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BACKGROUND. In this study, we identified the lipidomic predictors of early type 2 diabetic kidney 
disease (DKD) progression, which are currently undefined.

METHODS. This longitudinal study included 92 American Indians with type 2 diabetes. Serum 
lipids (406 from 18 classes) were quantified using mass spectrometry from baseline samples when 
iothalamate-based glomerular filtration rate (GFR) was at least 90 mL/min. Affymetrix GeneChip 
Array was used to measure renal transcript expression. DKD progression was defined as at least 
40% decline in GFR during follow-up.

RESULTS. Participants had a mean age of 45 ± 9 years and median urine albumin/creatinine ratio 
of 43 (interquartile range 11–144). The 32 progressors had significantly higher relative abundance 
of polyunsaturated triacylglycerols (TAGs) and a lower abundance of C16–C20 acylcarnitines (ACs) 
(P < 0.001). In a Cox regression model, the main effect terms of unsaturated free fatty acids and 
phosphatidylethanolamines and the interaction terms of C16–C20 ACs and short-low-double-bond 
TAGs by categories of albuminuria independently predicted DKD progression. Renal expression 
of acetyl-CoA carboxylase–encoding gene (ACACA) correlated with serum diacylglycerols in 
the glomerular compartment (r = 0.36, and P = 0.006) and with low-double-bond TAGs in the 
tubulointerstitial compartment (r = 0.52, and P < 0.001).

CONCLUSION. Collectively, the findings reveal a previously unrecognized link between lipid 
markers of impaired mitochondrial β-oxidation and enhanced lipogenesis and DKD progression 
in individuals with preserved GFR. Renal acetyl-CoA carboxylase activation accompanies 
these lipidomic changes and suggests that it may be the underlying mechanism linking lipid 
abnormalities to DKD progression.
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Introduction
Diabetes is the leading cause of  end-stage kidney disease in the United States and many other parts of  the 
world (1). According to the 2018 United States Renal Data System report, the prevalence of  end-stage kid-
ney disease from diabetes continues to increase (2) and is expected to increase by 44% by 2030 (3). Efforts 
aimed at risk modification and halting diabetic kidney disease (DKD) progression are focused on the early 
stages of  DKD, when treatment to slow disease development may be most successful. Clinical care of  
patients with DKD presently relies on traditional biomarkers, such as estimated glomerular filtration rate 
(eGFR) and urine albumin/creatinine ratio (ACR), which have limited precision and prognostic value 
early in the disease. Accordingly, there is a need for biomarkers that predict DKD progression early in its 
course for proper risk stratification and for rational targeted intervention.

Lipid studies in human clinical research are often limited to measuring a traditional panel of  lipids, 
including total cholesterol, lipoproteins, and total triacylglycerols (TAGs) (4–8). However, lipids are the 
most abundant and diverse class of  molecules in the circulation, with numerous physiological and met-
abolic functions (9, 10). Mass spectrometry–based (MS-based) technological advances for identifying 
and quantifying lipids in biological samples have revealed the diversity of  lipids and also uncovered 
their clinical relevance in a number of  diseases (9–17). In a cross-sectional study of  214 patients from 
the Clinical Phenotyping and Resource Biobank Core (CPROBE) cohort with chronic kidney disease 
(CKD), we found progressive differences in the human plasma lipidome from CKD stage 2 to stage 5 
(18). In particular, we demonstrated an increase in the abundance of  C16–C20 saturated free fatty acids 
(FFAs) and polyunsaturated longer chain complex lipids in the later stages of  CKD. In more advanced 
CKD, this lipid phenotype was associated with a lower long (C16–C20) to intermediate chain (C6–C14) 
acylcarnitine (AC) ratio, a marker of  impaired β-oxidation of  long chain (C16–C20) fatty acids. This 
leads to an increased abundance of  C16–C20 carbon FFAs, rather than their acylation with carnitine to 
generate ACs and longer polyunsaturated complex lipids (18). In the lipidomic analysis of  the Chronic 
Renal Insufficiency Cohort (CRIC), we found a higher abundance of  phosphatidylethanolamines (PEs) 
in progressors compared with nonprogressors (19). While there have been several efforts to identify pro-
gressive renal decline in diabetic patients with impaired renal function (19–24), less is known about 
the mechanisms, determinants, and markers of  early decline in patients with preserved renal function. 
Early decline was studied recently by the Joslin group, and markers of  tubular damage were identified as 
predictors of  progression (23, 25). The central hypothesis of  our present study was that the differential 
lipid alterations observed at more advanced DKD stages are a continuum of  a process that starts before 
the onset of  clinical DKD. Additionally, lipid alterations identified earlier may serve as markers of  early 
DKD progression when traditional biomarkers, such as eGFR and urine ACR, are still normal. DKD 
has been characterized extensively over many years in American Indians from the Gila River Indian 
Community (26–31). In the present study, we examined the lipidomic predictors of  DKD progression 
in this cohort. We hypothesized, based on our earlier observations (18, 19), that a subset of  ACs, TAGs, 
FFAs, and PEs would predict DKD progression at an early stage in patients with type 2 diabetes with 
preserved GFR (>90 mL/min) and normal urinary albumin excretion (ACR <30 mg/g). The presence 
of  extensive clinical phenotyping and longitudinal follow-up, and the availability of  matched serum and 
kidney biopsy specimens when renal function is well preserved, make this cohort ideal for performing 
systems integration of  lipidomic and renal lipid gene expression profiling. We believe our studies reveal 
a previously unrecognized lipidomic signature of  early DKD progression.

Results
Patient characteristics. American Indians from the Gila River Indian Community participated in a longitu-
dinal study of  diabetes and its complications. Between 1996 and 2001, 169 of  the study participants were 
recruited for a randomized, double-blind, placebo-controlled clinical trial to assess the efficacy of  the 
angiotensin receptor blocker losartan on onset and progression of  diabetic nephropathy in type 2 diabetes 
(ClinicalTrials.gov, NCT00340678). Iothalamate-based GFR was measured annually (32, 33). Of  169 par-
ticipants in the clinical trial, 111 underwent a protocol kidney biopsy at the end of  6 years of  treatment. 
We selected 92 participants who underwent a kidney biopsy and had both a GFR at least 90 mL/min and 
serum samples available that had been collected during the GFR measurement taken closest to the kidney 
biopsy. This examination was considered the baseline (Figure 1). The primary outcome was defined as a 
sustained decline in GFR by 40% in follow-up examinations, an outcome accepted as a surrogate marker 
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of  CKD progression (34). Time to event was defined as the interval between the date of  baseline GFR 
measurement and the date of  the primary outcome. GFRs less than 90, less than 60, and less than 30 mL/
min were defined as secondary outcomes. The 92 participants, including 67 women and 25 men, were fol-
lowed for a maximum of  13.6 years (median 9.6 years and interquartile range 7.3–11.0 years). Their mean 
age was 45 ± 9 years, and body mass index (BMI) was 36.1 ± 8.3 kg/m2 in the female participants and 
34.2 ± 7.9 kg/m2 in the male participants (P = 0.33). Thirty-two of  the participants reached the primary 
renal outcome of  40% decline in measured GFR during follow-up.

Baseline characteristics. The baseline characteristics of  progressors and nonprogressors are shown in 
Table 1. Most characteristics were similar in the 2 groups, except for statistically higher mean diastolic 
blood pressure, fasting plasma glucose (FPG), HbA1c, GFR, and urine ACR in the progressors. Baseline 
and last measured GFRs for both groups are shown in Figure 2.

Baseline lipidomic profile of  progressors and nonprogressors. We measured 406 lipids from 18 classes, includ-
ing TAGs, diacylglycerols (DAGs), monoacylglycerols (MAGs), phosphatidylcholines (PCs), PEs, plas-
menyl-PCs (pPCs), plasmenyl-PEs (pPEs), lyso-PCs (LPCs), lyso-PEs, FFAs, cholesteryl-esters (CEs), 
cardiolipins, phosphatidic acids (PAs), phosphatidylinositols (PIs), phosphatidylglycerols (PGs), phos-
phatidylserines (PSs), sphingomyelins (SMs), and ceramide phosphates in positive and negative ioniza-
tion modes (Supplemental Table 1; supplemental material available online with this article; https://doi.
org/10.1172/jci.insight.130317DS1). After combining the different adducts of  the same feature and elim-
inating the classes consisting of  2 or fewer lipid molecules (PA, PG, PS, pPC, ceramide phosphate, and 
MAG), 236 unique lipids, including 16 FFAs (6.8%), 76 glycerolipids (32.2%), 83 phospholipids (35.1%), 
12 CEs (5.1%), 20 SMs (8.5%), and 29 ACs (12.3%), were included in the analysis.

In progressors (≥40% decline in GFR), there was a higher relative abundance of  longer TAGs with 
more double bonds (P < 0.0001) (Figure 3A). Conversely, in nonprogressors there was a lower relative 
abundance of  longer TAGs with more double bonds at baseline (P = 0.022) (Figure 3A). The alterations 
in lipid abundance by carbon number or saturation status were independent of  baseline GFR, ACR, 
weight, FPG, and HbA1c. Similar alterations in the relative abundance of  TAGs were observed when 
all participants were divided based on whether they reached a sustained GFR less than 90 mL/min, less 
than 60 mL/min, or less than 30 mL/min with stronger trends with increased CKD severity (P < 0.0001) 
(Figure 3B). There were no significant alterations between progressors and nonprogressors in the levels 
of  other complex lipids by differences in the number of  carbons or double bonds.

Figure 1. Flow diagram of analytical strategy and post-
trial follow-up of participants of the Renoprotection 
in Early Diabetic Nephropathy in Pima Indians trial 
analyzed in this study.

https://doi.org/10.1172/jci.insight.130317
https://insight.jci.org/articles/view/130317#sd
https://doi.org/10.1172/jci.insight.130317DS1


4insight.jci.org   https://doi.org/10.1172/jci.insight.130317

C L I N I C A L  M E D I C I N E

Baseline AC profiles in progressors and nonprogressors. For the primary outcome of  ≥40% GFR decline (Fig-
ure 3C), there was a significantly lower abundance of  serum ACs with a longer chain length (C16–C20) in 
progressors (P < 0.001). Conversely, the nonprogressors exhibited a higher abundance of  serum ACs with 
longer chain length (P = 0.026). These changes were inverse to the alterations observed in TAGs in progres-
sors and nonprogressors. Similar changes in the abundance of  longer chain ACs (C16–C20) were observed 
when all participants were divided based on whether they reached a sustained GFR less than 90 mL/min, 
less than 60 mL/min, or less than 30 mL/min (Figure 3D). Overall, the abundance of  C16–C20 ACs was 
significantly lower in participants who reached the GFR threshold compared with those who did not (P ≤ 
0.015), suggesting impaired β-oxidation.

Baseline long chain/intermediate chain AC ratio correlation with chain length and saturation of  other complex 
lipids. The data in Figure 3, A–D, suggest that the abundance of  longer chain ACs correlates directly with 
shorter TAGs and inversely with longer TAGs. We also examined the correlation of  the long/intermediate 
chain ACs with different principal components (Supplemental Table 2) characterized by their length and 
saturation status. We found a significant direct correlation between long/intermediate chain AC ratio and 
the short complex lipids with fewer double bonds in the TAG, pPE, PE, and DAG lipid classes (Figure 4). 
We also observed a significant inverse correlation between long/intermediate chain ACs and the longer 
chain complex lipids with more double bonds in the CE classes (Figure 4).

Alteration of  ACs by categories of  urinary ACR. The abundance of  ACs in progressors and nonprogressors 
by change in number of  carbons and double bonds was also compared when stratified by the baseline ACR 
category (Figure 5). The heatmap suggests a trend toward lower levels of  long chain ACs (C16–C20) from 
nonprogressors with ACR less than 30 mg/g to progressors with ACR more than 300 mg/g. Within each 
ACR category, the change in AC abundance by increased carbon number reached statistical significance 
and increased in nonprogressors with ACR 30–299 mg/g (P = 0.006) and decreased in progressors with 

Table 1. Comparing baseline characteristics and follow-up of progressors and nonprogressors

Nonprogressors 
n = 60

Progressors 
n = 32

P value

Duration of follow-ups, years 8.8 ± 3.0 8.9 ± 3.0 0.932
Number of follow-up visits 10 ± 4 10 ± 3 0.827
Age, years 46 ± 9 43 ± 9 0.120
Male sex, n (%) 20 (33.3) 5 (15.6) 0.069
BMI, kg/m2 36.2 ± 8.3 34.5 ± 8.0 0.355
Systolic blood pressure, mmHg 122 ± 15 127 ± 18 0.193
Diastolic blood pressure, mmHg 76 ± 9 81 ± 9 0.010
Fasting plasma glucose, mg/dL 207.2 ± 90.5 262.3 ± 108.7 0.011
HbA1c, % 9.0 ± 2.3 10.2 ± 1.9 0.012
Total cholesterol, mg/dL 167.0 ± 35.6 184.9 ± 47.4 0.071
Triglyceride, mg/dL 180.4 ± 136.6 273.6 ± 283.3 0.137
Total serum protein, g/dL 6.8 ± 0.4 6.8 ± 0.5 0.851
Serum albumin, g/dL 3.5 ± 0.4 3.4 ± 0.4 0.166
AST, IU/L 24.9 ± 20.3 23.6 ± 22.4 0.802
Serum alkaline phosphatase, IU/L 107.5 ± 32.8 118.6 ± 35.3 0.160
Total bilirubin, mg/dL 0.5 ± 0.2 0.4 ± 0.2 0.067
GFR, mL/min 149 ± 46 170 ± 51 0.038
Urine ACR, median [IQR], mg/g 19 [9–66] 77 [50–396] <0.001
Intervention arm, n (%) 36 (60.0) 15 (46.9) 0.228
Medications
 Antihypertensive, n (%) 24 (40.0) 13 (40.6) 0.954
 Insulin, n (%) 23 (38.3) 16 (50.0) 0.281
 Oral hypoglycemic, n (%) 48 (80.0) 25 (78.1) 0.832
 Statins, n (%) 10 (16.7) 9 (28.1) 0.196
 Other lipid lowering, n (%) 12 (20.0) 10 (31.3) 0.228

Means with SDs are given for continuous variables. ACR, albumin/creatinine ratio; AST, aspartate aminotransferase; GFR, glomerular filtration rate; HbA1c, 
hemoglobin A1c.
 

https://doi.org/10.1172/jci.insight.130317
https://insight.jci.org/articles/view/130317#sd


5insight.jci.org   https://doi.org/10.1172/jci.insight.130317

C L I N I C A L  M E D I C I N E

ACR more than 300 mg/g (P < 0.0001). Overall, the mean level of  C16–C20 ACs in progressors with ACR 
more than 300 mg/g was significantly lower than in any other subgroup (P ≤ 0.004), except nonprogressors 
with ACR more than 300 mg/g, where the difference did not reach statistical significance.

Risk prediction of  DKD progression from lipid changes. We used the lipid principal components (Supplemen-
tal Table 2) to construct Cox regression models for risk prediction of  DKD progression. We applied different 
models with varying levels of  adjustment. First, we built the base model, which included the study principal 
components without adjusting for the clinical variables (Table 2, model 1: ACR + GFR). In this model, 
each 1 SD increase in unsaturated PEs was associated with 1.78-fold higher risk of  progression (95% CI: 
1.24–2.57, and P = 0.002), and each 1 SD increase in unsaturated FFAs was associated with 0.66-fold lower 
risk of  progression (95% CI: 0.46–0.95, and P = 0.026) independent of  other lipid factors. In the next step, 
we identified the principal components with a significant interaction term by ACR category and then added 
them to the base model (Table 2, model 2: lipids). By doing so, we observed strengthening of  the significance 
of  unsaturated PEs and unsaturated FFAs. However, we also noted that each 1 SD increase in C16–C20 ACs 
in participants with ACR less than 30 mg/g, compared with ACR at least 300 mg/g, was associated with a 
3.36-fold higher risk of  DKD progression (95% CI: 1.00–11.28, and P = 0.05). Similarly, each 1 SD increase 
in short-low-double-bond TAGs was associated with significantly lower risk of  progression in participants 
with ACR less than 30 mg/g or ACR 30–299 mg/g compared with ACR at least 300 mg/g (Table 2, model 
2: lipids). Further adjusting using baseline GFR, ACR, FPG, and HbA1c did not alter the results, and simi-
lar estimations were obtained in the fully adjusted model (Table 2, model 3: ACR + GFR + lipids).

Next, we compared the probabilistic risk scores of progressors and nonprogressors obtained from these 3 
models. Model 3 (ACR + GFR + lipids) showed the largest difference between the risk score of progressors and 
nonprogressors, on average, compared with the other 2 models (Figure 6). When percentage with progression was 
compared by the risk score quartiles, the first quartile of the full model was more likely to consist of nonprogres-
sors, and its fourth quartile was more likely to consist of progressors compared with the other 2 models (Table 3).

Differential network analysis. To understand changes in the potential interactions between lipids, we per-
formed differential network analysis using sparse correlation networks in the progressor and nonprogressor 
subgroups. The differential network analysis revealed a significant loss of  inter- and intraclass correlation 
of  lipids in progressors compared with nonprogressors. This was observed most frequently in the TAG, PE, 
and AC subclasses and, to a lesser extent, in other subclasses (Figure 7). Overall, out of  55,460 possible 
permutations of  bivariate correlations in 236 lipids, nonprogressors had 1028 significant edges while pro-
gressors had 547 (P < 0.0001). Among classes with at least 5 significant correlations with other lipids, there 
were 519 significant edges in nonprogressors and 287 edges in progressors, a 50% decline (P < 0.0001).

Systems integration of  renal transcriptomics and serum lipidomics. Because a protocol kidney biopsy taken near 
the time of baseline serum collection was available, we had the unique opportunity to perform an integra-
tive transcriptomic analysis using dissected glomerular and tubulointerstitial kidney tissue and serum lip-
ids. The transcriptomic-lipidomic analysis in the glomerular compartment revealed significant correlations 

Figure 2. Baseline and last measured 
GFRs in 32 progressors and 60 nonpro-
gressors. The boxes represent median and 
IQR, and bars represent 1.5-fold × the IQR 
below the 25th percentile and above the 
75th percentile. Outliers outside the mean 
+ 2 SD are shown with dots. Paired 2-tailed 
t test was used. 
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between lipid factors, including FAs, glycerolipids, and ACs, with the genes regulating their synthesis and 
metabolism (Supplemental Table 4). Specifically, a higher abundance of longer polyunsaturated DAGs was 
associated with higher gene expression of the acetyl-CoA carboxylase gene (ACACA; P = 0.0062, and FDR 
= 0.060). Conversely, the abundance of long chain ACs was inversely correlated with expression of fatty acid 
metabolism–encoding genes (P ≤ 0.0052, and FDR ≤ 0.052). In the tubulointerstitial compartment, there were 
significant correlations between fatty acids, glycerolipids, phospholipids, and ACs and the expression of genes 
involved in the synthesis and metabolism of fatty acids, phospholipids, glycerolipids, and sterol lipids. There 
were a larger number of significant correlations between the genes responsible for de novo synthesis, desatura-
tion, elongation, and β-oxidation of various serum fatty acids, glycerolipids, and long chain ACs (Supplemen-
tal Table 5). Specifically, a higher abundance of intermediate chain low-double-bond TAGs was associated 
with a higher ACACA expression (P = 0.0042, FDR = 0.009). Additionally, in the tubulointerstitial compart-
ment, we noticed a significant direct correlation between fatty acid abundance in serum and the expression of  
genes responsible for de novo fatty acid biosynthesis (ACSL5 and LYPLA3 or PLA2G15) and their β-oxidation 
(ACAD10). We also observed a direct correlation between short-low-double-bond DAGs and unsaturated FFAs 

Figure 3. Differences in carbon chain length and number of double bonds in complex lipids and ACs between progressors and nonprogressors. Total N 
= 92 in all panels. Abundance of TAGs and ACs were measured at the baseline visit of this study and compared in progressors and nonprogressors. (A) In 
serum from progressors (n = 32), there was a greater relative abundance of longer TAGs with more double bonds. An opposite trend was observed in non-
progressors (n = 60). (B) A similar pattern was found when all participants (progressors + nonprogressors) were grouped based on whether they achieved 
a sustained GFR <90 (n = 33), <60 (n = 13), and <30 mL/min (n = 6). Bonferroni’s threshold for multiple comparisons was set to 0.0063 (0.05 divided by 
8 panels/class). (C) In progressors (n = 32), there was a lower relative abundance of longer ACs with more double bonds. An opposite trend was observed 
in nonprogressors (n = 60). (D) A similar trend was noted in abundance of ACs by carbon number, when all participants were grouped based on whether 
they achieved a sustained GFR <90 (n = 33), <60 (n = 13), or <30 mL/min (n = 6). Bonferroni’s threshold for multiple comparisons was set to 0.0063 (0.05 
divided by 8 panels/class). P values are products of testing abundance of lipid by “carbon number × double bond” interaction term in progressors versus 
nonprogressors using mixed-linear models. 
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and genes responsible for elongation (ELOVL1 and ELOVL5) and desaturation (DEGS1). There were inverse 
correlations between high-double-bond TAGs and saturated FFAs and genes coding elongation (ELOVL1 and 
ELOVL4) and between short-low-double-bond DAGs and TAGs, unsaturated FFAs, and long chain ACs and 
genes regulating β-oxidation (Supplemental Table 5). Ingenuity Pathway Analysis based on the top lipid tran-
scripts revealed enrichment of G protein–coupled signaling pathways as regulators of de novo lipogenesis 
in both glomerular (Figure 8A) and tubulointerstitial compartments (Figure 8B). The genes involved in lipid 
metabolism downstream of the nuclear hormone–activated receptors peroxisome proliferator–activated recep-
tor γ (PPARG) and peroxisome proliferator–activated receptor α (PPARA) were expressed with a high degree of  
similarity in both glomerular (Figure 8C) and tubulointerstitial compartments (Figure 8D), suggesting similar 
lipogenic processes are activated in both compartments by these upstream regulators.

Discussion
We identified potentially novel, previously unrecognized lipid predictors of  progressive DKD in diabet-
ic American Indians with preserved kidney function, as indicated by GFR at least 90 mL/min. Lipid 
factors representative of  unsaturated FFAs and PEs, short-low-double-bond TAGs, and long chain ACs 
predicted DKD progression in these patients. A transcriptomic-lipidomic integrative analysis revealed a 
significant correlation between serum FFAs and genes regulating de novo fatty acid synthesis in the glo-
merular compartment. Similarly, the integrative analysis showed a significant correlation between serum 
FFAs, glycerolipids, and ACs and genes regulating de novo fatty acid synthesis, desaturation, elongation, 
and β-oxidation. Importantly, the gene ACACA was directly associated with long polyunsaturated DAGs in 
the glomerular compartment and with low-double-bond intermediate-length TAGs in the tubulointerstitial 
compartment. The differential networks identified in the present study reflect a differential interactome 
among various lipids by status of  DKD progression.

The results of  this study carry significant clinical implications. While tubular markers have been pro-
posed as indicators of  early renal function decline, there are no known lipid predictors of  DKD progression 
at a stage when GFR is preserved and other patient characteristics are noninformative. The proposed panel 
accurately predicts DKD onset and progression and, therefore, may have clinical applicability for risk stratifi-
cation in patients with diabetes. Second, the lipid markers unravel a potentially novel mechanism underlying 

Figure 4. Adjusted correlation of long (C16–C20) to intermediate chain (C6–C14) AC ratio with complex lipids of various chain length and double 
bonds. Long/intermediate AC ratio is directly correlated with shorter complex lipids with fewer double bonds but is inversely correlated with longer 
complex lipids with more double bonds in the CE class. P values are products of testing partial correlation coefficients in multiple linear regression 
models adjusting for sex and ACR. 
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DKD progression: impaired mitochondrial β-oxidation and altered complex lipid remodeling. Importantly, 
the ability to perform integrative renal gene expression with serum lipids has uncovered acetyl-CoA car-
boxylase (ACC) activation as a critical determinant. Consequently, ACC inhibition might be a therapeutic 
strategy to prevent DKD or slow its progression. Not all patients with diabetes develop DKD; therefore, 
the possible contribution of  ACC polymorphisms to renal outcomes needs to be investigated. Furthermore, 
in an earlier study of  this cohort, progressors were shown to have a higher mesangial fractional volume, 
percentage of  global glomerular sclerosis, nonpodocyte cell number per glomerulus, glomerular basement 
membrane width, mean glomerular volume, and podocyte foot process width. However, they had lower 
glomerular filtration surface density, with fewer endothelial fenestrations after adjustment for baseline age, 
sex, duration of  diabetes, HbA1c, GFR, and treatment assignment during the clinical trial (26). Although 
such early histological alterations provided a readout of  future decline in renal function, lipid alterations 
provide a noninvasive readout of  similar long-term outcomes and demonstrate potential for early-stage risk 
stratification in clinical practice.

There are a number of  similarities in the results of  this study and our previous lipidomic study in the 
CRIC (19). However, a few differences between these 2 studies are worth noting. At baseline examination, 
participants of  the CRIC had CKD stage 3A or 3B, whereas in this study all were at stage 1 (GFR > 90 mL/
min). Only 50% of  the CRIC participants had type 2 diabetes, whereas every participant in this study had 
type 2 diabetes. FFAs and ACs were not measured in the CRIC, nor were kidney biopsies routinely obtained 
as part of  research data collection. Despite these differences, we noted a higher risk of  DKD progression at 
higher levels of  unsaturated PEs in American Indians with diabetes, which aligns with enrichment of  PE as 
a class and its higher abundance in CKD progressors in the CRIC study (19). In a metabolomic investigation 
in participants of  the African American Study of  Kidney Disease and Hypertension and the Modification of  
Diet in Renal Disease, a significant enrichment of  PEs was noted among the top metabolites associated with 
proteinuria in patients with CKD (35). Aligned with these observations, a diabetic mouse model showed 
accumulation of  the Amadori-PE species in tubular cells (36). The mechanistic link between PE and DKD 
progression has yet to be identified. However, PEs have diverse cellular functions, including oxidative phos-
phorylation, mitochondrial biogenesis, and autophagy. PEs are PC precursors, are substrates for posttransla-
tional modifications, influence membrane topology, and promote cell and organelle membrane fusion (37). 
Cell culture experiments also suggest that exposure to PE alters the plasma membrane bilayer with total loss 
of  asymmetrical aminophospholipids and promotes apoptosis (38) and autophagy (39).

Figure 5. AC alterations by categories of baseline ACR in progressors and nonprogressors. ACs of various chain length and double bonds were quantified 
in serum at the baseline visit of progressors and nonprogressors. Distribution of various ACs by ACR category revealed lower levels of C16–C20 ACs from 
nonprogressors with normoalbuminuria (upper left) to progressors with ACR more than 300 mg/g (lower right). Within each ACR category, long chain AC 
abundance (C16–C20) increased in nonprogressors with ACR 30–299 mg/g (P = 0.006) and decreased in progressors with ACR more than 300 mg/g (P < 
0.0001). Sample size 43 in ACR less than 30, 33 in ACR 30–299, and 16 in ACR at least 300 mg/g. Bonferroni’s threshold for multiple comparisons was set 
to 0.0083 (0.05 divided by 6 panels). P values are products of testing abundance of lipids by “carbon number × double bond” interaction term in progres-
sors versus nonprogressors using mixed-linear models. 
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Another finding in our study was a lower risk of  DKD progression with higher unsaturated FFA 
abundance. This finding is aligned with earlier studies that illuminated salutary effects of  longer unsat-
urated FFAs, such as oleate and eicosapentaenoic acid, on inflammation, endoplasmic reticulum stress, 
and eventually better podocyte and pancreatic cell survival compared with the effect of  saturated FFA 
palmitate (40–43). In a cross-sectional analysis of  the CPROBE study, we showed that at more advanced 
CKD stages, there was a significantly greater abundance of  longer polyunsaturated TAGs and a lower 
abundance of  C16–C20 ACs (18). Patients at CKD stage 5 thus had the highest abundance of  longer 
polyunsaturated TAGs and the lowest abundance of  C16–C20 ACs. Replication of  this pattern was 
seen in this study in DKD progressors, but at a much earlier stage, when GFR was still above 90 mL/
min. In the CRIC study, although DAGs as a class were enriched in CKD progressors, TAGs were not 
significantly different (19), a finding inconsistent with CPROBE and the current study. A likely expla-
nation is the narrow range of  baseline GFRs in CRIC participants compared with the CPROBE study, 
whose patients were at all stages, and the marked heterogeneity in CRIC enrollees compared to the 
homogeneity of  the American Indian cohort. TAGs differ in their renal toxicities by their acyl length 
and number of  double bonds, and in part by the characteristics of  their acyl constituents, especially 
when they are nonesterified (before use in the construction of  TAGs or after their lipolysis). Overall, the 
main renal toxicities are determined by saturated fatty acids, such as palmitate, through mechanisms 
that involve activation of  AMP-activated protein kinase (AMPK) and mammalian target of  rapamycin 
complex-1 (mTOR1) signaling pathways. Furthermore, they can promote insulin resistance, mitochon-
drial superoxide generation, and endoplasmic reticulum stress. Other mechanisms of  toxicity include 
impairment of  the podocyte actin cytoskeleton, induction of  autophagy, and eventual triggering of  
apoptosis and cell death (40, 42, 44–49). Within the tubulointerstitial compartment, palmitate upregu-
lates the monocyte chemoattractant protein-1, leading to intracellular activation of  DAG followed by 
protein kinase C (PKC), which further promotes renal tubular cell injury (43). Abundance of  saturated 
fatty acids (specifically palmitate) upregulates the elongation and desaturation of  shorter FFAs and 
their incorporation in the construct of  TAGs. The longer polyunsaturated TAGs have a higher melting 
temperature with greater fluidity and thus are less toxic than the nonesterified saturated fatty acids. 
Therefore, although they served as a surrogate marker of  DKD progression, their higher abundance in 

Table 2. Hazard ratios of lipid predictors of DKD progression

Predictors Hazard rate ratio 95% CI P value FDR
Model 1 (base model)
 Unsaturated PEs (1 SD) 1.78 1.24–2.57 0.002 0.025
 Unsaturated FFAs (1 SD) 0.66 0.46–0.95 0.026 0.050
Model 2 (model 1 + AC, TAG interaction with ACR)
 Unsaturated PEs (1 SD) 2.36 1.56–3.58 <0.001 0.01
 Unsaturated FFAs (1 SD) 0.59 0.41–0.84 0.004 0.03
 C16–C20 AC (1 SD change in ACR <30) 3.36 1.00–11.28 0.05 0.05
 C16–C20 AC (1 SD change in ACR 30–299) 2.39 0.84–6.49 0.103 0.06
 SLDB TAG (1 SD change in ACR <30) 0.25 0.09–0.66 0.005 0.04
 SLDB TAG (1 SD change in ACR 30–299) 0.19 0.07–0.52 0.001 0.02
Model 3 (model 2 + GFR + ACR)
 Unsaturated PEs (1 SD) 2.57 1.66–3.98 <0.001 0.008
 Unsaturated FFAs (1 SD) 0.54 0.36–0.79 0.002 0.023
 C16–C20 AC (1 SD change in ACR <30) 4.07 1.03–16.06 0.045 0.053
 C16–C20 AC (1 SD change in ACR 30–299) 2.44 0.78–7.62 0.125 0.060
 SLDB TAG (1 SD change in ACR <30) 0.16 0.05–0.52 0.002 0.025
 SLDB TAG (1 SD change in ACR 30–299) 0.14 0.05–0.41 <0.001 0.015
 GFR (mL/min) 1.009 1.002–1.017 0.015 0.045
 ACR (mg/g) 1.001 1.000–1.001 0.006 0.038

Decline in GFR: 40%. Model 1, or base model, shows independent lipids without adjustment with baseline ACR and GFR. Model 2 is model 1 plus an interaction 
term of C16–20 AC and SLDB TAGs by ACR category with ACR more than 300 being the reference category. Model 3 is model 2 plus baseline GFR and ACR 
independent of HbA1c and fasting plasma glucose. GFR, iothalamate-based glomerular filtration rate; SLDB TAG, short-low-double-bond triacylglycerol.
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progressors likely signifies upregulation of  adaptive compensatory processes (elongation, desaturation) 
to convert more toxic lipids (saturated nonesterified fatty acids) into less toxic lipids (polyunsaturated 
long TAGs). The progressors were also characterized by lower abundance of  shorter TAGs with fewer 
double bonds. This probably reflects a lower abundance of  fatty acids with 14 or more carbons, which 
become the dominant mitochondrial substrates in progressors whose mitochondrial shuttling of  fatty 
acids with 16 or more carbons is impaired because of  carnitine palmitoyltransferase I (CPT1) inhibition 
(50). This response leads to a relatively lower abundance and thus lower likelihood of  their incorpora-
tion into corresponding (short) TAGs. Therefore, while the high abundance of  longer polyunsaturated 
TAGs signifies upregulation of  elongation and desaturation as compensatory mechanisms, the lower 
abundance of  shorter and saturated TAGs reflects low abundance of  the corresponding nonesterified 
fatty acids (≤14 C), which indicates impaired β-oxidation of  fatty acids with 16 or more carbons. When 
stratified by levels of  albuminuria, progressors with normal albumin excretion (ACR < 30 mg/g) had 
significantly higher AC levels compared with progressors with overt proteinuria (ACR > 300 mg/g), 
suggesting that β-oxidation may be upregulated as a compensatory mechanism in the early stages of  
DKD but that β-oxidation becomes impaired over time with progression to overt proteinuria. These 
observations suggest that the lipid phenotype associated with advanced DKD may be a continuum that 
begins mechanistically at an early stage, allowing early discrimination of  progressors from nonprogres-
sors and risk stratification during early kidney disease when no other prognostic tools are available.

The Ingenuity Pathway Analysis (QIAGEN Inc.; www.qiagenbioinformatics.com/products/ingenuity- 
pathway-analysis/) highlights the enrichment of the G protein signaling pathways in both glomerular and tubu-
lointerstitial compartments. G proteins promote transcriptional activation of  metabolic genes by carbo-
hydrate-response element-binding protein and regulate downstream lipogenic genes, including ACACA, 
fatty acid synthetase, acyl CoA synthase, and glycerol phosphate acyl transferase (51). In particular, 
the significant association of  ACACA gene expression with DAGs in the glomerular and TAGs in the 

Figure 6. Predicting DKD progression with 
probabilistic risk scores. Probabilistic risk 
scores derived from odds of progression by 3 
models were compared. Model 1 incorporated 
baseline ACR and GFR (ACR + GFR), model 
2 incorporated independent lipid factors 
predicting progression (lipids), and model 
3 consisted of the lipids plus baseline ACR 
and GFR (ACR + GFR + lipids). Progressors 
(n = 32) had a higher probabilistic risk scores 
compared with nonprogressors (n = 60) in 
all models, and the largest score was noted 
in model 3, when lipids were included with 
baseline ACR and GFR. Bar graphs show 
mean and error bars are 1 SD above and 
below the mean. A2-tailed t test for inde-
pendent variables was used.

Table 3. Proportion of progressors by quartiles of the probabilistic risk scores calculated by various models

Quartile 1 Quartile 2 Quartile 3 Quartile 4 P value (trend)
n = 23 n = 23 n = 23 n = 23

Model 1 (ACR + GFR) 13.04 (7.18) 21.74 (8.794) 52.17 (10.65) 52.17 (10.65) 0.001
Model 2 (lipids) 17.39 (8.081) 17.39 (8.081) 43.48 (10.569) 60.87 (10.405) 0.0005
Model 3 (ACR + GFR + lipids) 4.35 (4.348) 8.7 (6.007) 47.83 (10.65) 78.26 (8.794) <0.0001

The third and fourth quartiles of the risk score model 1 (ACR + GFR) and the first and the second quartiles of model 2 (lipids) were not discriminatory. 
However, the most discrimination was obtained in model 3, when lipids were combined with baseline ACR and GFR. Values are percentage of progressors 
and SEM. n each quartile = 23.
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tubulointerstitial compartments supports the hypothesis that the observed differential serum lipids may 
be regulated, in part, by renal ACC. The direct correlation of  shorter low-double-bond DAGs with 
elongase and desaturase imply that a higher abundance of  such lipids may upregulate the renal cortical 
elongation and desaturation of  fatty acids as a compensatory mechanism that converts shorter and 
relatively more saturated, toxic lipids into longer, relatively more unsaturated, less toxic products. On 
the other hand, the direct correlation of  saturated FFAs with ACAD10, a β-oxidation regulatory gene, 
suggests they may upregulate β-oxidation, at least in early-stage DKD, a process that may be reversed 
with DKD progression or by unsaturated FFAs because of  their inverse correlation with ACAT2, or 
β-oxidation regulatory gene. Altogether, the differential lipid alterations associated with DKD progres-
sion suggest accelerated renal de novo lipogenesis and impaired β-oxidation (18).

Acceleration of  de novo lipogenesis is a major contributor to dyslipidemia in insulin resistance 
states, such as in type 2 diabetes (52). De novo lipogenesis of  long chain fatty acids is dependent on the 
activity of  3 cytosolic enzymes: ATP citrate lyase, ACC, and fatty acid synthetase (53). ACC is a key 
regulatory enzyme in lipogenesis, and its activity is under hormonal regulation by insulin, glucagon, 
and epinephrine. During insulin resistance, increased insulin promotes ACC activation via its pro-
tein phosphatase–mediated dephosphorylation (54). A recent expression quantitative trait loci (eQTL) 

Figure 7. Differential network analysis. To identify inter- and intraclass lipid correlates, we obtained the sparse partial correlation networks that captured 
the interdependencies between lipids. We used lipid grouping structure, obtained the superset of the network skeleton, and finally obtained the final sta-
ble network structures, the latter based on a bootstrapping method. Differential network analysis revealed differential loss of edges between various lipid 
classes in progressors characterized by 547 significant edges versus 1028 in nonprogressors (P < 0.0001) out of 55,460 possible permutations of bivariate 
correlations. The lines represent significant edges that were exclusively observed in nonprogressors (shown in blue) or progressors (shown in red). Common 
edges are shown in gray. The node size is proportional to the number of connectivity levels within and across lipid subclasses, and node colors represent 
number of cross-class connections (white, low; yellow, middle; red, high). Nodes are categorized by chain length (bottom, middle, top) and double bonds 
(low, high), with details shown in Supplemental Table 3.
 

https://doi.org/10.1172/jci.insight.130317


1 2insight.jci.org   https://doi.org/10.1172/jci.insight.130317

C L I N I C A L  M E D I C I N E

https://doi.org/10.1172/jci.insight.130317


1 3insight.jci.org   https://doi.org/10.1172/jci.insight.130317

C L I N I C A L  M E D I C I N E

analysis of  participants of  the Nephrotic Syndrome Study Network revealed a significant differential 
expression of  G/C ACACA variant in both glomerular and tubulointerstitial compartments of  the 
participants (55), suggesting the possibility of  ACACA polymorphism on ACC activity. ACC activation 
inhibits CPT1, lowering cytosolic conversion of  long chain acyl CoA to long chain AC, decreases 
substrate for the carnitine shuttle, impairs β-oxidation of  long chain fatty acids, and increases cytosolic 
abundance of  palmitate (53). Increased palmitate promotes elongation and desaturation, as evidenced 
by upregulation of  stearoyl-CoA desaturase (SCD) 1 and 2 (Figure 9 and ref. 56). It also exerts its del-
eterious effects on podocytes and tubulointerstitial cells by upregulating AMPK and mTOR1 signal-
ing, intracellular serial DAG and PKC activation, induction of  mitochondrial superoxide generation, 
endoplasmic reticulum stress, and, eventually, promotion of  autophagy, apoptosis, and cell death (40, 
42, 43, 46–49).

Based on these data, we propose a model to account in part for these serum lipidomic changes that 
predict DKD progression (Figure 9). Upregulation of  renal (and possibly liver) ACC in the diabetic milieu 
enhances de novo lipogenesis, which generates excess saturated fatty acids (e.g., palmitate). Although kid-
ney ACC expression is modified, the liver may also influence circulating levels of  fatty acids and complex 
lipids. With elongation and desaturation, palmitate is converted to longer unsaturated fatty acids, which 
are incorporated into complex lipids (e.g., glycerolipids). In addition, ACC upregulation can inhibit CPT1, 
which impairs β-oxidation. Finally, elevated FFAs present in the diabetic state can exacerbate mitochondri-
al dysfunction, especially in the setting of  impaired fatty acid oxidation. The net effect will be a pattern of  
complex lipid remodeling and diminished fatty acid β-oxidation, as observed in our studies.

This study has several strengths, including the longitudinal study design, rigorous quality control with 
good reproducibility metrics in a robust liquid chromatography-MS (LC/MS) lipidomic platform, and 
excellent phenotyping of  a well-characterized cohort of  type 2 diabetes patients. Yearly follow-ups and 
iothalamate-based GFR measurements provided accurate evaluation of  kidney outcomes. A kidney biopsy 
near the time of  baseline serum collection permitted a potentially novel integrative lipidomic-transcriptom-
ic analysis. The availability of  data and samples before the onset of  clinical DKD provided the opportunity 
to identify early prognostic DKD markers.

This study also has limitations. Although existing knowledge of  the de novo lipogenesis path-
way, along with the results obtained from the transcriptomic-lipidomic integrative analysis, support 
the hypothesis that ACC activation may be responsible, in part, for the differential lipid pattern, our 
results cannot distinguish whether the increased renal ACC expression is a cause or a consequence of  
the differential plasma lipid profile. In a recent study, we assessed individual lipid features present in 
plasma from control and diabetic db/db mice (57). Plasma lipid levels and DAG saturation status cor-
related with the corresponding lipids in the kidney in diabetic mice compared with control, suggesting 
that plasma DAG metabolism may be reflected in the kidney. However, this relationship is not known 
in humans and technically not feasible to assess given the difficulty in obtaining an adequate kidney 
biopsy specimen for lipidomic analysis. The study sample size is small, and replication of  the study, 
including the risk prediction model, in larger cohorts and in other racial/ethnic groups is warranted. 
Like any other omic research, this study has a large number of  variables because of  the high-through-
put data generated by the lipidomics platform. We applied a number of  strategies to minimize the need 
for multiple testing, including application of  mixed-linear models to study alterations at the group 
level versus individual lipids, reduction of  the data to a smaller number of  principal components for 
downstream analysis, partial correlation-based sparsing techniques for the study of  the differential 
networking, and FDR correction for multiple testing in lipidomic-transcriptomic integrative analysis. 
Although we observed a significant interaction between categories of  albuminuria in the risk predic-
tion model, with advancing DKD, the differential lipid alterations were independent of  proteinuria in 

Figure 8. Integrative transcriptomic-lipidomic analysis identifies G protein–coupled signaling pathways and nuclear hormone–activating 
receptors in regulation of fatty acid synthesis and β-oxidation. Ingenuity Pathway Analysis reveals enrichment of G protein signaling pathways 
involved in regulation of NF-κB, CREB, and STAT3 in glomerular (A) and tubulointerstitial compartments (B). CREB is a transcriptional regulator of 
de novo lipogenesis. Genes regulating the intermediaries highlighted in purple in panels A and B are significantly correlated with the corresponding 
serum lipids. The genes downstream of nuclear hormone–activating receptor PPARG known to regulate fatty acid metabolism and their β-oxidation 
in both glomerular (C) and tubulointerstitial compartments (D) are significantly correlated with serum lipids identified via the lipidomic analysis. 
NF-κB, nuclear factor κ-light-chain-enhancer of activated B cells; CREB, cAMP response element-binding protein; PPARG, peroxisome proliferator–
activated receptor γ; STAT3, signal transducer and activator of transcription 3.
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our prior cross-sectional study (18). Routinely, frequency of  follow-up declines over time, and partic-
ipants with worse kidney function tend to attend research examinations less often than participants 
with preserved kidney function, raising the possibility of  differential censoring by outcome (29, 30). 
However, in this particular subset of  participants, the duration and number of  follow-up visits were 
almost equal in progressors and nonprogressors, so the potential for ascertainment bias because of  dif-
ferences in follow-up is low. The current study is also limited by its sample size to investigate ACACA 
polymorphism despite evidence for ACACA polymorphism in other renal eQTL studies (55).

This study has important clinical implications and illustrated that a panel of  lipid biomarkers may 
predict decline at early stage, when kidney function is still preserved (GFR > 90 mL/min). It provides a 
valuable opportunity for early-stage risk stratification when there is a paucity of  reliable biomarkers at 
early stage. The proposed underpinning mechanism suggests targeted interventions at early stage. Inhi-
bition of  kidney fibrosis by modulating fatty acid receptors (58) provides further encouraging evidence 
for the success of  such interventions. We conclude that lipid alterations that typify advanced DKD are 
present before the onset of  clinical DKD and are characterized by higher abundance of  unsaturated 
PEs, and longer polyunsaturated TAGs, but lower abundance of  unsaturated FFAs and C16–C20 ACs. 
In patients with GFR more than 90 mL/min, a panel of  lipids consisting of  unsaturated FFAs and PEs, 
short-low-double-bond TAGs, and long chain ACs predicts the onset and progression of  DKD. The 
underlying mechanism may depend on impairment of  fatty acid β-oxidation and renal ACC activation, 
thus providing a potential therapeutic target (Figure 9).

Methods
Patients. Details of  the study population and participant recruitment are published elsewhere (31).

Sample preparation and MS. We applied previously published methods for sample preparation (18, 19, 
59). In brief, we used the modified Bligh-Dyer method for lipid extraction. We retrieved 10 μL of serum and 
added water/methanol/dichloromethane at room temperature with 2:2:2 volume ratio, followed by spik-
ing internal standards PC 17:0/17:0, LPC 17:0, PG 17:0/17:0, PE 17:0/17:0, TAG 17:0/17:0/17:0, SM 
18:1/17:0, MAG 17:0, DAG 16:0/18:1, CE 17:0, ceramide phosphate 18:1/17:0, PA 17:0, PI 17:0/20:4, 
and PS 17:0/17:0. After collecting the organic layer, we dried the extracts under nitrogen and reconstituted 
them by adding 100 μL of acetonitrile/water/isopropyl alcohol (10:5:85) followed by 10 mM ammonium 
acetate (NH4OAc). Then we subjected the extracts to LC/MS, utilizing ABSciex quadrupole time of  flight 
5600 mass spectrometer equipped with a Turbo V ion source (AB Sciex, Concord, Ontario, Canada) and 

Figure 9. Proposed mechanisms underlying lipid abnormalities that predict early renal function decline in DKD. Upregulation of ACC, mediat-
ed by insulin resistance, enhances de novo lipogenesis characterized by increased abundance of palmitate, a C16 fatty acid. With elongation and 
desaturation, palmitate is converted into longer unsaturated fatty acids, which are incorporated into complex lipids (e.g., glycerolipids). In concert, 
upregulation of ACC also inhibits CPT1, which in turn decreases the conversion of l-carnitine to C16–C20 ACs. C16–C20 ACs are efficient β-oxidation 
substrates, and, therefore, their diminished mitochondrial transfer downregulates β-oxidation. The net effect of upregulated de novo lipogenesis is 
characterized by higher abundance of longer chain polyunsaturated glycerolipids and lower abundance of C16–C20 ACs and shorter low-double-bond 
glycerolipids. ACACA, acetyl-CoA carboxylase alpha; ACLY, ATP citrate lyase; ACS, acetyl-CoA synthetase; CPT, carnitine palmitoyltransferase; DEGS, 
delta 4-desaturase; ELOVL, elongation of very long chain fatty acids; FASN, fatty acid synthase; FADS, fatty acid desaturase; SCD, stearoyl-CoA 
desaturase; SLDB TAG, short-low-double-bond triacylglycerol.
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Shimadzu CTO-20A Nexera X2 UHPLC with ACQUITY UPLC HSS T3 1.8-μm column (Waters, Milford, 
Massachusetts, USA). ACs were quantified by LC/MS using an Agilent 6410 Triple Quadrupole tandem 
mass spectrometer (Agilent, Santa Clara, California, USA) with a targeted method described previously (60).

Quality control. A pool of  study samples was injected at the beginning and after every 20 MS runs in the 
lipidomic study and after every 15 MS runs in the AC study to assess the stability of  the measures over time 
and to identify any batch effects (Supplemental Figures 1 and 2).

Transcriptomic analysis. We manually microdissected kidney biopsy specimens to isolate glomerular 
and tubulointerstitial tissue. Glomerular and tubular gene expression profiling was performed as described 
previously on Affymetrix Gene Chip Array Human Genome series U133A and Plus 2.0 (Affymetrix, 
Inc., Santa Clara, California, USA) (61, 62). Cell files were processed, normalized (Robust Multi Array 
method), and batch corrected (COMBAT) on the R statistical platform. We used Human Entrez Gene 
custom CDF from Brainarray for annotations (http://brainarray.mbni.med.umich.edu). Normalized and 
log2-transformed expression profiles were used in all the downstream analyses.

Statistics. We applied mean ± SD or frequency (percentage) for description of  normally distributed 
continuous and categorical variables, respectively. Median and IQR were used to describe non-normally 
distributed variables. To compare the baseline characteristics of  progressors and nonprogressors, we used 
the 2-tailed t test for normally distributed continuous variables, the Kolmogorov-Smirnov test for skewed 
continuous variables, and the χ2 test for categorical variables. We used the relative abundance of  the peak 
intensities for the downstream analysis. To prepare the lipidomics data for downstream analysis, the 
batch normalized raw peak intensities were sum normalized by lipid members within each lipid subclass, 
logit transformed, and Z-score standardized (18). We used principal component analysis to reduce the 
number of  lipids of  the TAG, DAG, PE, pPE, CE, FFA, and AC classes to subclasses to generate second-
ary variables representative of  various chain lengths within these classes (Supplemental Table 2). Long 
chain AC (C16–C20) to intermediate chain AC (C6–C14) ratio was applied as a marker of  efficiency of  
β-oxidation (63). Multiple linear regression analysis was applied to explore the relationships between 
the long chain/intermediate chain AC ratio (predictor variable) with the resulting principal components 
(secondary variables) of  complex lipids. We used generalized linear mixed models to test the intraclass 
alteration in lipid abundance (standardized, logit transformed, normalized lipid intensities used as the 
dependent variable) by change in carbon number and number of  double bonds (saturation status) as the 
predicting variables.

We applied a Cox proportional hazard model to identify the independent lipid predictors of  DKD 
progression and to estimate the risk associated with their change. Violation of  proportional hazard 
assumption was ruled out by confirming the random distribution of  the scaled Schoenfeld residuals, 
also known as partial residuals, of  the predicting variables over time. We adjusted the models by BMI, 
FPG, HbA1c, and ACR followed by elimination of  nonsignificant covariates from the model. The 
probability of  progression by various panels was estimated using the logit score of  the corresponding 
predictors in each panel and their conversion to probabilistic risk scores (64). Risk score calculation 
was performed separately for the baseline ACR and GFR, the lipids proposed by the Cox model, and 
the proposed lipids plus baseline ACR and GFR. The risk analysis was performed separately for the 
baseline model (model 1: ACR + GFR), the model incorporating lipid components with a significant 
interaction term by ACR categories (model 2: lipids), and the model adjusted further by baseline GFR, 
ACR, FPG, and HbA1c (model 3: ACR + GFR + lipids).

Because baseline TAG levels were different between progressors and nonprogressors, the glycerolipid fac-
tors and their upstream regulators (FFAs and ACs) were tested for their correlation with corresponding renal 
tissue transcripts. We used MetScape to map lipid identifiers to gene symbols responsible for lipid metabolism 
(65). The log2 Z-score standardized values of the corresponding genes were calculated, aimed at finding their 
lipid correlates. Then, the Z-score standardized values of the principal components derived from the glycerolip-
ids (TAGs and DAGs), FFAs, and ACs were correlated with the transcriptomic profiles for the mapped genes 
using Pearson’s correlations. We used matching samples from both compartments to run the correlation analy-
sis. Ingenuity Pathway Analysis based on the top lipid transcript significant correlations was applied to identify 
the corresponding enriched pathways. Benjamini-Hochberg procedure was applied to minimize the FDR (66).

For differential network analysis aimed at identifying differential lipid correlates (inter– and intra–lipid 
class) by progression, we obtained the sparse partial correlation networks that capture interdependencies 
between lipids for the nonprogressor and progressor participant groups. We utilized the following approach 
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that leveraged (a) similarity information among lipids that is concordant with data obtained from a diabetic 
mouse model (Supplemental Table 3) and (b) the assumption that many interconnections, especially across 
lipid classes, are not present in both groups and hence we can use all 92 samples to estimate them more 
robustly. Throughout the technical developments, P denotes the total number of  lipids under consideration, 
nnonprogressor and nprogressor denote the sample sizes for nonprogressors and progressors, respectively, while  
denotes the relative abundance of  lipid j for sample i in condition k (nonprogressor, progressor). Further, 
we arrange the data ’s in matrix form Xk as: 

 (Equation 1)

and let  denote its jth column.
The main steps of  the proposed estimation procedure include obtaining the lipid grouping structure, the 

superset of  the network skeleton, and the final stabilized network structure. To obtain lipid grouping struc-
ture (step 1), we constructed groups among lipids based on their correlation structure using spectral cluster-
ing in progressors and nonprogressors (67) and denoted the collections of  groups as Gprogressor and Gnonprogressor, 
respectively. In particular, the number of  clusters is prespecified at 20 for both conditions; hence |Gnonprogressor| 
= |Gprogressor | = 20. Further, we retained only the groups that were common in both conditions; that is, let G 
= Gnonprogressor ∩ Gprogressor, and the resulting common group G contains 7 subsets (groups), encompassing pri-
marily FFAs and selected PCs, TAGs, lysoPCs and lysoPEs, and pPEs. As a confirmatory step, these groups 
were also detected in the mice serum data (57), where they exhibited strong correlations (coexpression sig-
nal). We allowed Gc to denote the indices of  lipids that did not belong in any of  these 7 groups; that is: 

Gc = {1, ... , p}\{∪gl, g_l ∈ G} (Equation 2).
To obtain a superset of  the network skeleton (step 2), we estimated the skeleton (edges present) of  the 
nonprogressor and progressor partial correlation networks based on a variation of  the node-wise regres-
sion approach (68), while incorporating lipid group information extracted from step 1 and encouraging 
common sparsity structure (absence of  edges in both networks) between the 2 groups (69). Toward this 
end, by considering the distribution of  lipid j conditional on all the other lipids, their relative abundance 
levels satisfied the following relationship: 

  (Equation 3),
where each coordinate of  the vector  encompassed the scaled partial covariance of  lipid j with all other 
lipids j′ (j′ ≠ j). Built upon the original node-wise regression formulation (68), to encourage similar sparsity 
structure incurred by lipids that were within the same group g ∈ G, we imposed a group penalty on their 
coefficients in the form of  a vector ℓ2 norm. On the other hand, for lipids that did not belong to any group, 
i.e., the elements in Gc, we modeled the coefficient as  ≥ 01110 (69) and penalized 
their individual absolute values to encourage the presence of  common nodes (thus, absence of  edges in 
the networks) across the nonprogressor and progressor groups. Formally, the optimization problem was 
formulated as: 

(Equation 4)
The optimization problem in (*) estimated the nonprogressor and progressor partial correlation networks 
jointly, thus efficiently utilizing all 106 samples. Further, this objective function is separable in j = 1, … , p, and 
thus can be solved by splitting it into p parallel subproblems. For each subproblem indexed by j, it is equivalent 
to solving the following optimization problem obtained after some algebraic manipulations (69) (Lemma 2): 

(Equation 5)
In the above formulation, ʎg,ƞ,⍴ were all prespecified tuning parameters, and they determined the ultimate 
sparsity level of  the estimated networks, through the tuning of  the corresponding norms. The solution to 
(*) contained the skeleton (presence/absence of  edges) information of  the partial correlation networks of  
interest; in particular, the nonzero elements in  point to the presence of  edges in the network. At this step, 
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we set the tuning parameters at a small relative value, to eliminate edges with a weak signal and to obtain a 
superset of  the network skeleton. We denoted the obtained skeleton superset as , and at this step, the 
estimated skeletons for both conditions corresponded to networks with density level at around 10% (i.e., out 
of  the possible p2 / 2 edges, only 10% are present) for a technical justification of  why only sparse partial cor-
relation networks can be estimated from data when the sample size is smaller than the number of  lipids (70).

To obtain the final stabilized network structures, we employed the technique of  stability selection (71) 
coupled with the graphical lasso (72) network estimation procedure and used the skeleton information in 

 as follows. We imposed a small lasso penalty for edges that are in  and a larger one if  in 
its complement. The stability selection step yielded the final network skeleton structure that was stable and 
robust to the choice of  the tuning parameters, and the networks had a respective density level of  3% (non-
progressor) and 2.7% (progressor). Finally, based on the skeleton, we estimated the magnitude of  the edges 
(correlations), which after proper normalization, corresponded to the strength of  the partial correlation 
among lipids in the 2 groups.
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gave written informed consent before their participation in the study.
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