
1insight.jci.org      https://doi.org/10.1172/jci.insight.129375

R E S E A R C H  A R T I C L E

Conflict of interest: The authors have 
declared that no conflict of interest 
exists.

Copyright: © 2019, American Society 
for Clinical Investigation.

Submitted: April 5, 2019 
Accepted: August 23, 2019 
Published: October 17, 2019.

Reference information: JCI Insight. 
2019;4(20):e129375. 
https://doi.org/10.1172/jci.
insight.129375.

Precocious neuronal differentiation and 
disrupted oxygen responses in Kabuki 
syndrome
Giovanni A. Carosso,1,2 Leandros Boukas,1,2,3 Jonathan J. Augustin,2,4,5 Ha Nam Nguyen,6  
Briana L. Winer,2 Gabrielle H. Cannon,2 Johanna D. Robertson,2 Li Zhang,2 Kasper D. Hansen,2,3 
Loyal A. Goff,2,5 and Hans T. Bjornsson2,7,8,9

1Predoctoral Training Program in Human Genetics, 2McKusick-Nathans Institute of Genetic Medicine, 3Department 

of Biostatistics, 4Predoctoral Training Program in Biochemistry, Cellular, and Molecular Biology, 5Solomon H. Snyder 

Department of Neuroscience, 6Institute for Cell Engineering, and 7Department of Pediatrics, Johns Hopkins University 

School of Medicine, Baltimore, Maryland, USA. 8Faculty of Medicine, School of Health Sciences, University of Iceland, 

Reykjavik, Iceland. 9Landspitali University Hospital, Reykjavik, Iceland.

Introduction
Trithorax group proteins promote chromatin accessibility by exerting antagonistic functions against Poly-
comb group transcriptional suppressors to activate gene expression (1). Fine-tuning of  cell type transitions 
during neuronal development from neural stem/progenitor cells (NSPCs) depends critically on this duality, 
as evidenced by severe neurodevelopmental defects caused by variants in numerous chromatin-modifying 
genes (2). Loss-of-function variants in genes encoding 2 such enzymes, lysine-specific methyltransferase 2D 
(KMT2D) and lysine-specific demethylase 6A (KDM6A/UTX) cause the intellectual disability (ID) disor-
der Kabuki syndrome (KS1 and KS2, respectively) (3, 4). Up to 74% (5) of  KS cases result from mutations 
in KMT2D (KS1), which encodes a major histone H3 lysine 4 (H3K4) methyltransferase, which catalyzes 
chromatin-opening modifications at context-specific targets. Developmental requirements for KMT2D in 
cardiac precursors (6), B cells (7, 8), muscle and adipose (9), and epithelial tissues (10) have been linked, 
respectively, to KMT2D-associated cardiac, immunological, and oncogenic phenotypes (11), yet the effects 
of  KMT2D deficiency in neurodevelopment are not yet understood.

We previously described a mouse model of  KS1, Kmt2d+/βgeo [Mll2Gt(RRt024)Byg], demonstrating 
characteristic features including craniofacial abnormalities and visuospatial memory impairments, associ-
ated with decreased adult-born hippocampal NSPCs in the dentate gyrus (DG) (12). Decreased DG gray 
matter volume was subsequently observed in patients with KS1 (13). The continual birth and integration 

Chromatin modifiers act to coordinate gene expression changes critical to neuronal differentiation 
from neural stem/progenitor cells (NSPCs). Lysine-specific methyltransferase 2D (KMT2D) encodes 
a histone methyltransferase that promotes transcriptional activation and is frequently mutated 
in cancers and in the majority (>70%) of patients diagnosed with the congenital, multisystem 
intellectual disability disorder Kabuki syndrome 1 (KS1). Critical roles for KMT2D are established 
in various non-neural tissues, but the effects of KMT2D loss in brain cell development have not 
been described. We conducted parallel studies of proliferation, differentiation, transcription, and 
chromatin profiling in KMT2D-deficient human and mouse models to define KMT2D-regulated 
functions in neurodevelopmental contexts, including adult-born hippocampal NSPCs in vivo and in 
vitro. We report cell-autonomous defects in proliferation, cell cycle, and survival, accompanied by 
early NSPC maturation in several KMT2D-deficient model systems. Transcriptional suppression in 
KMT2D-deficient cells indicated strong perturbation of hypoxia-responsive metabolism pathways. 
Functional experiments confirmed abnormalities of cellular hypoxia responses in KMT2D-deficient 
neural cells and accelerated NSPC maturation in vivo. Together, our findings support a model 
in which loss of KMT2D function suppresses expression of oxygen-responsive gene programs 
important to neural progenitor maintenance, resulting in precocious neuronal differentiation in a 
mouse model of KS1.
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of  new neurons makes adult neurogenesis the most potent form of  lifelong plasticity in the mammalian 
brain (14), though recent studies have disagreed on its extent in humans (15–17). During late embryonic 
stages, a subset of  multipotent NSPCs persists in the DG (18), becoming subject to an array of  intrinsic and 
extrinsic factors affecting NSPC maintenance, i.e., self-renewal, proliferation, and neuronal differentiation, 
throughout adult life. Mounting evidence tightly links metabolic rewiring (19) and hypoxic states in the DG 
(20, 21) to cell-intrinsic regulation of  NSPC maintenance.

Here, we find that KMT2D deficiency strongly suppresses metabolic gene expression and leads to 
reduced proliferation, abnormal hypoxia responses, and precocious neuronal maturation in multiple KS1 
model systems. Importantly, these phenotypes were validated in vivo in a KS1 mouse model, supporting a 
role for these abnormalities in the pathogenesis of  KS1-associated ID.

Results
Genetic ablation of  the Kmt2d Su(var)3-9, enhancer-of-zeste and trithorax methyltransferase domain disrupts prolifer-
ation and cell cycle in a cell-autonomous manner. We first selected the HT22 mouse hippocampal neuronal cell 
line (22) for analysis of  KMT2D catalytic function in a neuronal context. The DNA sequence encoding 
the Su(var)3-9, enhancer-of-zeste and trithorax (SET) methyltransferase domain was deleted by CRISPR/
Cas9 with an upstream small guide RNA (sgRNAup) in exon 52, and either sgRNA1 (exon 54) or sgR-
NA2 (intron 54), resulting in deletions of  565 bp (Kmt2dΔ1) or 654 bp (Kmt2dΔ2), respectively, as verified by 
Sanger DNA sequencing, in silico translation, and PCR (Supplemental Figure 1, A and B; supplemental 
material available online with this article; https://doi.org/10.1172/jci.insight.129375DS1). Targeted cells 
were clonally expanded to establish heterozygous (Kmt2d+/Δ) and homozygous (Kmt2dΔ/Δ) cell lines for 
comparison against the parental wild-type line (Kmt2d+/+). Both biological replicate alleles, Kmt2dΔ1 and 
Kmt2dΔ2, were represented in the present studies; thus, the combined data are denoted hereafter simply as 
Kmt2d+/Δ or Kmt2dΔ/Δ. Kmt2d mRNA encoded within the targeted region was about 50% decreased in Kmt-
2d+/Δ cells and absent in Kmt2dΔ/Δ cells, while Kmt2d mRNA from exons upstream of  the deletion site was 
unaffected (Supplemental Figure 1C). Immunofluorescence against KMT2D, detecting a peptide sequence 
upstream of  deletions (Supplemental Figure 1D), demonstrated distinctly nuclear KMT2D distribution 
in Kmt2d+/+ cells but more diffuse distribution in Kmt2d+/Δ and Kmt2dΔ/Δ cells, and we observed uniformly 
nuclear expression of  a neuronal nuclear marker, RNA binding protein fox-1 homolog 3 (RBFOX3), inde-
pendent of  genotype (Figure 1A).

Proliferation analysis after equal-density plating revealed cell densities approximately 52% lower in 
Kmt2d+/Δ cells and approximately 39% lower in Kmt2dΔ/Δ cells, compared with wild-type (Figure 1B). This 
defect was supported by dye-based generational tracking, detecting modestly reduced dilution of  a fluo-
rescent tracer, i.e., fewer cell divisions, in Kmt2d+/Δ and Kmt2dΔ/Δ daughter cells compared with wild-type 
(Figure 1C and Supplemental Figure 1E), while initial dye uptake in parental cells was genotype indepen-
dent. Flow cytometric analysis of  cell cycle occupancy, using marker of  proliferation KI67 (KI67) and a 
DNA label, revealed that Kmt2d+/Δ cells and Kmt2dΔ/Δ cells were enriched for S and G2 phase, compared 
with wild-type (Figure 1D and Supplemental Figure 1F). To characterize temporal dynamics of  cell cycle 
progression, we synchronized cells in G2/M phase and analyzed DNA content at time points after release 
(Figure 1E). Wild-type cells exited G2/M phase at higher rates than Kmt2dΔ/Δ cells, at 3 hours and up to 18 
hours after release. Cell death was profiled by flow cytometric detection of  caspase-3/7 substrate cleavage 
to distinguish early apoptotic cells. Compared with wild-type, apoptotic cell proportions were greater in 
both Kmt2d+/Δ cells (~287%) and Kmt2dΔ/Δ cells (~478%) (Figure 1F).

To examine proliferation in primary hippocampal progenitors, we isolated NSPCs from microdissected 
DG of  Kmt2d+/βgeo mice and wild-type littermates. NSPCs exhibited characteristic expression of  NSPC 
marker nestin (NES), with a minority of  cells expressing mature neuron marker calbindin (CALB) (Figure 
1G). Cells were plated at equal density and pulsed with cell division marker 5-ethynyl-2′-deoxyuridine 
(EdU), then quantified by confocal microscopy. Compared with wild-type, Kmt2d+/βgeo NSPCs demonstrat-
ed lower proliferation rates as measured by EdU incorporation and cell density (Figure 1H).

Findings of proliferation defects, G2/M cell cycle delay, and increased apoptosis in hippocampal cells 
bearing Kmt2d inactivation by SET domain deletion, together with proliferation defects in primary Kmt2d+/βgeo 
hippocampal NSPCs, support a cell-intrinsic role for KMT2D activity in neurodevelopmental contexts.

Suppressed transcription of  KMT2D-regulated hypoxia response genes upon loss of  the KMT2D SET methyltransferase 
domain. We performed high-coverage RNA-Seq comparing 3 Kmt2dΔ/Δ clones against the parental Kmt2d+/+ line, 
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each in technical triplicate, followed by differential expression analysis. Libraries clustered robustly by genotype 
with clear separation of Kmt2dΔ/Δ cells from Kmt2d+/+ by principal component analysis, yielding 575 signifi-
cantly differentially expressed genes (DEGs) at a false discovery rate (FDR) of 0.05 in Kmt2dΔ/Δ cells com-
pared with Kmt2d+/+ (Figure 2A, Supplemental Figure 2, A and B, and Supplemental Table 1). Approximately 
76% of DEGs (436 genes) were downregulated in Kmt2dΔ/Δ cells, including known KMT2D targets, such as 
Krueppel-like factor 10 (Klf10) (12), revealing strong global transcriptional suppression from Kmt2d inactivation. 
Overrepresentation analysis revealed significant enrichment of gene networks among Kmt2dΔ/Δ downregulated 
DEGs, including glycolysis and hypoxia-inducible factor 1A (HIF1A) signaling, while Kmt2dΔ/Δ upregulated 
DEGs were enriched in fewer networks (Figure 2B).

We reasoned that among Kmt2dΔ/Δ DEGs, a subset of  genes found to also bind KMT2D itself  in 
wild-type cells would more likely represent direct transcriptional consequences of  Kmt2d inactivation, 
whereas unbound DEGs could reflect secondary effects. We performed chromatin immunoprecipi-
tation followed by high-throughput sequencing (ChIP-Seq) using a previously validated ChIP-grade 
KMT2D antibody (9) in Kmt2d+/+ HT22 cells. We identified 3756 KMT2D binding peaks significantly 
enriched over input (Supplemental Table 2), of  which approximately 10% occurred inside promoters, 

Figure 1. Genetic ablation of the Kmt2d SET methyltransferase domain disrupts proliferation and cell cycle in a cell-autonomous manner. (A) Represen-
tative immunostaining against KMT2D and RBFOX3 in Kmt2d+/+, Kmt2d+/Δ, and Kmt2dΔ/Δ HT22 cells. (B) Decreased proliferation in Kmt2d-inactivated cells 
quantified 72 hours after equal density plating. One-way ANOVA. (C) Generational tracking reveals fewer cell divisions, i.e., reduced dye dilution, of Cell-
Trace Violet in Kmt2d+/Δ and Kmt2dΔ/Δ cells at 72 hours. One-way ANOVA. (D) Flow cytometric quantification of cell cycle phases using marker Ki-67 (KI67) 
and DAPI fluorescence. One-way ANOVA for each cycle phase, independently. (E) Kmt2d+/+ and Kmt2dΔ/Δ cells synchronized and released for analysis of 
G2/M exit, by DNA content, up to 18 hours after release, and quantification of cells in G2/M (technical triplicates per time point). Bars indicate mean ± SEM. 
Two-way ANOVA (P < 0.0001) with post hoc multiple comparisons correction. (F) Flow cytometric quantification of early apoptotic cells by caspase-3/7 
fluorescence. One-way ANOVA. (G) Confocal images of nestin (NES) and calbindin (CALB) expressing primary hippocampal NSPCs from Kmt2d+/+ and Kmt-
2d+/βgeo mice, and (H) quantified proliferation. One-tailed Student’s t test. Bars indicate mean ± SEM. Boxes indicate mean ± interquartile range; whiskers 
indicate minima and maxima. (*P < 0.05, **P < 0.01, ***P < 0.001; ****P < 0.0001). Scale bars: 20 μm (A), 100 μm (G).
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approximately 33% (1235 peaks) occurred within 5 kb of  a transcription start site (TSS ± 5 kb), and 
approximately 25% occurred within 2 kb (Supplemental Figure 2, C–F). To account for promoter 
and enhancer interactions (9, 10, 23), we reasoned that TSS ± 5 kb peaks, compared with more distal 
peaks, are more likely to reflect KMT2D cis-regulatory functions on proximal genes, so we refer to 
these as KMT2D-bound genes. The 1463 observed KMT2D-bound genes (Supplemental Table 3) were 
significantly enriched in mRNA 3′-UTR binding, rho GTPase signaling, circadian clock, translation, 
oxidative stress, HIF1A signaling, and other pathways (Supplemental Figure 2G).

We then intersected KMT2D-bound genes with Kmt2dΔ/Δ DEGs to reveal 74 putative direct target 
genes (Supplemental Table 3), of  which ~85% (63 genes) were downregulated (Figure 2C), including 
insulin-like growth factor 1 (Igf1) and fos-like antigen 2 (Fosl2). At least 20 observed KMT2D-bound, Kmt-
2dΔ/Δ DEGs were previously described as KMT2D targets in other tissues (7, 24). KMT2D-bound, Kmt-
2dΔ/Δ downregulated DEGs were most significantly enriched for pathways including face morphogenesis, 
glycolysis, hypoxia response, and proliferation, and surprisingly, 29 of  these 63 genes are also HIF1A 
regulated (25). Although craniofacial features associate with KS1, enrichment of  face morphogenesis 
genes in HT22 cells likely reflects pleiotropic gene functions. KMT2D ChIP-Seq peaks on HIF1A-regu-
lated genes clustered at promoters and enhancers, often overlapping CpG islands in genes such as Fosl2, 
with others clustering at alternative TSSs, as in retinoic acid receptor–α (Rara), or in enhancer-like peaks, 
as in DNA damage-inducible transcript 4 (Ddit4) (Figure 2D and Supplemental Figure 2H).

Figure 2. Suppressed transcription of KMT2D-regulated hypoxia response genes upon loss of the Kmt2d SET methyltransferase domain in neuronal 
cells. (A) Expression analysis by RNA-Seq in HT22 cells revealed 575 significant differentially expressed genes (DEGs) in Kmt2dΔ/Δ clones (3 biological 
replicates) relative to Kmt2d+/+ cells, each in technical triplicate. Fold changes in expression indicate the most significant Kmt2dΔ/Δ DEGs (~76%, red dots) 
are downregulated in Kmt2dΔ/Δ cells, plotted against P value and mean expression. (B) Gene networks significantly enriched among down- or upregulated 
Kmt2dΔ/Δ DEGs. (C) Kmt2dΔ/Δ DEGs that are also KMT2D bound, as determined by ChIP-Seq chromatin profiling in Kmt2d+/+ HT22 cells, and gene networks 
significantly enriched among KMT2D-bound, Kmt2dΔ/Δ DEGs. (D) Representative ChIP-Seq track of a KMT2D-bound, Kmt2dΔ/Δ DEG depicting KMT2D binding 
peaks (shown in black), RefSeq gene annotations (shown in blue), and CpG islands (shown in green). (E) Overlapping loci of observed KMT2D-ChIP peaks in 
HT22 cells and HIF1A-ChIP peaks in embryonic hearts (26). Overlapping KMT2D/HIF1A peak regions, compared with individually bound regions, are enriched 
at gene promoters. (F) Reverse transcription quantitative PCR (RT-qPCR) analysis of hypoxia-induced gene expression in Kmt2d+/+, Kmt2d+/Δ, and Kmt2dΔ/Δ 
cells, following 72 hours in normoxia (21% O2) or hypoxia (1% O2), with fold induction of target gene mRNA. Two biological replicates per genotype, each in 
technical triplicate. One-way ANOVA (*P < 0.05, **P < 0.01, and ***P < 0.001). Fisher’s exact test (†FDR < 0.05, ††FDR < 0.01, and †††FDR < 0.001).
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A large fraction of  KMT2D-bound, Kmt2dΔ/Δ DEGs control oxygen-responsive metabolism, warrant-
ing interrogation of  shared KMT2D and HIF1A binding sites. We first intersected KMT2D peaks with 
HIF1A peaks previously found in embryonic hearts (26), finding 423 overlapped regions (Figure 2E). 
Like KMT2D, HIF1A showed approximately 10% of  peaks located inside promoters, but among shared 
KMT2D/HIF1A–bound peaks this fraction approached approximately 40%, supporting cooperative reg-
ulatory activity (Supplemental Figure 2I). We identified 289 TSS ± 5 kb genes, as defined above, for these 
overlapped KMT2D/HIF1A–bound peaks, including 8 Kmt2dΔ/Δ DEGs (Supplemental Table 3).

To check whether KMT2D/HIF1A–bound genes generalize to other tissues, we next interrogated inde-
pendent gene sets having experimentally validated, hypoxia-induced HIF1A binding in the promoter (27). Of  
86 validated genes, 5 were KMT2D bound, Kmt2dΔ/Δ downregulated DEGs, 23.3-fold more than expected by 
chance (Fisher’s exact test, P = 4.74e-6) (Supplemental Table 3). Of 81 genes validated in 3 or more tissues, 3 
were KMT2D bound, Kmt2dΔ/Δ downregulated DEGs: Klf10, Rara, and Ddit4 (Fisher’s exact test, P = 0.002).

Given the prevalence of  oxygen response genes among Kmt2dΔ/Δ downregulated DEGs and shared 
KMT2D/HIF1A targets, we hypothesized there is a positive regulatory role for KMT2D in transcrip-
tional responses to hypoxia in HT22 cells. We subjected Kmt2d+/+, Kmt2d+/Δ, and Kmt2dΔ/Δ cells to nor-
moxia (21% O2) or hypoxia (1% O2), and measured hypoxia-induced gene expression responses. Anal-
ysis of  canonical HIF1A targets, vascular endothelial growth factor A (Vegfa), Bcl2/adenovirus E1B 

Figure 3. KS1 patient–derived cells recapitulate KMT2D-associated defects in proliferation and cell cycle. (A) Representative immunostaining of 
iPSCs derived from a KMT2D+/– KS1 patient (c.7903C>T:p.R2635*) and healthy controls. (B) Proliferating cells were pulsed with EdU for 30 min-
utes and quantified by flow cytometry. One-way ANOVA. (C) Cell cycle analysis in iPSCs, discriminating 2N and 4N DNA content (G1/G0 and G2/M, 
respectively) by flow cytometry using DAPI fluorescence. One-way ANOVA. (D) Representative immunostaining of NES-expressing NSPCs induced 
from iPSCs of KS1 patient and controls. (E) EdU pulse assay quantified by flow cytometry. One-way ANOVA. (F) Cell cycle defect analysis in NSPCs. 
One-way ANOVA. (G) Quantification of dying cells by flow cytometric scatter profiles in KS1 patient and control cells. One-tailed Student’s t test. (H) 
Synchronized G2/M exit analysis by flow cytometry in fibroblasts from KS1 patients (KS1-1, KS1-2, KS1-3) and healthy controls (controls 3 and 4), in 
triplicate per cell line. Cells were enriched for G2/M phase using nocodazole and analyzed by DAPI fluorescence to quantify G2/M phase cell fractions 
at 0 and 3 hours after release. One-tailed Student’s t test. Bars indicate mean ± SEM. Boxes indicate mean ± interquartile range; whiskers indicate 
minima and maxima. (*P < 0.05, **P < 0.01, and ***P < 0.001.) Scale bars: 100 μm (A), 20 μm (D).
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19-KD protein-interacting protein 3 (Bnip3), Ddit3, and cyclin-dependent kinase inhibitor 1A (Cdkn1a), in 
Kmt2d+/+ cells revealed robust upregulation upon hypoxic exposure; in contrast, Kmt2d+/Δ and Kmt2dΔ/Δ 
cell lines failed to induce these genes to comparable levels (Figure 2F and Supplemental Figure 2J). In 
hypoxic conditions, stabilized HIF1A undergoes nuclear translocation, i.e., activation. We therefore 
quantified nucleus-localized HIF1A fluorescence under normoxia (21% O2) and hypoxia (1% O2) (Sup-
plemental Figure 2K). Unexpectedly, in normoxia, Kmt2dΔ/Δ cells exhibited more than 2-fold greater 
HIF1A activation than Kmt2d+/+ cells. Upon hypoxic exposure, HIF1A activation doubled in wild-type 
cells but failed to respond in Kmt2d+/Δ cells and Kmt2dΔ/Δ cells.

Taken together, our data suggest that KMT2D plays an important role in positively regulating 
HIF1A-inducible, oxygen-responsive metabolic gene programs in neuronal cells.

KS1 patient–derived cells recapitulate KMT2D-associated defects in proliferation and cell cycle. We repro-
grammed skin biopsy fibroblasts to generate induced pluripotent stem cells (iPSCs) from a previously 
described female KS1 patient (KS1-1) bearing a heterozygous nonsense KMT2D mutation (c.7903C>T:p.
R2635*) with characteristic facial features, congenital heart disease, and visuospatial memory impairments 
(28). We selected KS1 iPSCs bearing normal 46,XX karyotype (Supplemental Figure 3A) and characteristic 
morphology (Figure 3A) for comparison against previously described iPSC lines from unrelated healthy 
controls (C1-2, C3-1) (29). KMT2D mRNA quantification in KS1 iPSCs confirmed decreased message 
compared with controls, as expected because of  haploinsufficiency (Supplemental Figure 3, B and C). 
Quantification after EdU pulse demonstrated lower proliferation rates (~25%) in KS1 iPSCs compared 
with controls (Figure 3B), accompanied by a shift in cell cycle occupancy (Figure 3C, Supplemental Figure 
3D) favoring G2/M phase (24% more cells).

We next generated NES-expressing NSPCs through parallel differentiation of  KS1 and control iPSCs, 
using an established small molecule inhibition protocol (30). RT-qPCR confirmed decreased KMT2D in 
KS1 NSPCs (Supplemental Figure 3E), and cells displayed normal morphology independent of  genotype 
(Figure 3D, Supplemental Figure 3F). EdU incorporation rates revealed KS1 NSPCs had a marked pro-
liferation defect (~47% reduced, Figure 3E) and fewer mitotic divisions (Supplemental Figure 3G). KS1 
NSPCs did not display a cell cycle defect (Figure 3F, Supplemental Figure 3H), suggesting either cell type 
dependence or loss of  this phenotype during in vitro differentiation. Flow cytometry indicated higher pro-
portions of  dying cells in KS1 samples compared with controls among both iPSCs (~130%) and NSPCs 
(~115%) (Figure 3G, Supplemental Figure 3, I and J).

To determine whether G2/M bias, seen in KS1 iPSCs, occurred in unmanipulated primary cells from 
additional KS1 patients, we analyzed fibroblasts from 3 molecularly confirmed KS1 patients (KS1-1, KS1-
2, KS1-3) and healthy controls. Fibroblasts were synchronized in G2/M phase followed by flow cytometric 
analysis of  DNA content. At 3 hours after release, control cells had exited G2/M phase, in contrast to KS1 
cells, which remained in G2/M (Figure 3H). Thus, delayed G2/M exit was consistent in primary, nonrepro-
grammed cells from 3 patients with KS1.

Transcriptional suppression of  metabolic genes in cycling cells and precocious neuronal differentiation in KS1 
patient–derived NSPCs. To interrogate transcriptional consequences of  KMT2D loss in the context of  neu-
ronal differentiation, we performed single-cell RNA sequencing (scRNA-Seq) in iPSCs and NSPCs from 
the KS1 patient and controls (Supplemental Figure 4A). By inspecting expression of  cell-type markers, 
we confirmed that libraries segregated into clusters reflecting distinct cell identities of  the expected lin-
eages (Supplemental Figure 4, B–D).

First, differential expression analysis in iPSCs and NSPCs identified genes downregulated or upregulated 
in the KS1 patient relative to healthy controls (Supplemental Figure 4E). KS1 iPSCs displayed strong transcrip-
tional suppression among 421 DEGs, with 372 genes downregulated and 49 genes upregulated (Supplemental 
Table 4). NSPCs showed less directional bias, having 346 significant DEGs, among which 147 genes were down-
regulated and 199 genes were upregulated (Supplemental Table 5). Intersection of KS1 iPSC and NSPC DEG 
lists showed that 40 genes were shared (downregulated) and 10 genes were shared (upregulated) (Supplemental 
Figure 4, F and G, and Supplemental Table 6). Shared downregulated genes included glycolysis genes, aldehyde 
dehydrogenase 7 family member A1 (ALDH7A1), enolase 1 (ENO1), and triosephosphate isomerase 1 (TPI1), 
as well as factors important to stem cell maintenance, including proliferation-associated protein 2G4 (PA2G4) 
and lin-28 homolog A (LIN28A). As in Kmt2dΔ/Δ HT22 cells, downregulated genes in KS1 patient iPSCs and 
NSPCs were significantly enriched for HIF1A direct targets, genes containing the hypoxia-responsive element 
5′-RCGTG-3′ motif, and known hypoxia response genes (Supplemental Figure 4H).
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We next focused on NSPCs from KS1 and controls to interrogate transcriptional effects during neuronal 
differentiation. We used Uniform Manifold Approximation and Projection (UMAP) to visualize single cells 
in a manner that displays high-dimensionality data while preserving both local and global relationships (31). 
Control NSPCs were tightly clustered, indicating similar expression profiles, in contrast to a distinct separation 
of KS1 cells, which gradually lessens in a subset of cells that more closely resemble controls (Figure 4A, top). 
We then partitioned single-cell libraries into developmentally informative subsets as follows. First, we verified 
that differences in cell cycle phase composition did not account for KS1-associated differential gene expression 
in NSPCs (Supplemental Figure 5A and Supplemental Table 7). Next, we partitioned cells by stage-specific 
marker expression to define a differentiation trajectory consisting of early or “cycling” NSPCs, “transitioning” 
NSPCs, and “differentiating” NSPCs (Figure 4B). Cycling cells comprised the majority of NSPCs analyzed 
and exhibited the greatest KS1-associated expression differences, while expression profiles of transitioning and 
differentiating NSPCs showed gradual convergence of gene expression. We analyzed DEGs exclusively within 
cycling, transitioning, and differentiating NSPC subsets to determine whether particular gene networks drive 
transcriptional differences in a stage-specific manner (Figure 4C and Supplemental Table 7). KS1 DEGs in 

Figure 4. Transcriptional suppression of metabolic genes in cycling cells and precocious neuronal differentiation in KS1 patient–derived NSPCs. 
(A) scRNA-Seq profiling in patient and healthy control iPSC-derived NSPCs (~5000 cells per patient), with Uniform Manifold Approximation Projec-
tion (UMAP) to visualize gene expression differences between cells. (B) NSPCs partitioned by maturation stage as defined by stage-specific marker 
expression and (C) enriched gene networks, analyzed exclusively among DEGs for each NSPC subset (cycling, transitioning, and differentiating). (D 
and E) Representative UMAPs annotated by relative expression intensities of NSPC markers, revealing the maturation trajectory from early NSPCs 
(PAX6+) to differentiating NSPCs (MAP2+). (F) Heatmap comparing density of NSPCs along the maturation trajectory, defined by binned marker 
expression from earliest (first) to most differentiated (10th) deciles, with KS1 cells disproportionately occupying the most mature bins. (G and H) 
Protein-level experimental validation of marker expression differences by flow cytometry in NSPCs from KS1 patient and controls, plotting fluores-
cence intensities of PAX6 and MAP2. Fisher’s exact test (†FDR < 0.05, ††FDR < 0.01, and †††FDR < 0.001).
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transitioning NSPCs, and to a lesser extent cycling NSPCs, showed enrichment of genes comprising the Notch 
signaling pathway, including delta-like protein 3 (DLL3), protein jagged-1 (JAG1), transcription factor HES-5 
(HES5), and cyclin D1 (CCND1). Cycling NSPCs had DEGs enriched in glycolysis pathways.

Apart from increased rates of  KS1 cell death (Figure 3G), another possible factor in the observed 
decrease of  proliferative KS1 NSPCs (Figure 3E) could be a change in cellular differentiation, such as 
precocious cell maturation, resulting in depletion of  cycling precursors. To explore this by scRNA-Seq, 
we examined markers ranging from immature cells (paired box protein Pax-6–positive, PAX6+) to the most 
differentiated cells (microtubule-associated protein 2–positive, MAP2+) (Figure 4, D and E). We further 
restricted analysis to the transitioning and differentiating, i.e., “maturing” NSPC subset (Supplemental 
Figure 5B), defining a trajectory that enabled parsing of  cells into binned deciles of  increasing maturation 
(Supplemental Figure 5, C–H). Quantification of  cell densities revealed strong bias of  KS1 NSPCs in the 
most matured bins relative to controls (Figure 4F), i.e., greater representation of  mature NSPCs from KS1 
than controls. These transcriptional signatures were corroborated experimentally at the protein level; KS1 
NSPCs had increased MAP2 fluorescence and decreased PAX6 fluorescence relative to control based on 
flow cytometry (Figure 4, G and H).

Together, these results link transcriptional suppression of  metabolic gene pathways to cell-autonomous 
proliferation defects in KMT2D-deficient KS1 patient–derived stem cell models, and scRNA-Seq data sug-
gest that precocious differentiation could contribute to KS1-associated neurodevelopmental defects.

Figure 5. In vivo defects of neurogenesis and NSPC differentiation in a Kmt2d+/βgeo mouse model of KS1. (A) Immunostaining images of dividing (EdU-pulsed) 
dentate gyrus (DG) NSPCs and nuclei purified from microdissected DG by fluorescence-activated cell sorting (FACS) (B) of labeled nuclei. (C) Cell cycle analysis in 
purified EdU+ DG nuclei from Kmt2d+/+ and Kmt2d+/βgeo mice sampled 16 hours after pulse, using DAPI fluorescence (13–14 mice per genotype, 200–500 nuclei per 
mouse). (D) Representative confocal immunostaining of neurogenesis markers in the DG of adult Kmt2d+/+ and Kmt2d+/βgeo mice at steady state (6–10 mice per 
genotype, 7–10 Z-stack images per mouse) or after EdU pulse (5–6 mice per genotype, 10 Z-stack images per mouse). NES+ radial glia-like (RGL) NSPCs, in either 
quiescent (minichromosome maintenance complex component 2–negative, MCM2–) or activated (MCM2+) states (qRGL and aRGL, respectively), MCM2+ NES946 
intermediate progenitor cells (IPCs), and DCX+ neuroblasts (NBs) were quantified. (E and F) Quantification of stage-specific NSPC densities (qRGL, aRGL, IPC, 
and NB) in adult Kmt2d+/+ and Kmt2dβ/geo mice at steady state (E) or after EdU pulse-chase (2 weeks) to birth date, differentiating NSPCs (F). Bars indicate mean 
± SEM. One-tailed Student’s t test (*P < 0.05, **P < 0.01, and ***P < 0.001). Scale bars: 50 μm, unless otherwise specified (A, inset, 10 μm).
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In vivo defects of  neurogenesis and NSPC differentiation in a Kmt2d+/βgeo mouse model of  KS1. Finally, we 
asked whether proliferative defects, transcriptional suppression, and precocious differentiation pheno-
types could be validated in vivo, using an established KS1 mouse model. Kmt2d+/βgeo mice, bearing a 
Kmt2d-truncating mutation, were previously found to exhibit visuospatial memory impairments and few-
er doublecortin-positive (DCX+) NSPCs in the DG subgranular zone (SGZ) (12, 32), but NSPC lineage 
progression in Kmt2d+/βgeo mice has not been characterized.

We conducted cell cycle and RNA-Seq analysis in Kmt2d+/βgeo mice, using an EdU pulse paradigm to 
label adult-born cells. We sampled microdissected DG within 1 cell cycle (16 hours) to capture the full com-
plement of  dividing NSPCs (Figure 5A), then purified EdU+ nuclei by FACS (Figure 5B and Supplemental 
Figure 6A). DNA content analysis revealed enrichment of  G2/M phase in Kmt2d+/βgeo EdU+ DG nuclei (Fig-
ure 5C). We next profiled transcription by RNA-Seq in purified EdU+ DG nuclei, yielding 827 DEGs (Sup-
plemental Figure 6, B and C, and Supplemental Table 8). The 416 downregulated genes in Kmt2d+/βgeo nuclei 
were enriched for misfolded protein binding, tricarboxylic acid cycle, proteasome complex, oxygen response, 
and poly(A) RNA–binding genes. Given the observed downregulation of  poly(A) RNA–binding genes, we 
considered the possibility that improper 3′-UTR–mediated mRNA metabolism could lead to accumulation 
of  transcripts influencing NSPC maturation. Indeed, despite little overall bias toward up- or downregulation 
in Kmt2d+/βgeo DG nuclei, interrogating positive regulators of  neuronal differentiation revealed a marked 
predominance of  proneural transcripts upregulated, having only 3 genes downregulated but 14 genes upreg-
ulated, including copine 1 (Cpne1), focal adhesion kinase 1 (Ptk2), RAS-related protein RAB11A (Rab11A), 
and retinoblastoma-associated protein 1 (Rb1). Interestingly, KS1 patient NSPCs also showed upregulated 
proneural genes, such as nuclear receptor subfamily 2, group F, member 1 (NR2F1) and proneural transcrip-
tion factor HES-1 (HES1), while Kmt2dΔ/Δ HT22 cells had upregulated brain-derived neurotrophic factor 
(Bdnf) and neuron-specific microtubule component (Tubb3/Tuj1). Such proneural gene expression observed 
across KS1 models raises the possibility that NSPC differentiation rates could be altered in Kmt2d+/βgeo mice.

To examine NSPC lineage progression in vivo, we analyzed stage-specific cell abundances both at 
steady state and after birth dating of  adult-born NSPCs by EdU pulse, comparing Kmt2d+/βgeo mice to sex- 
and age-matched Kmt2d+/+ littermates (Figure 5D and Supplemental Figure 6D).

At steady state, we observed significantly fewer NSPCs in Kmt2d+/βgeo mice compared with Kmt2d+/+ 
mice at all stages (Figure 5E). The cell division marker, MCM2, distinguished NES+ NSPCs in the qui-
escent (MCM2–) or activated (MCM2+) state. Importantly, qRGL (NES+MCM2–) NSPCs were approxi-
mately 39% less numerous in Kmt2d+/βgeo mice, indicating a baseline paucity in the stem cell pool. aRGL 
(NES+MCM2+) NSPCs were approximately 43% less numerous, and IPC (NES–MCM2+) NSPCs were 
approximately 26% fewer. We confirmed prior observations (12, 32) of  fewer NB (DCX+) NSPCs, finding 
a 28% decrease in Kmt2d+/βgeo mice. By stratifying analysis along the septotemporal axis of  the DG, we 
observed that aRGL NSPC reductions in Kmt2d+/βgeo mice were more pronounced in the septal DG than 
the temporal region (Supplemental Figure 6E), congruous with spatial memory defects (12) localized to the 
septal DG (33). Because DCX+ NSPCs migrate radially during maturation, we compared radial distances 
of  DCX+ cell bodies from the SGZ plane and observed increased distances in Kmt2d+/βgeo mice (Supplemen-
tal Figure 6F). Finally, despite diminished NSPC populations in Kmt2d+/βgeo mice, we observed no numeric 
differences among mature neurons (RBFOX3+) (Supplemental Figure 6G), nor were gross anatomical dif-
ferences seen by MRI volumetric analysis (Supplemental Figure 6H, Supplemental Table 9).

From these data, we then calculated a lineage progression index to approximate the expansion poten-
tial of  each successive neurogenic cell type. Although Kmt2d+/βgeo mice showed fewer total NSPCs of  each 
type at steady state, the lineage progression index at each cell type transition did not differ significantly 
(Supplemental Figure 6I), suggesting that particular cell type transition impairments are not responsible for 
the adult neurogenesis defect. However, we did note substantially higher variance of  RGL activation rates 
in Kmt2d+/βgeo mice, suggesting impaired coordination of  NSPC mitotic entry (Supplemental Figure 6J).

Pulse labeling with marker-based imaging enables precise measurement of birth dates, i.e., mitotic division, 
of specific cell types. To resolve temporal dynamics of NSPC differentiation in Kmt2d+/βgeo and wild-type mice, 
we pulsed adult mice with EdU for 2 weeks, during which a subset of labeled DG cells is expected to reach a late 
NSPC (NB) stage, characterized by radial extension of a DCX+ neuronal process. In contrast, another subset of  
pulsed cells, bearing an NES+ qRGL-like process, represents NSPCs that remain in a stem-like state. Thus, by 
quantifying EdU-labeled cells exhibiting either a DCX+ neuronal process (EdU+DCX+) or an NES+ qRGL-like 
process (EdU+NES+) (Figure 5F and Supplemental Figure 7), one can compare relative differentiation status, 
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where a higher proportion of EdU+DCX+ cells would indicate early or precocious maturation. Indeed, though 
steady state cell numbers again showed fewer total NES+ and DCX+ NSPCs in Kmt2d+/βgeo mice compared 
with wild-type, among pulsed cells the Kmt2d+/βgeo mice exhibited a significantly greater fraction of EdU+DCX+ 
immature neurons (Figure 5F). In other words, Kmt2d+/βgeo DG NSPCs born within the preceding 2 weeks had 
achieved a more advanced differentiation state than wild-type cells born in the same window.

Together, studies of  adult neurogenesis dynamics in Kmt2d+/βgeo mice suggest that in vivo neurodevelop-
mental effects of  KMT2D loss recapitulate many phenotypes observed initially in vitro using mouse HT22 
cells and KS1 patient–derived cells. Although comparison of  gene expression profiles across these KS1 
models revealed few individual genes with shared dysregulation among all models, at the network level 
we observed high enrichment of  HIF1A regulatory and RNA metabolism pathways in a comparison of  all 
DEGs in these KS1 models (Supplemental Figure 8, A–D).

Precocious differentiation and reduced hypoxia responses in Kmt2d+/βgeo primary hippocampal NSPCs. Cellular 
oxygen availability has previously been directly linked to maintenance and differentiation of  embryonic 
(33) and adult DG (19) NSPCs. Primary hippocampal NSPCs of  Kmt2d+/βgeo mice showed increased HIF1A 
activation compared with wild-type NSPCs, and both genotypes showed increased HIF1A activation upon 
treatment by HIF1A-stabilizing agent dimethyloxaloylglycine (DMOG) for 12 hours (Supplemental Fig-
ure 9). We then subjected NSPCs to a standard in vitro neuronal differentiation protocol, quantifying cell 
marker expression between 0 and 8 days (Supplemental Figure 10, A and B). Before differentiation (day 
0), wild-type NSPCs expressed low levels of  a mature DG neuron marker, prospero-related homeobox 
1 (PROX1), while Kmt2d+/βgeo NSPCs, surprisingly, showed an increase (Supplemental Figure 10C). By 
measuring expression of  a proneural transcription factor, achaete-scute homolog 1 (ASCL1), we observed 
a baseline decrease (day 0) in Kmt2d+/βgeo NSPCs compared with wild-type (Supplemental Figure 10D). 
In contrast, after 2 days in differentiation conditions, Kmt2d+/βgeo NSPCs responded with greater ASCL1 
expression compared with wild-type, an effect sustained at 4 and 8 days. DMOG treatment increased 
ASCL1 levels in both genotypes, though to greater magnitude in wild-type than Kmt2d+/βgeo NSPCs. Togeth-
er, these data are consistent with a link between cellular hypoxia response and neuronal differentiation in 
hippocampal NSPCs (20).

Discussion
The ID disorder KS1 is caused by mutations in the histone methyltransferase KMT2D, but mechanistic 
links to neurodevelopmental and cognitive consequences in patients are not yet clear. KS1 diagnoses are 
typically made after birth, but the inherent reversibility of  chromatin modifications raises the possibility 
that a detailed understanding of  KMT2D activity in neuronal cells could identify molecular targets for 
postnatal interventions in KS1-associated ID.

Here, we report that KMT2D-deficient human and mouse neurodevelopment models, in vitro and 
in vivo, demonstrate similar patterns of  transcriptional suppression, proliferative defects, and precocious 
cellular differentiation. These phenotypes were cell autonomous in vitro, suggesting that (a) chromatin and 
gene expression studies in neurogenic cell types could yield disease-relevant KMT2D targets and (b) these 
cellular models provide platforms for screening of  novel therapeutic strategies or targeted manipulations. 
We performed transcriptomic and KMT2D profiling in these models and observed systematic suppression 
of  hypoxia response pathways, particularly among HIF1A-regulated genes that are also directly KMT2D 
bound in neuronal cells. Physically overlapping KMT2D- and HIF1A-bound genomic loci were observed 
across tissues, approximately 40% of  these at promoters, raising the possibility of  shared etiologies in 
embryonically distinct KS1-affected organ systems. Furthermore, KMT2D-deficient neuronal cells, in 
contrast to isogenic wild-type cells, were unable to mount characteristic hypoxia-inducible gene activation 
responses when exposed to low-oxygen conditions, demonstrating oxygen response defects in KS1 models.

The implication of  hypoxia response defects in KS1 suggests clinical relevance of  recent findings in 
neurodevelopmental regulation. First, the adult hippocampal NSPC niche harbors locally hypoxic, but 
dynamic, microenvironments, and the hypoxic state positively influences NSPC survival (20, 21). Thus, 
compromised hypoxia responses could render cells particularly vulnerable to changes in oxygen levels as 
experienced by maturing NSPCs as they migrate from DG SGZ vasculature. Second, NSPC maturation 
is coupled to a metabolic rewiring from glycolysis in early NSPCs, to oxidative phosphorylation in matur-
ing neurons. Zheng and colleagues (19) recently found this metabolic switch, marked by suppression of  
glycolytic genes, to be essential for neuronal maturation. In KS1 neural models we observed suppression 
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of  hypoxia-responsive glycolytic genes accompanied by upregulation of  proneuronal differentiation genes, 
and demonstrated precocious maturation of  DG NSPCs by in vivo pulsing of  adult Kmt2d+/βgeo mice, as 
well as in vitro differentiation of  Kmt2d+/βgeo primary DG NSPCs. Future studies could determine whether 
targeted chromatin opening at hypoxia response loci normalizes differentiation dynamics in KS1 NSPCs.

Analogous findings regarding premature activation of  terminal differentiation genes, reduced prolif-
eration, and precocious maturation in KMT2D-depleted keratinocytes were recently linked to disorga-
nized epidermal stratification (10). Furthermore, in KMT2D-deficient cardiomyocytes, loss of  H3K4me2 
at KMT2D-bound hypoxia response genes was associated with cell cycle and proliferative defects in heart 
development (6). In contrast, KMT2D deletion in B cells conferred proliferative advantage and impaired 
cell maturation, despite significant upregulation of  differentiation genes (8, 9). Thus, while KMT2D’s role 
in enhancer-mediated gene expression during differentiation is well established (11), phenotypic manifesta-
tions appear to be cell type and stage dependent. We now extend KMT2D-associated phenotypes of  tran-
scriptional perturbation, hypoxia response, cell cycle, proliferation, and premature differentiation to neuro-
nal contexts. Phenotypic concordance across tissues of  disparate embryonic origin suggests that KMT2D 
targets important to KS1 phenotypes support basic cellular homeostatic functions related to housekeeping, 
energy production, and cell cycle progression, rather than genes with purely brain-specific function. Fur-
thermore, we report concordant phenotypes both from nonsense KMT2D mutations (patient iPSCs and 
NSPCs) and mutations limited to the KMT2D SET domain (HT22 cells, Kmt2d+/βgeo mice), indicating that 
loss of  either gene dosage or catalytic function of  KMT2D can be pathogenic.

Present results indicate that adult hippocampal neurogenesis defects, which we previously found to 
associate with visuospatial memory defects in Kmt2d+/βgeo mice, are observable at all stages examined, includ-
ing fewer quiescent NSPCs in the DG, which could indicate either postnatal depletion or altered niche 
development in the embryo. Despite having fewer total NSPCs, by pulse-chase experiments we observed 
the Kmt2d+/βgeo NSPC population to achieve a more advanced maturation stage than that of  wild-type lit-
termates. Interestingly, adult-born NSPCs wield a disproportionately strong influence on DG circuitry and 
visuospatial learning during younger, but not older, neuronal maturation stages (34). This stage-dependent 
coupling of  NSPC maturation with cognitive outcomes increases the likelihood that accelerated neuronal 
differentiation rates could negatively affect visuospatial memory acquisition. Furthermore, multispecies 
comparisons demonstrate that measured decreases in neurogenesis rates are consistent with accelerated 
neuronal maturation rates across the life span (35).

The apparent paradox of  increased HIF1A activation, despite blunted hypoxia-responsive expression in 
Kmt2d+/Δ and Kmt2dΔ/Δ neuronal cells, raises 2 possibilities. First, chronic HIF1A activity could result in cellu-
lar compensatory efforts to downregulate hypoxia response genes. In this case, heterochromatin environments 
at HIF1A-binding genes could prevent induction. Alternatively, cellular oxygen sensing could be coupled to 
gene expression through chromatin states in an HIF1A-independent manner. Independent studies recently 
discovered direct oxygen sensing by KDM6A/UTX (the H3K27 demethylase lost in KS2 patients) as well as 
the H3K4/H3K36 demethylase 5A (KDM5A), which controlled chromatin states and cell differentiation in 
an HIF1A-independent manner (36, 37). These findings link hypoxia-induced histone methylation at H3K4, 
H3K27, H3K9, and H3K36 directly with control of  maturation in multiple cell types, further supporting the 
notion that KS-associated transcriptional suppression, in the adult DG context, could affect NSPC stage-de-
pendent learning (34) via metabolic dysregulation. Hypoxia-upregulated H3K4me3 peaks (37) were enriched 
in HIF1A target gene promoters, where we presently observed high overlaps in KMT2D/HIF1A–bound loci. 
Strikingly, loss of  KDM5A, whose activity opposes that of  KMT2D at H3K4 sites, caused upregulation of  
hypoxia-responsive genes (37), i.e., an effect opposite to the present KS1-associated suppression of  hypoxia 
response genes, such as Klf10 and Bcl2/adenovirus E1B 19-KD protein-interacting protein 3–like (Bnip3l). 
Several histone demethylases, and at least 33 chromatin modifiers in total, have been shown to affect hypoxia 
response genes, 11 of  these associating with developmental disorders or cancers, yet KMT2D and other his-
tone methyltransferases have not yet been implicated (38).

In summary, our findings suggest that KMT2D deficiency disrupts neurogenesis by negatively 
affecting NSPC maintenance functions, including cell cycle, proliferation, and survival, accompanied 
by decreased adult NSPC numbers and precocious neuronal differentiation. Chromatin and transcrip-
tome profiling identified KMT2D- and HIF1A-regulated gene programs suppressed across KS1 model 
systems, implicating previously described roles for hypoxia responses in regulating neuronal differen-
tiation. Indeed, we functionally demonstrate KMT2D-dependent HIF1A activation and target gene 
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induction in KS1 neural models and diminished response to hypoxic conditions during in vitro neu-
ronal differentiation in Kmt2d+/βgeo NSPCs. Together, these findings are consistent with an etiological 
model for KS1-associated developmental changes in which KMT2D loss transcriptionally suppresses 
oxygen response programs critical to early NSPC maintenance, favoring precocious cellular differenti-
ation during hippocampal neurogenesis.

Methods
Media and reagents are listed (Supplemental Table 10).

Animals. The Kmt2d+/βgeo allele [Mll2Gt(RRt024)Byg] was generated by Bay Genomics (University of  
California) through the random insertion of  a gene trap vector. Kmt2d+/βgeo mice were fully backcrossed to 
a C57BL/6J background (Jackson Laboratories) over more than 10 generations. Animals were housed in a 
14-hour light/10-hour dark cycle with free access to food and water. Experiments compared age- and sex-
matched littermates. Genotyping by PCR has been described (12).

Primary hippocampal NSPCs. Female C57BL/6J mice (Jackson Laboratories) were mated to Kmt2d+/βgeo 
males and sacrificed for embryo harvest at embryonic day 18. Microdissected DG from Kmt2d+/βgeo and Kmt2d+/+ 
littermate embryos was processed for NSPC isolation and in vitro differentiation as described previously (39).

Patient-derived iPSCs, NSPCs, and fibroblasts. Skin biopsy fibroblasts were cultured from molecularly 
confirmed KS1 patients (KS1-1, KS1-2, KS1-3). KS1-1 fibroblasts were reprogrammed using nonin-
tegrating Sendai virus vectors (CytoTune-iPS 2.0). Five days after induction, cells were transferred to 
mouse embryonic fibroblast (MEF) feeder plates in iPSC medium. Twenty-one days after induction, 
high-quality colonies were manually selected for propagation and karyotyping by G-banding. Gen-
eration of  healthy control lines (C3-1 and C1-2) was previously described (29). Feeder MEFs from 
E13.5 CF-1 mice were mitotically inactivated by irradiation. iPSCs were enzymatically passaged every 
4–8 days using collagenase. NSPCs were induced from iPSCs as previously described (30), briefly, by 
inhibiting glycogen synthase kinase 3, transforming growth factor–β, γ-secretase, and Notch signaling 
pathways using small molecules CHIR99021 (4 μM), SB431542 (3 μM), (3 μM), and Compound E (0.1 
μM), in the presence of  human leukemia inhibitory factor (10 ng/mL) and Rho-associated, coiled-coil 
containing protein kinase inhibitor (5 μM) for 7 days. NSPCs were split with Accutase and propagated 
in neural induction medium on a Matrigel.

CRISPR/Cas9 deletions in HT22 cells. HT22 mouse hippocampal cells are commercially available but 
were a gift of  the Goff  Laboratory and maintained in HT22 medium. sgRNAs targeting 2 loci spanning 
the Kmt2d SET domain–encoding region, with cut sites in exon 52 and either exon 54 (Kmt2dΔ1) or intron 
54 (Kmt2dΔ2), were integrated into Cas9 plasmid (pSpCas9BB-2A-puro v2.0) and delivered to cells at 20% 
confluence using Lipofectamine 2000 according to the manufacturer’s protocol. After puromycin selection, 
cells were identified by PCR (primers listed in Supplemental Table 10) and clonally expanded. Following 
Sanger sequencing, a subset of  clones appearing to be heterozygous based on PCR, but found to bear strand 
invasion, were removed from analyses.

RNA-Seq in HT22 cells: library preparation. Cells were plated at equal density and sampled at 60% conflu-
ence. Total RNA was isolated from 3 biological replicates of Kmt2dΔ/Δ clones and Kmt2d+/+ parental cells using 
Direct-Zol RNA MicroPrep, and libraries were constructed in technical triplicate using NEBNext Poly(A) 
Magnetic Isolation Module and NEBNext Ultra II RNA Library Prep Kit for Illumina, with size selection 
by AMPure XP beads, according to manufacturers’ protocols. Library quantification and quality checks were 
done using KAPA Library Quantification Kit for Illumina, High Sensitivity DNA Kit on BioAnalyzer, and 
Qubit dsDNA HS Assay. Paired-end 50-bp reads were obtained for pooled libraries using Illumina HiSeq 2500.

RNA-Seq in HT22 cells: data analysis. We first obtained a FASTA file with all mouse cDNA sequences (Mus_
musculus.GRCm38.cdna.all.fa.gz) from Ensembl (http://uswest.ensembl.org/Mus_musculus/Info/Index, ver-
sion 91, downloaded January 2018). Then, sequencing reads were pseudoaligned to this FASTA file, and tran-
script abundances were subsequently quantified, using Salmon (40). We then used the tximport R package (41) 
to convert the transcript abundances into normalized gene-level counts, by setting the “countsFromAbundance” 
parameter equal to “lengthScaledTPM.” Next, we used the edgeR (42, 43) and limma (44) R packages to log2 
transform these gene-level counts and normalize each of the samples with the “voom” function using the effective 
library size (that is, the product of the library size and the normalization factors, the latter of which we computed 
with the “calcNormFactors” function provided in edgeR). Subsequently, we estimated the mean-variance rela-
tionship and calculated weights for each observation. To account for the correlation between technical replicates 
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of the same clone when performing the differential analysis, we fit a mixed linear model, using the function 
“duplicateCorrelation” from the statmod R package (45) to block on clone. The differential analysis was then 
performed using the limma R package. DEGs were called with 0.05 as the cutoff for the FDR.

When performing the principal component analysis, transcript abundances were first converted into 
gene-level counts using the tximport R package, with the “countsFromAbundance” parameter equal to “no.” 
Then, we applied a variance-stabilizing transformation to these gene-level counts using the “vst” function 
from the DESeq2 R package (46), with the parameter “blind” set to “TRUE,” and subsequently estimated 
the principal components (without scaling the expression matrix) using the 1000 most variable genes.

scRNA-Seq: library preparation. NSPCs were induced in parallel from each iPSC line (KS1-1, C1-2, C3-1) 
under identical conditions and passaged 3 times before sampling. iPSCs were detached from MEF feed-
ers using collagenase (200 units/mL). iPSCs and NSPCs were dissociated to single-cell suspension using 
Accutase. Cell counts and viability were analyzed using Countess II. scRNA-Seq libraries were created 
with Chromium Single Cell 3′ Library & Gel Bead Kit v2 (10x Genomics) according to the manufacturer’s 
protocol. Targeted cell recovery for each sample was 5000 cells. Sufficient cDNA for library construction 
was obtained using 20 amplification cycles for iPSC libraries and 16 cycles for NSPC libraries. Sample 
indexing was achieved using 11 PCR cycles for iPSC libraries and 5 cycles for NSPC libraries. scRNA-Seq 
libraries were sequenced using Illumina NextSeq 500.

scRNA-Seq: data analysis. Sequencing output was processed through the Cell Ranger 2.1.0 preprocessing 
pipeline using default parameters, with the exception of  --expect-cells = 5000 for “cellranger count” and --nor-
malize = none for “cellranger aggr.” Reads were quantified against hg19 using the 10x reference genome and 
transcriptome builds (refdata-cellranger-GRCh38-1.2.0). The aggregated raw count matrix was then used as 
input for the Monocle 2 scRNA-Seq framework. DEG analysis was performed on all NSPCs and iPSCs with 
respect to genotype (KS1 patient vs. healthy control) and was performed using the Monocle 2 (47) likelihood 
ratio test (0.1% FDR, Monocle 2 likelihood ratio test, Benjamini-Hochberg corrected) with “num_genes_
expressed” added as a nuisance parameter to both the full and reduced models. The directionality of  the 
differential gene test was determined by calculating the mean gene expression across all KS1 patient–derived 
and healthy control cells, evaluating the relative fold change. High-variance genes were selected as those with 
a positive residual to the estimated dispersion fit and a mean number of  reads per cell greater than or equal to 
0.0005. Cell cycle stage was determined by profiling cell cycle–associated genes across all cells and assigning 
cell cycle state using the R/Bioconductor package scran (48). Dimensionality reduction and visualization 
were performed via UMAP (31) on the log10(counts + 1) of  the high-variance genes in the NSPC data set. The 
first 10 principal components were used as input for UMAP using the default parameters of  the R/CRAN 
package umap. Cells were assigned to clusters using Monocle 2’s implementation of  the louvain community 
detection algorithm. Learned clusters were then aggregated by hand based on marker gene expression into 
3 clusters (“differentiating,” “transitioning,” “cycling”). Differential gene expression analysis within clusters 
and between genotypes was performed as described above. The “differentiating” cluster was then segregated, 
and a smooth line was fitted using a linear regression. This line was determined to represent the direction of  
differentiation by examination of  marker genes (Supplemental Figure 5, C–H). The residuals of  this fit were 
then plotted, and deciles were calculated containing an equal number of  cells along the axis of  differentiation. 
The number of  cells in each decile was then counted with respect to genotype.

ChIP-Seq: library preparation. Kmt2d+/+ HT22 cells were sampled at 70% confluence and processed for pull 
down with ChIP-grade KMT2D antibody (MilliporeSigma) according to Encyclopedia of  DNA Elements 
(ENCODE) guidelines. Sonicated, reverse–cross-linked chromatin served as input control. Briefly, approx-
imately 300 million cells per cell line were cross-linked in 1% formaldehyde and quenched with 0.125 M 
glycine, and cell lysate supernatants were collected for immediate processing or snap-frozen for storage at 
–80°C. Nuclei (20 million/sample) were diluted in 1 mL RIPA buffer and were sonicated using a Bioruptor 
for 6 cycles of  5 minutes (60 s on/30 s off) in ice-cold water bath. Supernatants containing sheared chroma-
tin were precleared with Protein A Dynabeads and incubated overnight at 4°C with 8 μg KMT2D antibody. 
ChIP DNA was recovered by Dynabead incubation (overnight at 4°C plus 6 hours at room temperature) 
before 6 sequential salt washes of  increasing stringency, then eluted and reverse–cross-linked overnight at 
65°C. DNA was purified using DNA Clean and Concentrator (Zymo Research) and quantified using High 
Sensitivity DNA Kit on BioAnalyzer and Qubit dsDNA HS Assay. DNA libraries were constructed using 
NEBNext Ultra II DNA Library Prep Kit for Illumina and quantified using KAPA Library Quantification 
Kit for Illumina. Paired-end 75-bp reads were obtained for pooled libraries using Illumina HiSeq 2500.
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ChIP-Seq: data analysis. Sequencing reads were aligned to the mouse reference genome (mm10) 
using Bowtie2 (49). Then, duplicate reads were removed with the function MarkDuplicates from Picard 
(http://broadinstitute.github.io/picard/). Peaks were subsequently called using model-based analysis of  
ChIP-Seq 2 (50), with the “keep-dup” parameter equal to “all.” After peak calling, we excluded all peaks 
that overlapped with blacklisted regions provided by ENCODE (51). As a quality metric, using the result-
ing list of  peaks, we computed the fraction of  reads in peaks (frip) with the “featureCounts” function in 
the Rsubread package (52), with the “requireBothEndsMapped” parameter equal to “TRUE,” and the 
“countChimericFragments” and “countMultiMappingReads” parameters equal to “FALSE.” We found 
frip to be 2.9%, which is within the typically encountered range of  values for a point-source factor (53).

To identify genes likely to be regulated in cis by KMT2D, we first obtained the coordinates of  10-kb 
regions centered on the TSS for each gene, using the “promoters” function from the EnsDb.Mmuscu-
lus.v79 R package (54), with the “filter” parameter equal to “TxBiotypeFilter(“protein_coding”)” and 
the “upstream” and “downstream” parameters both equal to 5000. Subsequently, we selected those genes 
whose extended promoter (± 5 kb from the TSS) overlapped with at least 1 KMT2D peak, using the “find-
Overlaps” function in the GenomicRanges R package (55).

Purification of  EdU+ nuclei. Mice were given 150 mg/kg EdU by intraperitoneal injection and sam-
pled after 16 hours. DG was microdissected in ice-cold PBS immediately following sacrifice by halothane 
inhalation. Total nuclei were purified as described (56) with the addition of  RNase inhibitor to all buffers. 
Briefly, DG was dounce-homogenized in 1 mL lysis buffer and layered above a sucrose gradient for ultra-
centrifugation at 139,800 g (max) for 2 hours at 4°C. Nuclei were resuspended in Click-iT EdU Alexa 
Fluor 488 with RNAse inhibitor and incubated 30 minutes at room temperature. Samples were passed 
through a 40-μm filter (Thermo Fisher Scientific), stained with 1 μg/mL DAPI, and kept on ice before 
sorting. Lysates processed identically from non–EdU-injected mice served as negative controls during 
sorting with Beckman Coulter MoFlo Cell Sorter. Cell cycle analysis by DNA content was performed with 
gates discriminating 2N and 4N cells by DAPI fluorescence.

RNA-Seq: EdU+ nuclei. Purified EdU+ nuclei from 3 Kmt2d+/βgeo and 3 wild-type littermate female mice 
(500 nuclei pooled per genotype) were sorted into Smart-Seq 2 lysis buffer (2 μL Smart-Seq2 lysis buffer 
with RNase inhibitor, 1 μL oligo-dT primer, and 1 μL deoxynucleoside triphosphate; briefly spun by table-
top microcentrifuge; and snap-frozen on dry ice. Nuclei were processed according to a modified Smart-seq2 
protocol (57). Briefly, lysates were thawed to 4°C, heated to 72°C for 5 minutes, and immediately placed 
on ice. Template-switching first-strand cDNA synthesis was performed using a 5′-biotinylated template 
switch oligo. cDNAs were amplified using 20 cycles of  KAPA HiFi PCR and 5′-biotinylated in situ PCR 
primer. Amplified cDNA was cleaned using a 1:1 ratio of  Ampure XP beads, and approximately 250 pg 
was input to a one-quarter–sized Nextera XT tagmentation reaction. Tagmented fragments were amplified 
for 12 enrichment cycles, and dual indexes were added to each well to uniquely label each library. Concen-
trations were assessed with Quant-iT PicoGreen dsDNA Reagent (Invitrogen, Thermo Fisher Scientific), 
and samples were diluted to approximately 2 nM and pooled. Paired-end 105-bp reads were obtained for 
pooled libraries using Illumina HiSeq 2500. Paired-end reads were aligned to mm10 using HISAT2 (58) 
with default parameters except –p = 8. Aligned reads from individual samples were quantified against a 
reference genome (GENCODE vM8) using cuffquant (59). Normalized expression estimates across all 
samples were obtained using cuffnorm with default parameters (60).

RT-qPCR. Total RNA was isolated by RNeasy Mini Kit (QIAGEN), and cDNA libraries were con-
structed with High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems) according to manufac-
turers’ protocols. Experiments were performed in technical triplicate, with biological replicates as indicat-
ed. Probes were from TaqMan.

Immunostaining, confocal imaging, and processing. Coronal brain sections of  30 μm (every sixth slice) were 
analyzed in serial order. Briefly, adult brains were PFA-fixed by transcardial perfusion and postfixed for 12 
hours before cryoprotection by 30% sucrose in phosphate buffer. Brains were sectioned by cryostat (Leica), 
directly mounted to charged slides, and stored at –80°C. Antigen retrieval (DakoCytomation) was per-
formed at 95°C for 20 minutes. Overnight incubation at 4°C in primary antibodies (Supplemental Table 10) 
preceded incubation in Alexa Fluor–conjugated secondary antibody (1:500). Tiled, Z-stacked images were 
acquired using Zeiss LSM780 FCS AxioObserver confocal microscope and Zen software (Zeiss) to encom-
pass the entire DG structure. Images were quantified using Imaris (BitPlane) by experimenters blinded to 
genotype. Cell counts were corrected by DG area multiplied by Z-thickness and expressed as cells/mm3. 
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For pulse-label experiments, mice were injected with 150 mg/kg EdU in saline every 48 hours and sampled 
as above. DCX+ neuroblast distance from the SGZ plane was measured in Fiji (NIH). Patient-derived cell 
imaging used EVOS FL Cell Imaging System with analysis in Fiji.

FACS and analysis. Flow cytometry analysis with FACSverse and FACSsuite (BD Biosciences) and sort-
ing by Beckman Coulter MoFlo Cell Sorter were done with proper gate settings and doublet discrimination 
(Supplemental Figure 3J, Supplemental Figure 6A). Runs of  10,000 or more cells were analyzed from 
technical triplicate culture wells and analyzed in FlowJo v10 (TreeStar Inc). Unstained and secondary-only 
samples served as controls. Cells were sampled after a 30-minute pulse of  EdU (10 μM) using Click-iT EdU 
Flow Cytometry Assay (Thermo Fisher Scientific). CellTrace Violet and CellEvent caspase-3/7 reagent 
(Thermo Fisher Scientific) were used according to the manufacturer’s protocols. For cycle synchronization, 
250 ng/mL nocodazole (MilliporeSigma) was applied for 18 hours before release.

MRI. 3D T2-weighted MRI (9.4 T) was performed on PFA-perfused brains of  Kmt2d+/βgeo (n = 3) and 
Kmt2d+/+ (n = 3) female mice aged 4 months. Atlas-based, volume-corrected analysis was performed in 25 
brain regions (DtiStudio).

Data availability. High-throughput data are publicly available: RNA-Seq and ChIP-Seq in Gene Expres-
sion Omnibus (GEO) database (GSE126167) and scRNA-Seq in GEO (GSE126027). Scripts for scRNA-
Seq analysis are available at https://github.com/Jaugust7/Kabuki-Syndrome-scRNA-analysis.

Statistics. For high-throughput experiments, see Methods. For cellular assays, see figure legends. Statis-
tical analyses with multiple-comparisons correction were done with GraphPad Prism (version 7.0b). Gene 
set enrichments were determined according to WebGestalt (61) or by Fisher’s exact test in R version 3.5.2 
as indicated. P values below 0.05 were considered significant and are denoted as indicated in the legends 
(*P < 0.05, **P < 0.01, and ***P < 0.001).

Study approval. All mouse experiments were performed using protocols approved by the Animal Care 
and Use Committee of  Johns Hopkins University (JHU) School of  Medicine and are in accordance with 
NIH guidelines. Informed consent regarding KS1 patient samples was obtained according to institutional 
IRB and Institutional Stem Cell Research Oversight protocols approved by JHU.
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