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Introduction
Gliomas are the most common primary malignant brain tumors, and can be classified into 4 grades 
(grades I–IV) according to the WHO grading system (1, 2). Diffuse low-grade and intermediate-grade 
gliomas (WHO grades II and III), including astrocytomas, oligodendrogliomas, and mixed oligoastro-
cytomas, are considered lower-grade gliomas (LGGs) (3). Surgical resection combined with chemora-
diotherapy is the most frequent treatment (4). Owing to their highly invasive nature, complete surgical 
resection is difficult, and the residual tumor can result in recurrence and even malignant progression 
(4, 5). Survival outcome ranges widely across patients. Some LGGs may progress to glioblastoma 
quickly, while some remain stable for a long time.

Although the histopathological classification of  LGGs is widely recognized, it cannot adequate-
ly predict survival. Therefore, clinicians tend to rely on genetic classifications to guide treatment.  

BACKGROUND. Lower-grade gliomas (LGGs) vary widely in terms of the patient’s overall survival 
(OS). There is no current, valid method that could exactly predict the survival. The effects of 
intratumoral immune infiltration on clinical outcome have been widely reported. Thus, we aim to 
develop an immune infiltration signature to predict the survival of LGG patients.

METHODS. We analyzed 1216 LGGs from 5 public data sets, including 2 RNA sequencing data sets 
and 3 microarray data sets. Least absolute shrinkage and selection operator (LASSO) Cox regression 
was used to select an immune infiltration signature and build a risk score. The performance of the 
risk score was assessed in the training set (329 patients), internal validation set (140 patients), and 
4 external validation sets (405, 118, 88, and 136 patients).

RESULTS. An immune infiltration signature consisting of 20 immune metagenes was used to 
generate a risk score. The performance of the risk score was thoroughly verified in the training 
and validation sets. Additionally, we found that the risk score was positively correlated with 
the expression levels of TGF-β and PD-L1, which were important targets of combination 
immunotherapy. Furthermore, a nomogram incorporating the risk score, patient’s age, and tumor 
grade was developed to predict the OS, and it performed well in all the training and validation sets 
(C-index: 0.873, 0.881, 0.781, 0.765, 0.721, and 0.753).

CONCLUSION. The risk score based on the immune infiltration signature has reliable prognostic 
and predictive value for patients with LGGs and is a potential biomarker for the cotargeting 
immunotherapy.
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Recurrently mutated genes like IDH1, IDH2, TP53, EGFR, and ATRX are well-recognized factors for the 
prognosis of  patients with LGGs in clinical practice (6–8). Other molecular markers, including 1p/19q 
codeletion and MGMT promoter methylation, are also important prognostic factors for LGGs (9). How-
ever, these clinicopathological and genetic factors fail to evaluate survival outcomes accurately. Patients 
with the same risk factors might have conflicting outcomes. Consequently, a more comprehensive study is 
needed to increase the prognostic and predictive accuracy of  the current assessment system.

Numerous studies have provided evidence that cancer progression and recurrence are not only driv-
en by the tumor’s underlying genetic changes, but also by the tumor microenvironment (TME) (10–12). 
Increasing evidence has confirmed that immune cells in the TME are involved in tumor progression and 
recurrence (13, 14). Furthermore, the effects of  infiltrating immune cells on clinical outcome have been 
widely reported (15–17). Thorsson et al. conducted immunogenomics analyses of  more than 10,000 tumors 
and identified 6 immune subtypes to define immune response patterns impacting prognosis (18), prompt-
ing that the immunogenomics may serve as a resource for understanding tumor-immune interactions and 
improving clinical management. Recently, the prediction of  long-term outcome based on gene expression 
profile analysis has shown remarkable prospect. Charoentong et al. analyzed 8243 TCGA samples from 20 
solid tumors and defined a set of  782 pan-cancer metagenes for 28 immune cell subpopulations to evaluate 
the intratumoral immune infiltration landscape (19). Based on Charoentong’s findings, the specific involve-
ment of  immune infiltration–related genes in LGGs was identified with high-throughput technology and 
used to build a model to more accurately predict survival outcome. In addition, the predictive model could 
be utilized to guide the postoperative chemoradiotherapy. Patients predicted with high risk may be more 
suitable for close imaging monitoring and radical postoperative adjuvant therapy.

Integrating multiple gene markers into a single model would significantly improve the accuracy and 
robustness of  prediction compared with using a single marker. Chai et al. analyzed the RNA processing 
genes in LGGs and identified a 19-gene risk signature, which had better prognostic value than the tradi-
tional factors (20). In this study, we developed a risk signature based on intratumoral immune infiltration–
related genes with the least absolute shrinkage and selection operator (LASSO) Cox regression model and 
established a nomogram that incorporated the immune-related risk score and clinical factors to predict the 
survival of  LGG patients. In addition, we assessed the prognostic and predictive accuracy of  this model in 
1 internal validation set and 4 external validation sets.

Results
Patient characteristics. The study flowchart is presented in Figure 1. All the included patients were pathologi-
cally diagnosed as LGG. The characteristics of  patients in the training set and validation sets were present-
ed in Figure 2 and Supplemental Tables 1 and 2 (supplemental material available online with this article; 
https://doi.org/10.1172/jci.insight.133811DS1). A total of  1216 LGG patients with a mean age of  42.0 ± 
12.4 years were entered according to the screening criteria. There were 434 events (deaths) over a median 
follow-up time of  3.2 years (range, 1.2 months to 20.7 years).

Immune infiltration landscape in LGGs. To analyze the immune infiltration landscape in LGGs, sin-
gle-sample gene set enrichment analysis (ssGSEA) was applied to evaluate the relative abundance 
of  each immune cell subpopulation using RNA sequencing (RNA-Seq) data of  469 LGGs from The 
Cancer Genome Atlas (TCGA). Infiltrating immune cells were found to be significantly heterogeneous 
in different LGGs. Of  the 28 cell subpopulations, 22 were correlated with prognosis (P < 0.1) in 
univariate Cox survival analysis (Supplemental Table 3). For further characterization, unsupervised 
clustering was implemented to categorize the 469 patients into 2 infiltration subgroups termed as type 
A (n = 253) and type B (n = 216) infiltration based on the 22 immune cell subpopulations (Figure 3). 
Kaplan-Meier analysis for overall survival (OS) showed that patients with type B infiltration had a 
worse prognosis (P = 0.0028, Supplemental Figure 1); this was in accordance with the fact that infil-
trating immune cells in the TME would affect the clinical outcome.

The characteristics of  the 469 patients by immune infiltration type are summarized in Supplemental 
Table 4. An interesting finding was that LGGs with type A and type B infiltration differed significantly in 
1p/19q status and histological type. More than 80% of LGGs with 1p/19q codeletion were of  type A infil-
tration. In the correlation analyses between clinical variables, genetic variables, and immunological subtype 
(Supplemental Table 5), type A infiltration presented notable positive correlations with 1p/19q codeletion 
(Spearman’s rho = 0.397, P < 0.001) and histological oligodendroglioma (Spearman’s rho = 0.330, P < 0.001).
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Selection of  an immune infiltration signature and building of  a risk score. Of  the 782 immune metagenes, 
273 were identified as differentially expressed through the analysis of  469 LGG samples from TCGA and 
469 normal brain specimens from the Genotype-Tissue Expression (GTEx) Portal. Of  the 273 differen-
tially expressed immune-related RNAs (DEIRs), 179 and 143 were respectively filtered from 469 LGGs of  
TCGA and 405 LGGs of  Chinese Glioma Genome Atlas (CGGA) by the criteria of  maximal expression > 
2 transcripts per million (TPM) and univariate Cox analysis P < 0.05. A total of  120 DEIRs were common 
to both data sets (Supplemental Table 6). After learning in the training set, the 120 DEIRs were reduced to 
the 20 most powerful prognostic markers with nonzero coefficients in the LASSO Cox regression model 
(Supplemental Figure 2 and Table 1). The formula for the risk score is presented in Supplemental Figure 3.

Enrichment analysis of  the 120 survival-related DEIRs identified overrepresented biological pro-
cesses in gene ontology (Supplemental Figure 4). Most of  the biological processes were related to the 
activation and proliferation of  immune cells, indicating that intratumoral immune infiltration played an 
important role in the prognosis of  LGGs.

Prognostic value of  the risk score. The predictive accuracy of  the 20-DEIR–based risk score was assessed with 
time-dependent receiver operating characteristic (ROC) analysis on OS at 3 and 5 years in all data sets, and 
the results revealed that the risk score was a valuable predictor (Figure 4). To compare the predictive accuracy 
of  the risk score with that of  traditional clinical factors, time-dependent ROC analysis was applied to the 1216 
LGGs of  the whole data set (Supplemental Figure 5). The risk score gave the highest 3-year and 5-year AUC 
(0.814 and 0.765, respectively), indicating that it was a better predictor of  survival for LGG patients.

To further assess the prognostic value of  the risk score, high-risk and low-risk patients were divided 
based on the optimum cutoff  score generated by the ROC curve for predicting 5-year survival in the train-
ing set, and Kaplan-Meier analysis was performed in the 2 groups. Patients with a risk score of  more than 
0.6907 were assigned to the high-risk group, and the rest were assigned to the low-risk group. As expected, 
patients in the high-risk group had a worse OS (P < 0.001; Figure 4A). To confirm whether the risk score 

Figure 1. Study flowchart. LGGs, lower-grade gliomas; DEIRs, differentially expressed immune-related RNAs; TPM, 
transcripts per million.
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had stable prognostic value in different populations, we applied it to an internal validation set and 4 exter-
nal validation sets using the same score model and cut-off  value. The results are presented in Figure 4.

In addition, the 2016 WHO classification of  central nervous system tumors categorized LGGs into 3 
distinct subtypes based on their molecular features: IDH WT, IDH mutation and 1p/19q codeletion, and 
IDH mutation and 1p/19q non-codeletion (1). Therefore, we performed a subsequent Kaplan-Meier analy-
sis of  the patients with high- and low-risk LGGs based on the molecular subtypes. The results revealed that 
the 20-DEIR–based risk score remained effective in stratifying survival within different subtypes (Figure 5). 
Moreover, Kaplan-Meier analyses of  the patients with high- and low-risk LGGs based on clinical factors 
including age, sex, grade, and histological diagnosis were also performed. The results further confirmed 
the robust stratification ability of  the 20-DEIR–based risk score (Figure 6). Kaplan-Meier survival analyses 
stratified by immune-related risk score, age, grade, IDH mutation, 1p/19q status, and histological type were 
also performed in the whole data set. The hazard ratio (HR) value of  immune-related risk was the highest, 
indicating that its stratification ability was superior to other prognostic factors (Supplemental Figure 6).

Also, the individualized risk score may be utilized to guide the postoperative chemoradiotherapy. Based 
on the immune-related risk score, patients were divided into high- and low-risk groups. Multivariate Cox 
analysis was conducted in high- and low-risk groups to identify the prognostic factors. Radiotherapy was 
found to be a favorable prognostic factor in the high-risk group (HR, 0.44; 95% CI, 0.21–0.91; P = 0.027), 
but it made no sense in the low-risk group (HR, 1.05; 95% CI, 0.57–1.92; P = 0.882; Supplemental Table 7).

Furthermore, the relationship between the risk score and biomarkers for checkpoint inhibitor immu-
notherapy was evaluated. The risk score was positively correlated with the expression levels of  PD-L1 and 
TGF-β, especially in grade III gliomas (Supplemental Figures 7–9).

Biological processes associated with the risk score in LGGs. Based on the immune infiltration–related risk 
score, LGGs were significantly stratified into high- and low-risk groups. For further exploring the biologi-
cal processes associated with the risk score, we performed GSEA to identify the enriched cancer hallmarks 
in TCGA and CGGA RNA-Seq data sets (Figure 7). We found that the essential pathways correlated with 
cell proliferation and invasion were enriched in the both data sets, such as G2/M checkpoint, E2F targets, 
epithelial-mesenchymal transition, and angiogenesis. Moreover, the pathways correlated with immune 

Figure 2. Association of clinical factors with overall survival based on univariate Cox analysis in the training set and validation sets. A, astrocytoma; 
NA, not available; NA*, not applicable; OA, oligoastrocytoma; OD, oligodendroglioma.
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and inflammatory response were significantly enriched, including IFN-γ response, IFN-α response, 
allograft rejection, inflammatory response, TNF-α signaling via NF-κB, IL-6/JAK/STAT3 signaling, and 
IL-2/STAT5 signaling. These findings indicate that the intratumoral immune infiltration plays an import-
ant role in the malignant progression of  LGGs.

Development of  a predictive nomogram for OS. After backward elimination of  variables using Akaike’s 
information criterion (AIC) as a stopping rule, risk score, age, and grade were included finally, and a nomo-
gram incorporating the 3 factors was generated to predict the 3-year and 5-year OS in the training set 
(Figure 8A). The calibration curves suggested that the nomogram was well-calibrated across all data sets 
(Figure 8, B–G). The C-indices (0.873 for training set, 0.881 for internal validation set, 0.781 for external 
validation set 1, 0.765 for external validation set 2, 0.721 for external validation set 3, and 0.753 for external 
validation set 4) indicated the good discriminative ability of  our model.

Discussion
In this study, we found that the gene expression pattern of intratumoral immune infiltration was associated 
with the malignancy of LGGs and identified a 20-DEIR–based risk signature significantly correlated with 
the survival of LGG patients. We further built a nomogram that incorporated the 20-DEIR–based risk score, 
patient’s age, and tumor grade to predict the OS of patients with LGGs after surgical resection. Lower-grade 
brainstem gliomas were excluded from our study due to their unique clinical characteristics, low morbidity, and 
few cases. The performance of the nomogram was verified in all data sets, which guaranteed the repeatability 
of our model. Compared with a previously proposed long noncoding RNA–based (lncRNA-based) signature 
(21), the number of cases included in this study was larger and the predictive AUC was higher, indicating that 
our immune-related prognostic signature was more accurate. Also, several predictive nomograms were estab-
lished in previous studies to predict the long-term OS of LGGs (22, 23). In comparison, the more adequate 
validation with consistently high C-indices of our nomogram indicated the improvement of reliability.

Figure 3. The immune infiltration landscape of LGGs. Unsupervised clustering of 469 LGGs from TCGA using ssGSEA 
scores based on the 22 survival-related immune cell subpopulations. Age, sex, grade, IDH mutation status, 1p/19q 
codeletion status, and histological type are annotated in the lower panel. Two distinct immune infiltration subgroups 
termed as type A infiltration and type B infiltration were defined.
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In the analysis of  immune infiltration landscape, we found that LGGs had 2 immune infiltration sub-
types. LGGs with type A and type B infiltration differed significantly in 1p/19q status and histological 
type. In the correlation analysis, type A infiltration presented notable positive correlations with 1p/19q 
codeletion (Spearman’s rho = 0.397, P < 0.001) and histological oligodendroglioma (Spearman’s rho = 
0.330, P < 0.001). As we know, the 1p/19q codeletion has been proposed as a diagnostic standard for oli-
godendroglioma in the 2016 WHO classification of  tumors of  the central nervous system (24), which is in 
accordance with our analysis. In other words, the infiltrating immune cells in oligodendroglioma are differ-
ent from those in astrocytoma. Oligodendroglioma tends to type A infiltration, while astrocytoma tends to 
type B infiltration, which may contribute to the difference in prognosis. However, the driving factors of  the 
difference in the infiltrating immune cells are still unknown, which requires further study.

Using LASSO Cox regression, 120 candidate survival-related DEIRs were reduced to the 20 most pow-
erful prognostic predictors, and a risk score model based on the 20 DEIRs was then generated. The prog-
nostic value of  the risk score was verified in time-dependent ROC analyses of  all data sets. Furthermore, 
the 20-DEIR–based risk score was identified to have a higher accuracy in predicting 3-year and 5-year OS 
compared with traditional stratifying factors (age, WHO grade, IDH mutation, 1p/19q status, and histo-
logical type). In the multivariate Cox analysis, after adjusting for clinical factors, the risk score remained 
an independent prognostic factor (HR, 1.65 per 1 score increase; 95% CI, 1.46–1.86; P < 0.001) in the 
whole data set. In addition, the Kaplan-Meier analysis showed that the risk score still remained effective in 
stratifying patients within different molecular subtypes of  LGGs based on the 2016 WHO classification, 
further clarifying its clinical value. Also, Kaplan-Meier survival analyses stratified by immune-related risk 
score, age, grade, IDH mutation, 1p/19q status, and histological type showed that the immune-related 
risk gave the highest HR value, indicating that its stratification ability was superior to other prognostic 
factors. Our findings highlight the role of  intratumoral immune infiltration in the outcomes of  LGGs, and 
the 20-DEIR–based risk signature is promising to be an effective supplement for the diagnostic criteria of  
LGGs in further stratifying the prognosis of  patients. Moreover, the prognostic signature could be utilized 
to guide the postoperative chemoradiotherapy. Based on the individualized risk score, patients were divid-
ed into high- and low-risk groups. High-risk patients may be more suitable for close imaging monitoring, 
radical postoperative radiotherapy, and chemotherapy, while low-risk patients could consider radiotherapy 

Table 1. Information of the risk score model based on the 20 survival-related immune metagenes

Metagene Coefficient  Cell type Immunity Full name
CD37 0.2623 Activated CD8+ T cell Adaptive CD37 molecule

SIGLEC1 1.3129 Central memory CD8+ T cell Adaptive Sialic acid binding Ig–like lectin 1
FABP5 0.3861 γδ T cell Adaptive Fatty acid binding protein 5

PDCD1LG2 0.4357 T follicular helper cell Adaptive Programmed cell death 1 ligand 2
EMP1 0.8552 Type 1 T helper cell Adaptive Epithelial membrane protein 1

ANKRD22 –1.5871 Type 17 T helper cell Adaptive Ankyrin repeat domain 22
TMPRSS3 1.3071 Type 2 T helper cell Adaptive Transmembrane serine protease 3

BIRC5 0.8605 Type 2 T helper cell Adaptive Baculoviral IAP repeat containing 5
CENPF 1.8334 Type 2 T helper cell Adaptive Centromere protein F
HEY1 –3.3937 CD56bright NK cell Innate Hes related family bHLH transcription 

factor with YRPW motif 1
GPR27 –0.9706 Macrophage Innate GPCR27

CRYBB1 –1.2091 Macrophage Innate Crystallin β B1
ADAMTS3 0.0448 Mast cell Innate ADAM metallopeptidase with 

thrombospondin type 1 motif 3
SIGLEC8 0.8839 Mast cell Innate Sialic acid binding Ig–like lectin 8
IGFBP5 2.1627 NK cell Innate Insulin like growth factor binding protein 

5
CD101 1.4131 NK T cell Innate CD101 molecule
SPP1 0.4835 NK T cell Innate Secreted phosphoprotein 1
CBX6 –0.3417 Plasmacytoid DCl Innate Chromobox 6

PROK2 –0.0003 Plasmacytoid DC Innate Prokineticin 2
CD300LF 0.2018 Plasmacytoid DC Innate CD300 molecule–like family member F

https://doi.org/10.1172/jci.insight.133811
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alone or just observation. In order to verify the clinical value of  our model, multivariate Cox analysis was 
conducted in high- and low-risk groups to identify the prognostic factors. Radiotherapy was a favorable 
prognostic factor in the high-risk group, but it made no sense in the low-risk group. Chemotherapy was not 
an independent prognostic factor in either group. This indicated that high-risk patients were more likely to 
benefit from the radiotherapy. However, further verification by prospective studies is necessary.

In addition, our risk score model might also help to assess the immune microenvironment and guide 
immunotherapy. Checkpoint inhibitor immunotherapy has been receiving increasing attention due to its 
impressive success in the treatment of  various solid tumors, and it is likely to be a promising choice of  
treatment for LGGs in the future. TGF-β secreted by glioma cells and innate immune cells can block the 
antitumor response of  T cells and maintain the immunosuppressive microenvironment (25, 26). As the 
risk score is positively correlated with the expression level of  TGF-β, a high risk score is likely to reflect a 
more immunosuppressive glioma microenvironment. The ligand PD-L1 on the surface of  tumor cells can 
prevent T cells from identifying cancer antigens through the binding of  PD-1 (27, 28). In the TME, this 
interaction is an important mechanism for the immune escape of  tumor cells (28). The overexpression of  
PD-L1 is a widely used predictive biomarker to determine response to checkpoint inhibitor immunotherapy 
(29). As the risk score is positively correlated with the expression level of  PD-L1, LGG patients with a high 
risk score would be more likely to benefit from anti–PD-1/PD-L1 immunotherapy. However, resistance to 
immune checkpoint inhibitors occurs frequently in clinical treatment. One possible reason is the increasing 
immunosuppressive status in the TME owing to the activation of  TGF-β pathway (30). Inhibiting TGF-β 
has been found to enhance the efficacy of  anti–PD-1/PD-L1 treatment in numerous studies (30–32). 
M7824, a bifunctional fusion protein targeting PD-L1 and TGF-β, has shown encouraging signs of  efficacy 
in a Phase I clinical trial (32). Our risk score model, which is positively correlated with the expression levels 

Figure 4. Kaplan-Meier survival analyses and time-dependent ROC curves based on the risk score in the training and validation sets. (A–F) Training 
set (A), internal validation set (B), external validation set 1 (C), external validation set 2 (D), external validation set 3 (E), and external validation set 4 (F). 
Patients with a risk score of more than 0.6907 were assigned to the high-risk group and the rest were assigned to the low-risk group. P values were calcu-
lated based on the log-rank test. AUCs at 3 and 5 years were used to assess predictive accuracy.
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Figure 5. Kaplan-Meier curves based on the IDH and 1p/19q status in the whole data set. (A–F) Kaplan-Meier curves of OS of patients with high- and 
low-risk LGGs based on the IDH and 1p/19q status for 764 patients with IDH mutation (A), 257 patients with WT IDH (B), 349 patients with 1p/19q codele-
tion (C), 690 patients without 1p/19q codeletion (D), 276 patients with IDH mutation and 1p/19q codeletion (E), and 382 patients with IDH mutation and 
without 1p/19q codeletion (F). Log-rank test was used for statistical findings.
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of  both TGF-β and PD-L1, is expected to be a potential biomarker for the cotargeting immunotherapy. Due 
to the stronger correlation between the risk score and the expression levels of  TGF-β and PD-L1 in grade 
III gliomas, grade III patients with high risk scores are more likely to benefit from the cotargeting immuno-
therapy. It should be pointed out that IHC is used to assess the expression of  PD-L1 at the protein level in 
clinical immunotherapy (33). The value of  PD-L1 detection at the gene level needs to be further verified.

Based on the stratification of  immune infiltration–related risk, GSEA was performed. We identified 
the essential biological processes that were associated with the 20-DEIR–based risk score, including 

Figure 6. Kaplan-Meier curves based on clinical factors in the whole data set. Kaplan-Meier curves of OS of patients with high- and low-risk LGGs 
based on age, sex, grade, and diagnosis for 604 patients with age > 40 years (A), 610 patients with age ≤ 40 years (B), 621 male patients (C), 459 
female patients (D), 608 patients with grade III gliomas (E), 607 patients with grade II gliomas (F), 455 patients diagnosed with astrocytomas (G), 320 
patients diagnosed with oligodendrogliomas (H), and 441 patients diagnosed with oligoastrocytomas (I). Log-rank test was used for statistical findings.
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not only cell proliferation and invasion, but also immune and inflammatory response. Not surprisingly, 
7 pathways correlated with immune and inflammatory response were enriched, further supporting the 
crucial role of  immunity in the prognosis of  LGGs.

We noted that adjuvant chemotherapy and radiotherapy were not independent prognostic factors for 
OS in the multivariate Cox analysis of  the whole data set and were excluded from the predictive nomo-
gram. Moreover, chemotherapy and radiotherapy were both significant risk factors in the univariate Cox 
analysis of  the whole data set. Even so, the importance of  chemoradiotherapy in the prognosis of  LGGs 
cannot be denied. In the past, the choice and timing of  adjuvant therapies for LGGs were controversial 
(34). Chemotherapy and radiotherapy were more likely to be recommended to patients with factors of  poor 
outcome after surgery. In the correlation analysis of  clinical factors, tumor grade was significantly cor-
related with chemotherapy (Spearman’s rho = 0.36, P < 0.001) and radiotherapy (Spearman’s rho = 0.23,  
P < 0.001). Patients with grade III gliomas were more likely to receive chemotherapy and radiotherapy. 

Figure 7. Biological processes associated with the risk score in LGGs. (A and B) Use of the GSEA to identify the biologi-
cal processes positively correlated with the risk score in TCGA (A) and CGGA RNA-Seq (B) data sets. The pathways were 
arranged according to the normalized enrichment scores (NES). padj, FDR-adjusted P value.
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It was acknowledged that patients with grade III gliomas had worse prognosis compared with those with 
grade II gliomas, which might partly explain why chemotherapy and radiotherapy were not independent 
prognostic factors for OS in the multivariate Cox analysis.

The limitations of  this study should be noted. Firstly, the retrospective nature of  data collection, the 
lack of  some data, and the failure to incorporate some recognized prognostic factors (e.g., MGMT pro-
moter methylation, tumor size, and extent of  surgical resection; refs. 9, 35, 36) indicate the need for pro-
spective data collection and high incorporation of  comprehensive factors to increase the credibility of  the 
model. Secondly, the microarray data from the 3 data sets were used to validate the model trained from 
sequencing data. Due to the differences in technological principles between microarray and sequencing, 
systematic errors existed, although all data were normalized to [0,1]. However, from another point of  

Figure 8. Predictive nomogram and calibration curves. (A) Nomogram to predict the 3-year and 5-year OS. (B–G) Calibration plots for the nomogram 
model in the training set (B), internal validation set (C), external validation set 1 (D), external validation set 2 (E), external validation set 3 (F), and external 
validation set 4 (G). The 45-degree dotted line represents a perfect prediction, and the solid lines reflect the predictive performance of the nomogram.
 

https://doi.org/10.1172/jci.insight.133811


1 2insight.jci.org      https://doi.org/10.1172/jci.insight.133811

C L I N I C A L  M E D I C I N E

view, the model also showed good accuracy in the microarray data sets, indicating the robustness of  our 
model. Thirdly, the CGGA data set in our study was not an absolutely external validation set because 
it was used to obtain the survival-related DEIRs in the training phase. From another perspective, since 
the samples in TCGA were mainly from White people and those in CGGA were mostly from people 
of  Asian descent, the model constructed by our method could reduce the influence of  racial differences 
on the predictive accuracy; this supported the extensive use of  this predictive model, regardless of  race 
and region. Moreover, the prognostic value of  our model was confirmed by the inclusion of  3 additional 
external validation sets based on microarray data. Finally, the intratumoral immune infiltration was only 
measured using ssGSEA at the molecular levels. The relationship between infiltration detected at the 
molecular levels and infiltration of  actual immune cells was not evaluated in this study. If  possible, we 
will verify it on the histological aspects in the future.

In conclusion, our study highlights the prognostic value of  intratumoral immune infiltration in LGGs 
and developed a 20-DEIR–based risk signature with favorable predictive value and stratifying ability. 
Additionally, our nomogram incorporating the 20-DEIR–based risk score, patient’s age, and tumor grade 
performed well, with good calibration and discrimination for predicting the survival of  LGG patients after 
surgical resection. Furthermore, the 20-DEIR–based risk score is a potential biomarker for the PD-L1 and 
TGF-β cotargeting immunotherapy.

Methods
Patients and data sets. RNA-Seq data and clinical information for 510 LGGs were retrieved from TCGA 
data portal. The most comprehensive LGG data set from TCGA was used as the training set in our study. 
Clinical and molecular information from the CGGA data base contained RNA-Seq data of  630 LGGs and 
microarray data of  177 LGGs with approval by the ethics committee of  Beijing Tiantan Hospital. The 2 
data sets were used as external validation sets 1 and 2. Microarray data for 109 LGGs based on GSE16011 
and 137 LGGs based on GSE61374 were downloaded from the Gene Expression Omnibus (GEO) reposi-
tory (https://www.ncbi.nlm.nih.gov/geo/), the clinical information of  which were found in previous stud-
ies (37, 38). The 2 data sets were used as external validation sets 3 and 4.

The exclusion criteria for the downloaded data were as follows: (a) brainstem glioma, (b) recurrent 
glioma, (c) patients who underwent biopsy alone without tumor resection, and (d) patients with survival 
data ≤ 30 days. After filtering, 469 LGGs from the TCGA RNA-Seq data set, 405 LGGs from the CGGA 
RNA-Seq data set, 118 LGGs from the CGGA microarray data set, 88 LGGs from GSE16011, and 136 
LGGs from GSE61374 were included in this study.

Evaluation of  immune infiltration. A previously described method was used to evaluate the immune infil-
tration in LGGs (39). The 782 metagenes for 28 immune cell subpopulations involved in innate immunity 
and adaptive immunity were obtained from Charoentong et al. (19). The immune infiltration levels were 
quantified using enrichment scores calculated by ssGSEA. The ssGSEA applied gene signatures expressed 
by the 28 immune cell subpopulations to individual tumor samples (39). Unsupervised clustering of  469 
LGGs from TCGA was performed using the calculated ssGSEA scores.

Data processing and risk score building. Differentially expressed RNAs were analyzed in 469 LGG samples 
from TCGA (counts value) and 469 normal brain specimens from the GTEx Portal (counts value) using 
the R package DESeq2. Simultaneously, to obtain the DEIRs, the 782 immune-related metagenes (19) were 
used as criteria for further screening. The expression differences were characterized by log2 fold change 
(log2FC) and the associated FDR-adjusted P value (adj.P). Immune-related RNAs of  |log2FC| > 1 and 
adj.P < 0.05 were identified as being differentially expressed and selected as DEIRs.

RNA-Seq data (fragments per kilobase per million mapped reads [FPKM] value) of  the 469 LGGs 
from TCGA and 405 LGGs from the CGGA were converted to TPM values using a formula described in 
previous studies (40–42). As a considerable expression abundance is necessary for gene function, the select-
ed DEIRs with a maximal expression of  > 2 TPM (43) were chosen for the survival analysis. To reduce 
systematic error across different data sets, the gene expression data (TPM value) was normalized to [0,1] 
within every DEIR. Furthermore, the DEIRs that were not significantly correlated with the OS (P ≥ 0.05) 
in the univariate Cox analysis were filtered out in the 2 data sets. The related calculation formulae and R 
codes are listed in the Supplemental Methods.

LASSO is an acknowledged method for regression with high-dimensional data (44). It has been 
extensively applied to the Cox proportional hazard regression model for survival analyses (45, 46). The 
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survival-related DEIRs that were common to the 2 RNA-Seq data sets were subsequently analyzed using 
LASSO Cox regression to select the most powerful prognostic markers. We first randomly selected 70% 
of  TCGA patients for training (n = 329) and the remaining 30% of  TCGA patients for internal validation 
(n = 140). A formula that combined the relative expression of  the DEIRs (Expi) and their respective LAS-
SO coefficients (Li) was constructed to calculate a risk score (RS) for each patient:

    (Equation 1)

In addition to the 405 LGGs from the CGGA RNA-Seq data set, a further 118 LGGs from the CGGA 
microarray data set, 88 LGGs from GSE16011, and 136 LGGs from GSE61374 were used as external val-
idation sets. Primary microarray data from GSE16011 and GSE61374 were processed in the same way as 
the microarray data from the CGGA (6). Multiple probe sets were mapped to a single gene using the medi-
an value of  the signals. To reduce the systematic error in the different data sets, the gene expression data 
of  microarray was normalized to [0,1] in GSE16011, GSE61374, and CGGA. The normalization formula 
and R codes are listed in the Supplemental Methods.

The risk score was calculated for each patient in the validation sets using the formula constructed in 
the training set. The predictive accuracy of  the risk score was assessed using time-dependent ROC curve 
analysis in all the data sets (47).

Construction and assessment of  prediction model. Multivariate Cox regression analysis began with the risk 
score and the following clinical factors: age, grade, IDH mutation, 1p/19q status, histological type, chemo-
therapy, and radiotherapy. Step-wise backward elimination was applied with AIC to select the best vari-
ables to be included in the model (48). A nomogram was then constructed based on the multivariate Cox 
regression. As age and risk score were continuous variables, 3-knot restricted cubic splines were used (49).

The calibration of  the nomogram was assessed using calibration curves. Harrell’s C-index was calcu-
lated to assess the discrimination.

Statistics. All statistical analyses were performed using the R software version 3.5.2. Univariate and 
multivariate Cox regression analyses were used to evaluate the prognostic value of  factors. Pearson’s χ2 test 
was used to compare the distribution of  patient characteristics. The Kaplan-Meier analysis with a 2-sided 
log-rank test was used to compare the OS of  patients. Spearman’s correlation test was performed to assess 
the correlation. Statistical significance was set at P < 0.05 unless specified otherwise.

Study approval. This retrospective study was approved by the ethics committee of  Beijing Tiantan Hos-
pital, and informed consent was waived.
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