.75–1.13) 0.42
Stage
 I 1.00 – 1.00 –
 II 1.56 (0.60–4.07) 0.36 1.96 (1.24–3.10) 0.004B

 III 3.18 (1.24–8.17) 0.016C 4.54 (3.04–6.76) 1.1 × 10–13,A

 IV 7.48 (2.96–18.94) 2.2 × 10–5,A 14.09 (9.05–21.95) 1.3 × 10–31,A

Lauren classification
 Diffuse/mixed 1.00 – 1.00 –
 Intestinal 0.69 (0.48–0.98) 0.039C 0.98 (0.80–1.18) 0.8
Chemotherapy
 No 1.00 – 1.00 –
 Yes 0.49 (0.34–0.71) 0.00012A 0.61 (0.50–0.73) 3.6 × 10–7,A

The TME risk score and age were continuous variables. Stage, chemotherapy, Lauren classification, and sex were categorical variables. AP < 0.001; BP < 0.01; 
CP < 0.05. P values were computed based on Wald test.
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subtype, the NK-high and stroma-low subtype confers a better prognosis compared with others (Supple-
mental Figure 9C). Again, these results showed that the proposed TME-based subtypes provide additional 
information to tumor-intrinsic classification systems.

Relation between the TME subtypes and TCGA genomic subtypes. We compared our TME subtypes with the 
5 genomic subtypes defined by TCGA research group (Figure 6). Similar to the comparison with ACRG 
subtypes, TCGA MSI subtype was enriched, with patients predicted to be NK high (67%); the NK-low and 
stroma-high subtype only accounted for 6% of  the MSI subtype. The majority (90%) of  patients in TCGA 
GS subtype had a stroma-high phenotype (58% NK high, 32% NK low), while TCGA EBV subtype mainly 

Figure 2. The prognostic effects of the TME risk score in patients within each pathological stage in the combined IHC 
cohorts. A high TME risk score was consistently associated with worse overall survival in patients with stage I (n = 113, 
A), stage II (n = 141, B), stage III (n = 401, C), and stage IV (n = 98, D) disease. The cutoff value for the TME risk score was 
the same as in Figure 1. HRs and CIs were estimated by Cox regression. P values were generated by log-rank test.
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(80%) consisted of  patients with an NK-high phenotype (47% stroma high, 33% stroma low). On the other 
hand, the distribution of  the TME subtypes was relatively balanced within the dominant TCGA subtype, 
CIN, with a slight bias toward patients with a NK-low phenotype relative to those with NK-high pheno-
type (62% vs. 38%). Therefore, the proposed TME subtypes and TCGA genomic subtypes were related but 
largely nonredundant classification systems.

Genetic alterations associated with TME subtypes. We evaluated the genetic characteristics of  the TME sub-
types by leveraging the comprehensive genomic data available in TCGA stomach adenocarcinoma (STAD) 
cohort. This evaluation was done separately for the 2 key features (NK cell abundance and stroma score) 
because they were largely independent of  each other (Figure 4A). The features only correlated with NK cell 
status were presented in Supplemental Figure 10. The most striking observation was that tumors with an 
NK-low status were more likely to have an instable genome and a higher level of  aneuploidy (Supplemental 
Figure 10A). What’s more, these tumors demonstrated a higher clonal deletion score, frequency of  CIN 
focal events and increased arm-level copy number variations (Supplemental Figure 10, B–D). The overall 
ploidy and whole genome doubling events were also markedly associated with low NK cell level (Supple-
mental Figure 10, E and F). In addition, we observed that the low NK status was associated with increased 
rates of  HER2 amplification and TP53 mutation (Supplemental Figure 10, G and H). On the other hand, 
tumors with a high NK status were characterized by PIK3CA mutation (Supplemental Figure 10I) and 
elevated rates of  epigenetic silencing of  CDKN2A (Supplemental Figure 10J). What’s more, we have reas-
sessed the distribution of  PIK3CA and TP53 mutations across TME subtypes by focusing on the subgroups 
of  patients as defined by either MSI or T cell inflammation status. We found that the differential mutation 
status for both genes still holds in the MSS group as well as the T cell inflammation–high and –low groups 
(Supplemental Figure 11). The only exception is the MSI-H group, which may partly be due to a limited 
number of  MSI patients (n = 96). Three genomic features were correlated with varying stroma status, i.e., 
SNV density, indel density, and mutation density, the higher levels of  which were all markedly correlated 
with stroma-low status (Supplemental Figure 12).

Four genomic features, i.e., percentage of  hypermutation, the number of  focal CNV events, focal 
CNV amplification, and focal CNV deletion events, were markedly correlated with both NK cell and 

Figure 3. Predictive relevance of the TME risk score for the benefit of chemotherapy in stage I–III gastric cancer. (A) Patients with a high TME risk score 
(n = 419) derived a significant survival benefit from adjuvant chemotherapy at 5 years. However, patients with a low TME risk score (n = 175) did not benefit 
from adjuvant chemotherapy (B). The patients treated with or without chemotherapy were matched according to 5 clinicopathologic factors. HRs and 
CIs were estimated by Cox regression. P values were generated by log-rank test. The P value for the interaction between the TME risk group and adjuvant 
chemotherapy was 0.0148.
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stroma status (Supplemental Figure 13). Specifically, a higher level of  NK cell infiltration or low-
er level of  stroma status associated with higher rates of  hypermutation (Supplemental Figure 13A). 
Increased focal CNV events (both deletion and amplification) were observed to be enriched in patients 
with low-NK or low-stroma status (Supplemental Figure 13, B–D). Of  note, we observed similar pat-
terns when specifically focusing on the CIN subgroup, which indicated the above observation was not 
confounded by the MSI or EBV status (Supplemental Figure 14).

Gene expression, molecular pathways, and cytokines correlated with stroma and NK cell infiltration. Meta-analysis of  
4 GEP cohorts identified robust correlation between NK cell abundance and expression of specific genes and 
molecular pathway activity. At the individual gene level, we found that NKG2A, an NK cell inhibitory receptor, 
had the highest correlation with the amount of NK cell infiltration in the TME (meta-analysis with Pearson’s 
r = 0.73, Supplemental Table 3). Several other NK cell–activating or inhibitory receptors were also highly cor-
related with NK cell infiltration, including KIR3DL2, NKG2C/E, CD94, and CD244, along with genes related to 
immune-mediated cytolytic activity, such as FASLG, PRF1, and GZMA/B (Supplemental Table 3).

At the pathway level, we found that the interferon-γ signaling pathway was correlated with an increased 
level of  NK cell infiltration, which is consistent with a preexisting antitumor immune response. By contrast, 
the hedgehog and Wnt/β catenin signaling pathways were correlated with decreased NK cell infiltration 
(Supplemental Figure 15 and Supplemental Table 4). On the other hand, the TME stroma score was posi-
tively correlated with the EMT and angiogenesis pathways, while it was negatively correlated with cell cycle 
and proliferation, such as MYC and E2F pathways (Supplemental Figure 16 and Supplemental Table 4).

Since cytokines are key regulators of  cellular migration and composition in the TME, we next identified 
differentially expressed cytokines related to the NK and stroma status. A total of  17 cytokines were differen-
tially expressed (all upregulated) in the NK-high group, including IL1, IFNγ, and FasL, which is consistent 

Figure 4. The definition of the TME subtypes and their prognostic significance. (A) Patients were divided into 4 TME subtypes, based on the distri-
bution of NK cell abundance and stroma scores in the merged GEP cohorts (n = 1340). In the merged GEP cohorts (except TCGA) (n = 925) (B) and IHC 
cohorts (n = 753) (C), the NK-high and stroma-low and NK-low and stroma-high groups correspond to the best and the worst prognosis, respectively. 
The NK-high and stroma-high and NK-low and stroma-low subtypes were associated with an intermediate prognosis. (D) Representative examples 
of IHC images for 4 TME subtypes. CD57, CD34, and αSMA are stains for NK cells, endothelial cells, and fibroblasts. Original magnification, ×200. P 
values were generated by log-rank test.
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with an active inflammatory response and cytolytic activity (Supplemental Figure 17A). The chemokines 
CXCL9, -10, and -11, which mediate immune cell migration, differentiation, and activation (26), were also 
upregulated in the NK-high group. On the other hand, cytokines upregulated in the stroma-high group were 
mostly related to an immunosuppressive function, such as IL6, TGFB3, and BMP6, in the TGF-β signaling 
pathway (Supplemental Figure 17B).

In summary, these TME subtypes demonstrated distinct genetic and molecular patterns, including 
aneuploidy; somatic mutation load; interferon-γ, hedgehog, and Wnt/β catenin signaling pathway activa-
tion; and distinct cytokine profiles.

Figure 5. Complementary prognostic value of the TME subtypes to the ACRG subtypes. (A) The correspondence between patients classified according 
to the TME subtypes and ACRG subtypes in the merged GEP cohorts (n = 1340). (B and C) The TME subtypes can further stratify patients within the ACRG 
MSI (n = 222) and MSS/TP53+/– (n = 562) subtypes into groups with distinct prognoses. The survival difference within the ACRG MSS/EMT (n = 141) sub-
group showed a trend due to a smaller number of patients (D). P values were generated by log-rank test.
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Discussion
In this study, we developed a TME-based risk score by integrating immune and stromal signatures and 
validated it as an independent prognostic factor in multiple gene expression and IHC cohorts of  1678 
patients with GC. The TME risk score provided additional information beyond the current staging sys-
tem for improved risk stratification and could potentially guide personalized management of  resected GC 
regarding adjuvant chemotherapy. Further, we proposed 4 TME subtypes as defined by the NK cell abun-
dance and stroma score, which were associated with distinct molecular, genomic, and cytokine profiles. 
These TME subtypes reflect differing aspects of  the tumor biology and complement-established genomic 
subtypes, which may be used to refine molecular classification of  GC.

Our work adds to a growing body of  literature supporting the critical role of  the TME in cancer 
progression and its therapeutic relevance (13, 27, 28). Specifically, we demonstrate that stroma score and 
NK cell abundance are independent prognostic factors in GC. Stromal gene signatures have been consis-
tently shown to correlate with a poor prognosis in gastrointestinal cancers (29, 30), including GC (31). 
Cancer-associated fibroblasts are one of  the most abundant stromal cells in the TME and are known to 
be a driver of  cancer progression and therapeutic resistance (32). Cheong et al. recently developed a pre-
dictive biomarker for chemotherapy response in GC based on 4 genes related to immune, stem-like, and 
epithelial signatures (13). Tumor angiogenesis is induced by various growth factors such as VEGF in the 
TME and significantly contributes to tumor progression and metastasis (18, 33). One recent study (34) 
investigated stromal gene expression signatures of  GC and confirmed the prognostic value of  the vascular 
signature driven by angiogenesis. Our composite stroma score combines both fibroblasts and endothelial 
cells, which may serve as a more robust prognostic biomarker.

One finding of  our study that we believe to be novel is the discovery of  NK cells as an orthogonal 
prognostic factor with an opposite effect compared with tumor stroma. NK cells are innate lymphoid cells 
widely known for their ability to exert robust cytotoxic function against viral infection, and they play a 
prominent role in the control of  cancer metastasis (35). However, the relevance of  NK cells in the immu-
nosurveillance of  primary solid tumors remains controversial. Our data show that higher abundance of  
NK cells in the TME consistently confers a favorable prognosis, independent of  the stroma score across 
multiple cohorts of  patients with GC. In addition, we found that tumors with an NK-low phenotype had 
an increased level of  aneuploidy, which is consistent with the fact that aneuploidy correlates with immune 
evasion and is a marker of  aggressive disease and unfavorable outcome (36). Beyond genomic factors, we 

Figure 6. The correspondence between patients classified according to TCGA subtypes and the TME subtypes in TCGA cohort. Genomic features that 
were significantly enriched in certain TME subtypes in TCGA STAD cohort (n = 415) are presented.
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showed that hedgehog and Wnt/β catenin signaling pathway activation was correlated with reduced NK 
cell infiltration in GC, also consistent with recent reports that correlated these pathways with immune eva-
sion across human cancers (37, 38).

There is a growing interest in developing therapeutic strategies to increase the infiltration and improve 
the function of  NK cells in the TME (39); these may synergize with current immunotherapies primarily 
targeting T cells. It has recently been shown that NK cells are a cytolytic effector against PD-L1–negative 
tumors treated with anti–PD-L1 antibody (40), and NK cells stimulate the recruitment of  type I conven-
tional dendritic cells and CD8+ T cells into the tumor (41). Further, an increased NK cell infiltration in the 
TME is associated with an improved response to immune checkpoint blockade (42). In our study, we found 
that several inhibitory receptors, including NKG2A/C/E, KIR3DL2, and CD94, were highly expressed on 
NK cells in the GC TME (Supplemental Table 3). As the activity of  tumor-infiltrating NK cells is strongly 
suppressed, these inhibitory molecules may be targeted to restore NK cell function (43). Indeed, 2 recent 
studies demonstrated that NKG2A blockade in combination with a tumor-specific vaccine or antibody 
improved immunotherapy response and outcomes (44, 45).

In our study, we did not find that the amount of  CD8+ T lymphocytes represents a robust prognostic 
factor, which is in line with previous reports of  inconsistent results (46, 47). This could be due to a lower 
tumor mutational burden in GC compared with other more immunogenic tumors, leading to an immune-
cold or immune-excluded phenotype (48). Alternatively, potent factors in the TME such as TGF-β could 
also suppress immune function, leading to T cell exhaustion (49).

Strengths of  our study include independent validation of  the results in multiple patient cohorts, and 
the use of  2 different methodologies, including GEPs and clinically applicable IHC assays in FFPE tissue 
samples, which can reduce potential biases and enhance reproducibility of  the findings. In the future, gene 
expression assays of  our TME risk score using qPCR or nCounter systems may be developed to facilitate 
its practical use. Our study is mainly limited by its retrospective nature and use of  patient cohorts with 
nonrandomized treatment, which makes it challenging to assess the predictive value in a therapeutic set-
ting. The TME risk score only included the major immune and stromal cell types. Incorporating specific 
phenotypic or functional subsets (such as M2 macrophages) might improve the prognostic value, albeit with 
an increased complexity. Finally, our study included patients primarily of  the Asian origin who received 
adjuvant chemotherapy. The generalizability of  our findings in the neoadjuvant setting among non-Asian 
populations (50) should be tested in future studies.

In summary, we developed and validated a TME-based risk score as an independent prognostic factor 
in GC and proposed TME subtypes with distinct molecular, genomic, and cytokine profiles. Our findings 
provide potentially new insights into the prognostic landscape of  the TME in GC, which warrant further 
validation in prospective studies.

Methods
Patients and data. We retrospectively analyzed data for patients who were diagnosed with primary GC and 
treated with surgical resection. For discovery purposes, we used the ACRG cohort of  300 patients for whom 
microarray GEPs as well as detailed patient-level clinical and treatment information are publicly available 
(GEO GSE62254) (5). For validation purposes, we used 2 additional microarray GEP cohorts measuring 
fresh-frozen tissue of  large sample sizes (GEO GSE84437, ref. 13, n = 433 and GEO GSE15459, ref. 51): 
n = 192) with survival. For further validation, we used 3 independent IHC cohorts (denoted as SMU1, 
SMU2, and SYSU) of  753 patients who were consecutively treated between 2005 and 2009 at 2 medical 
centers. Finally, we used TCGA STAD data to evaluate the genetic and molecular characteristics of  our 
TME subtypes.

Discovery and validation of  a TME-based risk score. Given the bulk gene expression data, we computed the 
absolute abundance levels of the major cell types in the TME, including 8 immune and 2 stromal cell types 
(fibroblasts and endothelial cells) by averaging the expression of a set of carefully selected marker genes (Sup-
plemental Table 1) provided by the Microenvironment Cell Populations–counter (MCP-counter) algorithm 
(52). The main reason to use the MCP-counter algorithm is that it provides an estimation of the absolute abun-
dance of cellular components in the TME and, therefore, meaningful comparisons can be made across differ-
ent samples. By contrast, several other algorithms such as ESTIMATE only provide the fraction of stromal and 
immune cells as a whole. On the other hand, CIBERSORT generates the relative fractions of 22 immune cells. 
However, these fractions are normalized within a sample and, thus, not comparable across samples.
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We independently assessed the prognostic effects of  these cell types using two different approaches (Cox 
regression analysis and random survival forest model) in the ACRG cohort. Those cell types that demon-
strated a consistent prognostic significance in both models were selected for subsequent analyses. After iden-
tifying cell types with the most robust prognostic value, we integrated them into a composite TME risk score 
by considering their pairwise correlation and effect on survival. The prognostic significance of  the TME risk 
score was independently tested in 2 additional GEP cohorts and 3 IHC cohorts. The IHC-based TME risk 
score was derived using the same formula, where semiquantitative evaluation of  stains for established cell 
markers was performed. Details about these analyses can be found in the Supplemental Methods.

TME-based subtypes and molecular characterization. Based on the cellular composition of the TME, we stratified 
patients into 4 distinct groups, i.e., TME subtypes. We compared our TME subtypes with the existing ACRG 
molecular subtypes (5) and the intrinsic subtypes for GC (8) as well as TCGA genomic subtypes (53), in terms of  
patient assignment and prognostic stratification. We evaluated the genetic and molecular characteristics of our 
TME subtypes, including genetic or epigenetic alterations of specific driver genes, genome/chromosome insta-
bility, and mutational burden. In addition, we reassessed the differential patterns of certain genomic features 
across TME subtypes by focusing on subgroups of patients defined by MSI, T cell inflamed–, or CIN status. 
Finally, we investigated gene expression, cancer hallmark pathway activity, and soluble factors correlated with 
infiltration of prognostic relevant cell types in the TME. Details are presented in the Supplemental Methods.

Statistics. The Cox regression model was used to assess the prognostic effect of  continuous variables. A 
fixed-effect model was used to summarize the prognostic effect of  the TME risk score in the GEP and IHC 
cohorts. We performed multivariable Cox regression analyses to assess the independent prognostic value 
of  the TME risk score by adjusting for clinicopathologic factors. The log-rank test was used to evaluate the 
survival difference among different patient groups. We used the likelihood-ratio test and net reclassification 
index (54) to assess the additive prognostic value of  the TME risk score to pathological stage. P values of  
less than 0.05 were considered significant.

We used a multivariable Cox regression model with the main effects (TME risk group and chemothera-
py) and the interaction effect (TME risk group × chemotherapy) to test the ability of  the TME risk score to 
predict the chemotherapy benefit. To minimize selection bias and confounding effects, we used a matching 
strategy to balance patients within the GEP (ACRG) and IHC cohorts, respectively. We performed exact 
1:1 matching of  nonmetastatic patients (stage I–III) who received chemotherapy versus those who did not 
according to 5 clinicopathologic factors, including stage, age (>50 years), sex, Lauren histology type, and 
tumor location. We also tested the predictive effect of  the TME risk group in the merged unmatched cohorts.

The χ2 and Mann-Whitney tests were used to assess the difference among TME subgroups regarding 
categorical and continuous genomic features, respectively. Fisher’s Z transformation of  correlation was 
used to assess the overall correlation of  single gene and pathway activity with NK cell abundance or stro-
ma score in different cohorts. Differentially expressed cytokine genes were identified via limma (55). The 
Benjamini-Hochberg method was used to compute the FDR to adjust for multiple testing. More details are 
presented in the Supplemental Methods. All statistical analyses were performed in R version 3.5.3.

Study approval. This study was approved by the institutional review board of  each participating center 
at Stanford University School of  Medicine and Southern Medical University and conducted in accordance 
with ethical guidelines, such as the Declaration of  Helsinki. Informed consent for patients in the GEP 
cohort was waived, given the use of  existing, deidentified public data sets. Written informed consent was 
obtained from all the enrolled patients in the IHC cohort.
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